3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

work on proof checking

- add outline of trim routine
- streamline how proof terms are checked and how residue units are extracted.
This commit is contained in:
Nikolaj Bjorner 2022-09-30 13:04:19 -04:00
parent ccda49bad5
commit b9cba82531
10 changed files with 384 additions and 109 deletions

View file

@ -731,6 +731,8 @@ public:
unsigned get_num_args() const { return m_num_args; }
expr * get_arg(unsigned idx) const { SASSERT(idx < m_num_args); return m_args[idx]; }
expr * const * get_args() const { return m_args; }
std::tuple<expr*,expr*> args2() const { SASSERT(m_num_args == 2); return {get_arg(0), get_arg(1)}; }
std::tuple<expr*,expr*,expr*> args3() const { SASSERT(m_num_args == 3); return {get_arg(0), get_arg(1), get_arg(2)}; }
unsigned get_size() const { return get_obj_size(get_num_args()); }
expr * const * begin() const { return m_args; }
expr * const * end() const { return m_args + m_num_args; }

View file

@ -181,6 +181,141 @@ public:
};
namespace sat {
/**
* Replay proof entierly, then walk backwards extracting reduced proof.
*/
class proof_trim {
cmd_context& ctx;
ast_manager& m;
solver s;
literal_vector m_clause;
struct hash {
unsigned operator()(literal_vector const& v) const {
return string_hash((char const*)v.begin(), v.size()*sizeof(literal), 3);
}
};
struct eq {
bool operator()(literal_vector const& a, literal_vector const& b) const {
return a == b;
}
};
map<literal_vector, clause_vector, hash, eq> m_clauses;
void mk_clause(expr_ref_vector const& clause) {
m_clause.reset();
for (expr* arg: clause)
add_literal(arg);
std::sort(m_clause.begin(), m_clause.end());
}
bool_var mk_var(expr* arg) {
while (arg->get_id() >= s.num_vars())
s.mk_var(true, true);
return arg->get_id();
}
void add_literal(expr* arg) {
bool sign = m.is_not(arg, arg);
m_clause.push_back(literal(mk_var(arg), sign));
}
/**
Pseudo-code from Gurfinkel, Vizel, FMCAD 2014
Input: trail (a0,d0), ..., (an,dn) = ({},bot)
Output: reduced trail - result
result = []
C = an
for i = n to 0 do
if s.is_deleted(ai) then s.revive(ai)
else
if s.isontrail(ai) then
s.undotrailcore(ai,C)
s.delete(ai)
if ai in C then
if ai is not initial then
s.savetrail()
s.enqueue(not ai)
c = s.propagate()
s.conflictanalysiscore(c, C)
s.restoretrail()
result += [ai]
reverse(result)
is_deleted(ai):
clause was detached
revive(ai):
attach clause ai
isontrail(ai):
some literal on the current trail in s is justified by ai
undotrailcore(ai, C):
pop the trail until dependencies on ai are gone
savetrail:
