* Memory leak in .NET user-propagator
The user-propagator object has to be manually disposed (IDisposable), otherwise it stays in memory forever, as it cannot be garbage collected automatically
* Throw an exception if variable passed to decide is already assigned instead of running in an assertion violation
* Added 64-bit "1" counting
simplifiers layer is a common substrate for global non-incremental and incremental processing.
The first two layers are new, but others are to be ported form tactics.
- bv::slice - rewrites equations to cut-dice-slice bit-vector extractions until they align. It creates opportunities for rewriting portions of bit-vectors to common sub-expressions, including values.
- euf::completion - generalizes the KB simplifcation from asserted formulas to use the E-graph to establish a global and order-independent canonization.
The interface dependent_expr_simplifier is amenable to forming tactics. Plugins for asserted-formulas is also possible but not yet realized.
- ensure mk_extract performs simplification to distribute over extract and removing extract if the range is the entire bit-vector
- ensure bool_rewriter simplifeis disjunctions when applicable.
Removing ternary clause optimization from sat_solver simplifies special case handling of ternary clauses throughout the sat solver and dependent solvers (pb_solver). Benchmarking on QF_BV suggests the ternary clause optimization does not have any effect. While removing ternary clause optimization two bugs in unit propagation were also uncovered: it missed propagations when the only a single undef literal remained in the non-watched literals and it did not update blocked literals in cases where it could in the watch list. These performance bugs were for general clauses, ternary clause propagation did not miss propagations (and don't use blocked literals), but fixing these issues for general clauses appear to have made ternary clause optimization irrelevant based on what was measured.
* Allow reseting the stream of smt2::scanner
* Put the parser of parse_smt2_commands in the cmd_context
* Move parser streams to cmd_context
* Move parser fields from cmd_context to api::context
* Move forward declarations from cmd_context.h to api_context.h
* Change parse_smt2_commands_with_parser to use *& instead of **
* Add tests for Z3_eval_smtlib2_string
* Don't reuse the streams in Z3_eval_smtlib2_string
* Fix indentation
* Add back unnecessary deleted line
Co-authored-by: Nuno Lopes <nuno.lopes@tecnico.ulisboa.pt>
gc-ing definitions leads to unsoundness when they are not replayed.
Instead of attempting to replay definitions theory internalization is irredundant by default.
This is also the old solver behavior where TH_LEMMA is essentially never used, but is valid for top-level theory lemmas.
So far the format is
(forall ((x Int)) body) (not (body[t/x]))
The alternative could be the clause
(not (forall ((x Int)) body)) body[t/x]
they just better be consistent between engines
The example from #6404 results in an incorrect result. It uses integer division on private variables where MBQI support is new and not tested for substitutions.
* feat: basic array support
Still need deeper type support for Arrays
* fixed broken format rules
* spaces inside curly
* feat: range sort type inference
* feat: better type inference in model eval
* doc: fixed some incorrect documentation
* feat: domain type inference
* feat: addressed suggestions
* feat: addressed suggestions
* chore: moved ts-expect from deps to dev-deps
* test: added z3guide examples
* fix: removed ts-expect from dependencies again
* docs: fixed some documentation
move self-checking functionality to inside sat/smt so it can be used on-line and not just off-line.
when self-validation fails, use vs, not clause, to check. It allows self-validation without checking and maintaining RUP validation.
new options sat.smt.proof.check_rup, sat.smt.proof.check for online validation.
z3 sat.smt.proof.check=true sat.euf=true /v:1 sat.smt.proof.check_rup=true /st file.smt2 sat.smt.proof=p.smt2
EUF proofs are checked modulo union-find.
Equalities are added to to union-find if they are assumptions or if they can be derived using congruence closure. The congruence closure assumptions are added as proof-hints.
Note that this proof format does not track equality inferences, symmetry and transitivity. Instead they are handled by assuming a union-find based checker.
* Memory leak in .NET user-propagator
The user-propagator object has to be manually disposed (IDisposable), otherwise it stays in memory forever, as it cannot be garbage collected automatically
* Throw an exception if variable passed to decide is already assigned instead of running in an assertion violation
#6319 - fix incompleteness in propagation of default to all array terms in the equivalence class.
Fix bug with q_mbi where domain restrictions are not using values because the current model does not evaluate certain bound variables to values. Set model completion when adding these bound variables to the model to ensure their values are not missed.
Add better propagation of diagnostics when tactics and the new solver return unknown. The reason for unknown can now be traced to what theory was culprit (currently no additional information)
using a queue for disequality propagaiton was a regression: values of numerals can change along the same stack so prior passing the filter does not mean it passes later.
conversion from AIG to expressions should always use the optimized conversion function.
the aig-tactic should throttle regarding output bloat from AIG.
