The previous commit introduced code that optimizes the activation
patterns to be able to generate smaller activation logic. The resulting
supercell was then enqueued as shareable using those optimized
activation patterns. The condition represented by the optimized patterns
is an over-approximation of the actual activiation condition. This means
using it as activiation for the supercell loses precision and pessimises
sharing of the supercell with further cells, breaking the sat/share
test.
This commit fixes that by using the optimized activiation patterns only
for the generation of activation logic and using the original patterns
for enqueuing the supercell.
In case the two sets of activation patterns are mutually exclusive
without considering the logic feeding into the activation signals, an
activation condition can only be relevant if present in both sets with
opposite polarity.
This detects pattern-only mutual exclusion by running an additional SAT
query before importing the input cone logic. If that is already UNSAT,
we remove all non-relevant condition and re-simplify the remaining
patterns.
In cases of pattern-only mutual exclusion, this will often produce much
smaller selection logic and avoid the more costly SAT query that
includes the input cones.
Still unsupported:
- wide muxes (`$_MUX16_` and friends)
Partially supported types have comments in `test_cell.cc`.
Fix `CellTypes::eval() for `$_NMUX_`.
Fix `RTLIL::Cell::fixup_parameters()` for $concat, $bwmux and $bweqx.
Partially reverts commit 9c5bffcf93.
The reasoning behind this is that setup.py is intended to strictly consume the Makefile and not be consumed by it. The attempt at using them recursively has caused a number of issues and has rendered Pyosys unusable to some users: See https://github.com/YosysHQ/yosys/issues/5012
Additionally, unlike the previous pyosys installation target, the wheel installation does not respect PREFIX=, only venvs.
For installation inside a venv, the intended method should remain a user manually executing `pip3 install .` instead of relying on the Makefile.
Use `Design::selected_modules()` directly, popping at the end instead of copying the selection.
Also default to a complete selection so that boxes work as before.
Simplify to using `RTLIL::SELECT_WHOLE_CMDERR` instead of doing it manually.
Also add tests for importing selections with boxes.
If all the (non-select) inputs of a `$_MUX{4,8,16}_` are undefined, replace it, just like we do for `$mux` and `$_MUX_`.
Add `tests/opt/opt_expr_mux_undef.ys` to verify this.
This doesn't do any const folding on the wide muxes, or shrinking to less wide muxes. It only handles the case where all inputs are 'x and the mux can be completely removed.
This adds optional in-memory caching of parsed liberty files to speed up
flows that repeatedly parse the same liberty files. To avoid increasing
the memory overhead by default, the caching is disabled by default. The
caching can be controlled globally or on a per path basis using the new
`libcache` command, which also allows purging cached data.
These were introduced by 0a6d9f4.
1) While in a paren "(", don't error on newline.
2) Don't parse an extra token when parsing vector ranges. Let the caller parse the next token as necessary.
This extends the `LibertyInputStream` added in the previous commit to
allow arbitrary lookahead. Then this uses the lookahead to find the
total length of the token within the input buffer, instead of consuming
the token byte by byte while appending to a std::string. Constructing
the std::string with the total length is known avoids any reallocations
from growing std::string's buffer.
The lexer for liberty files was using istream's `get` and `unget` which
are notorious for bad performance and that showed up during profiling.
This replaces the direct `istream` use with a custom LibertyInputStream
that does its own buffering to provide `get` and `unget` that behave the
same way but are implemented with a fast path that is easy to inline and
optimize.