store current trail so it can be restored
enqueue(not ai):
assert negations of ai at a new decision level
conflictanalysiscore(c, C):
?
restoretrail:
restore the trail to the position before enqueue
*/
void trim() {
}
public:
proof_trim(cmd_context& ctx):
ctx(ctx),
m(ctx.m()),
s(gparams::get_module("sat"), m.limit()) {
}
void assume(expr_ref_vector const& _clause) {
mk_clause(_clause);
IF_VERBOSE(3, verbose_stream() << "add: " << m_clause << "\n");
auto* cl = s.mk_clause(m_clause, status::redundant());
s.propagate(false);
if (!cl)
return;
IF_VERBOSE(3, verbose_stream() << "add: " << *cl << "\n");
auto& v = m_clauses.insert_if_not_there(m_clause, clause_vector());
v.push_back(cl);
}
void del(expr_ref_vector const& _clause) {
mk_clause(_clause);
IF_VERBOSE(3, verbose_stream() << "del: " << m_clause << "\n");
if (m_clause.size() == 2) {
s.detach_bin_clause(m_clause[0], m_clause[1], true);
return;
}
auto* e = m_clauses.find_core(m_clause);
if (!e)
return;
auto& v = e->get_data().m_value;
if (!v.empty()) {
IF_VERBOSE(3, verbose_stream() << "del: " << *v.back() << "\n");
s.detach_clause(*v.back());
v.pop_back();
}
}
void infer(expr_ref_vector const& _clause, app*) {
assume(_clause);
}
void updt_params(params_ref const& p) {
s.updt_params(p);
}
};
}
class proof_saver {
cmd_context& ctx;
@ -218,10 +353,11 @@ class proof_cmds_imp : public proof_cmds {
bool m_trim = false;
scoped_ptr<smt_checker> m_checker;
scoped_ptr<proof_saver> m_saver;
scoped_ptr<sat::proof_trim> m_trimmer;
smt_checker& checker() { if (!m_checker) m_checker = alloc(smt_checker, m); return *m_checker; }
proof_saver& saver() { if (!m_saver) m_saver = alloc(proof_saver, ctx); return *m_saver; }
sat::proof_trim& trim() { if (!m_trimmer) m_trimmer = alloc(sat::proof_trim, ctx); return *m_trimmer; }
public:
proof_cmds_imp(cmd_context& ctx): ctx(ctx), m(ctx.m()), m_lits(m), m_proof_hint(m) {
@ -240,6 +376,8 @@ public:
checker().assume(m_lits);
if (m_save)
saver().assume(m_lits);
if (m_trim)
trim().assume(m_lits);
m_lits.reset();
m_proof_hint.reset();
}
@ -249,6 +387,8 @@ public:
checker().check(m_lits, m_proof_hint);
if (m_save)
saver().infer(m_lits, m_proof_hint);
if (m_trim)
trim().infer(m_lits, m_proof_hint);
m_lits.reset();
m_proof_hint.reset();
}
@ -258,6 +398,8 @@ public:
checker().del(m_lits);
if (m_save)
saver().del(m_lits);
if (m_trim)
trim().del(m_lits);
m_lits.reset();
m_proof_hint.reset();
}
@ -266,6 +408,9 @@ public:
solver_params sp(p);
m_check = sp.proof_check();
m_save = sp.proof_save();
m_trim = sp.proof_trim();
if (m_trim)
trim().updt_params(p);
}
};