If the expression after AIG simpification, for whatever reason, is bloated the rewrite does not take place.
The user-propagator object has to be manually disposed (IDisposable), otherwise it stays in memory forever, as it cannot be garbage collected automatically
* Dotnet Api: suppress GC finalization of dotnet context in favor of re-registering finalization
* Dotnet Api: enable concurrent dec-ref even if context is created without parameters.
* Dotnet Api: removed dead code.
literals that are replayed need to be registered with respective theories, otherwise, they will not propagate with the theories (the enode have to be attached with relevant theory variables).
delay propagation on each disequality/equality should suffice once. It adds relevant inequalities to ensure the arithmetic solver is coherent about disequalities.
The bug was that axiom generation was not enabled on last_index, so no axioms got created to constrain last-index.
With default settings the solver is now very slow on this example. It is related to that the smallest size of a satisfying assignment is above 24. Pending a good heuristic to find initial seeds and increments for iterative deepening, I am adding another parameter smt.seq.min_unfolding that when set to 30 helps for this example.
The notion of reference counted contexts never worked.
The reference count to a context only ends up being 0 if the GC kicks in and disposes the various z3 objects. A call to Dispose on Context should free up all resources associated with that context. In exchange none of the resources are allowed any other operation than DecRef. The invocations of DecRef are protected by a lock and test on the context that the native pointer associated with the context is non-zero. Dispose sets the native pointer to zero.
Z3_enable_concurrent_dec_ref ensures that:
- calls to decref are thread safe. Other threads can operate on the context without interference.
The Z3_context ensures that
- z3objects allocated, but not disposed during the lifetime of Z3_context are freed when Z3_context is deleted (it triggers a debug warning, but this is now benign).
Occurrences of map and fold are interpreted.
They are defined when the seq argument is expanded into a finite
concatenation. The ensure this expansion takes place, each fold/map term
is registered and defined through rewrites when the seq argument simplifies.
The literal "emp" can be true in the current assignment, in which case the clause
cnt or emp or ~postf is true and does not contribute to propagation.
This saves, potentially, for generating lemmas for postf.
Add a lemma a = "" or |s| >= idx when a = tail(s, idx)
The lemma ensures that length bounding on s is enforced
(the branch that expands not-contains for long sequences s is closed).
* Make spacer_sem_matcher::reset() public
* Add .clang-format for src/muz/spacer
* Mark substitution::get_bindings() as const
* Fix in spacer_antiunify
* Various helper methods in spacer_util
Minor functions to compute number of free variables, detect presence of certain
sub-expressions, etc.
The diff is ugly because of clang-format
* Add spacer_cluster for clustering lemmas
A cluster of lemmas is a set of lemmas that are all instances of the same
pattern, where a pattern is a qff formula with free variables.
Currently, the instances are required to be explicit, that is, they are all
obtained by substituting concrete values (i.e., numbers) for free variables of
the pattern.
Lemmas are clustered in cluster_db in each predicate transformer.
* Integrate spacer_cluster into spacer_context
* Custom clang-format pragmas for spacer_context
spacer_context.(cpp|h) are large and have inconsistent formatting. Disable
clang-format for them until merge with main z3 branch and re-format.
* Computation of convex closure and matrix kernel
Various LA functions. The implementations are somewhat preliminary.
Convex closure is simplemented via syntactic convex closure procedure.
Kernel computation considers many common cases.
spacer_arith_kernel_sage implements kernel computation by call external
Sage binary. It is used only for debugging and experiments. There is no
link dependence on Sage. If desired, it can be removed.
* Add spacer_concretize
* Utility methods for spacer conjecture rule
* Add spacer_expand_bnd_generalizer
Generalizes arithmetic inequality literals of the form x <= c,
by changing constant c to other constants found in the problem.
* Add spacer_global_generalizer
Global generalizer checks every new lemma against a cluster
of previously learned lemmas, and, if possible, conjectures
a new pob, that, when blocked, generalizes multiple existing
lemmas.
* Remove fp.spacer.print_json option
The option is used to dump state of spacer into json for debugging.
It has been replaced by `fp.spacer.trace_file` that allows dumping an execution
of spacer. The json file can be reconstructed from the trace file elsewhere.
* Workaround for segfault in spacer_proof_utils
Issue #3 in hgvk94/z3
Segfault in some proof reduction. Avoid by bailing out on reduction.
* Revert bug for incomplete models
* Use local fresh variables in spacer_global_generalizer
* Cleanup of spacer_convex_closure
* Allow arbitrary expressions to name cols in convex_closure
* WIP: convex closure
* WIP: convex closure
* Fix bindings order in spacer_global_generalizer
The matcher creates substitution using std_order, which is
reverse of expected order (variable 0 is last). Adjust the code
appropriately for that.
* Increase verbosity level for smt_context stats
* Dead code in qe_mbp
* bug fixes in spacer_global_generalizer::subsumer
* Partially remove dependence of size of m_alphas
I want m_alphas to potentially be greater than currently used alpha variables.
This is helpful for reusing them across multiple calls to convex closure
* Subtle bug in kernel computation
Coefficient was being passed by reference and, therefore, was
being changed indirectly.
In the process, updated the code to be more generic to avoid rational
computation in the middle of matrix manipulation.
* another test for sparse_matrix_ops::kernel
* Implementation of matrix kernel using Fraction Free Elimination
Ensures that the kernel is int for int matrices. All divisions are exact.
* clang-format sparse_matrix_ops.h
* another implementation of ffe kernel in sparse_matrix_ops
* Re-do arith_kernel and convex_closure
* update spacer_global_generalization for new subsumer
* remove spacer.gg.use_sage parameter
* cleanup of spacer_global_generalizer
* Removed dependency on sage
* fix in spacer_convex_closure
* spacer_sem_matcher: consider an additional semantic matching
disabled until it is shown useful
* spacer_global_generalizer: improve do_conjecture
- if conjecture does not apply to pob, use lemma instead
- better normalization
- improve debug prints
* spacer_conjecture: formatting
* spacer_cluster: improve debug prints
* spacer_context: improve debug prints
* spacer_context: re-queue may pobs
enabled even if global re-queue is disabled
* spacer_cluster print formatting
* reset methods on pob
* cleanup of print and local variable names
* formatting
* reset generalization data once it has been used
* refactored extra pob creation during global guidance
* fix bug copying sparse matrix into spacer matrix
* bug fix in spacer_convex_closure
* formatting change in spacer_context
* spacer_cluster: get_min_lvl
chose level based on pob as well as lemmas
* spacer_context: add desired_level to pob
desired_level indicates at which level pob should be proved.
A pob will be pushed to desired_level if necessary
* spacer_context: renamed subsume stats
the name of success/failed was switched
* spacer_convex_closure: fix prototype of is_congruent_mod()
* spacer_convex_closure: hacks in infer_div_pred()
* spacer_util: do not expand literals with mod
By default, equality literal t=p is expanded into t<=p && t>=p
Disable the expansion in case t contains 'mod' operator since such
expansion is usually not helpful for divisibility
* spacer_util: rename m_util into m_arith
* spacer_util: cleanup normalize()
* spacer_util: formatting
* spacer_context: formatting cleanup on subsume and conjecture
* spacer_context: fix handling may pobs when abs_weakness is enabled
A pob might be undef, so weakness must be bumped up
* spacer_arith_kernel: enhance debug print
* spacer_global_generalizer: improve matching on conjecture
* spacer_global_generalizer: set desired level on conjecture pob
* spacer_global_generalizer: debug print
* spacer_global_generalizer: set min level on new pobs
the new level should not be higher than the pob that was generalized
* spacer_global_generalizer: do no re-create closed pobs
If a generalized pob exist and closed, do not re-create it.
* spacer_context: normalize twice
* spacer_context: forward propagate only same kind of pobs
* sketch of inductive generalizer
A better implementation of inductive generalizer that in addition to dropping
literals also attempts to weaken them.
Current implementation is a sketch to be extended based on examples/requirements.
* fix ordering in spacer_cluster_util
* fix resetting of substitution matcher in spacer_conjecture
Old code would forget to reset the substitution provided to the sem_matcher.
Thus, if the substitution was matched once (i.e., one literal of interest is
found), no other literal would be matched.
* add spacer_util is_normalized() method
used for debugging only
* simplify normalization of pob expressions
pob expressions are normalized to increase syntactic matching.
Some of the normalization rules seem out of place, so removing them for now.
* fix in spacer_global_generalizer
If conjecture fails, do not try other generalization strategies -- they will not apply.
* fix in spacer_context
do not check that may pob is blocked by existing lemmas.
It is likely to be blocked. Our goal is to block it again and generalize
to a new lemma.
This can be further improved by moving directly to generalization when pob is
blocked by existing lemmas...
Co-authored-by: hgvk94 <hgvk94@gmail.com>