View file

@ -10,5 +10,6 @@ def_module_params('solver',
('axioms2files', BOOL, False, 'print negated theory axioms to separate files during search'),
('proof.check', BOOL, True, 'check proof logs'),
('proof.save', BOOL, False, 'save proof log into a proof object that can be extracted using (get-proof)'),
('proof.trim', BOOL, False, 'trim and save proof into a proof object that an be extracted using (get-proof)'),
))

View file

@ -235,6 +235,7 @@ namespace sat {
friend class aig_finder;
friend class lut_finder;
friend class npn3_finder;
friend class proof_trim;
public:
solver(params_ref const & p, reslimit& l);
~solver() override;

View file

@ -424,7 +424,7 @@ namespace arith {
++m_stats.m_assert_diseq;
add_farkas_clause(~eq, le);
add_farkas_clause(~eq, ge);
add_clause(~le, ~ge, eq, explain_triangle_eq(le, ge, eq));
add_clause(~le, ~ge, eq, explain_trichotomy(le, ge, eq));
}

View file

@ -129,14 +129,16 @@ namespace arith {
return nullptr;
m_arith_hint.set_type(ctx, hint_type::implied_eq_h);
explain_assumptions();
m_arith_hint.set_num_le(1); // TODO
m_arith_hint.add_diseq(a, b);
return m_arith_hint.mk(ctx);
}
arith_proof_hint const* solver::explain_triangle_eq(sat::literal le, sat::literal ge, sat::literal eq) {
arith_proof_hint const* solver::explain_trichotomy(sat::literal le, sat::literal ge, sat::literal eq) {
if (!ctx.use_drat())
return nullptr;
m_arith_hint.set_type(ctx, hint_type::implied_eq_h);
m_arith_hint.set_num_le(1);
m_arith_hint.add_lit(rational(1), le);
m_arith_hint.add_lit(rational(1), ge);
m_arith_hint.add_lit(rational(1), ~eq);
@ -149,6 +151,9 @@ namespace arith {
arith_util arith(m);
solver& a = dynamic_cast<solver&>(*s.fid2solver(fid));
char const* name;
expr_ref_vector args(m);
sort_ref_vector sorts(m);
switch (m_ty) {
case hint_type::farkas_h:
name = "farkas";
@ -158,15 +163,14 @@ namespace arith {
break;
case hint_type::implied_eq_h:
name = "implied-eq";
args.push_back(arith.mk_int(m_num_le));
break;
}
rational lc(1);
for (unsigned i = m_lit_head; i < m_lit_tail; ++i)
lc = lcm(lc, denominator(a.m_arith_hint.lit(i).first));
expr_ref_vector args(m);
sort_ref_vector sorts(m);
for (unsigned i = m_lit_head; i < m_lit_tail; ++i) {
for (unsigned i = m_lit_head; i < m_lit_tail; ++i) {
auto const& [coeff, lit] = a.m_arith_hint.lit(i);
args.push_back(arith.mk_int(abs(coeff*lc)));
args.push_back(s.literal2expr(lit));

View file

@ -18,7 +18,7 @@ Notes:
The module assumes a limited repertoire of arithmetic proof rules.
- farkas - inequalities, equalities and disequalities with coefficients
- implied-eq - last literal is a disequality. The literals before imply the corresponding equality.
- implied-eq - last literal is a disequality. The literals before imply the complementary equality.
- bound - last literal is a bound. It is implied by prior literals.
--*/
@ -26,8 +26,10 @@ The module assumes a limited repertoire of arithmetic proof rules.
#include "util/obj_pair_set.h"
#include "ast/ast_trail.h"
#include "ast/ast_util.h"
#include "ast/arith_decl_plugin.h"
#include "sat/smt/euf_proof_checker.h"
#include <iostream>
namespace arith {
@ -49,8 +51,6 @@ namespace arith {
row m_ineq;
row m_conseq;
vector<row> m_eqs;
vector<row> m_ineqs;
vector<row> m_diseqs;
symbol m_farkas;
symbol m_implied_eq;
symbol m_bound;
@ -261,26 +261,6 @@ namespace arith {
return false;
}
//
// checking disequalities is TBD.
// it has to select only a subset of bounds to justify each inequality.
// example
// c <= x <= c, c <= y <= c => x = y
// for the proof of x <= y use the inequalities x <= c <= y
// for the proof of y <= x use the inequalities y <= c <= x
// example
// x <= y, y <= z, z <= u, u <= x => x = z
// for the proof of x <= z use the inequalities x <= y, y <= z
// for the proof of z <= x use the inequalities z <= u, u <= x
//
// so when m_diseqs is non-empty we can't just add inequalities with Farkas coefficients
// into m_ineq, since coefficients of the usable subset vanish.
//
bool check_diseq() {
return false;
}
std::ostream& display_row(std::ostream& out, row const& r) {
bool first = true;
for (auto const& [v, coeff] : r.m_coeffs) {
@ -329,16 +309,11 @@ namespace arith {
m_ineq.reset();
m_conseq.reset();
m_eqs.reset();
m_ineqs.reset();
m_diseqs.reset();
m_strict = false;
}
bool add_ineq(rational const& coeff, expr* e, bool sign) {
if (!m_diseqs.empty())
return add_literal(fresh(m_ineqs), abs(coeff), e, sign);
else
return add_literal(m_ineq, abs(coeff), e, sign);
return add_literal(m_ineq, abs(coeff), e, sign);
}
bool add_conseq(rational const& coeff, expr* e, bool sign) {
@ -350,20 +325,12 @@ namespace arith {
linearize(r, rational(1), a);
linearize(r, rational(-1), b);
}
void add_diseq(expr* a, expr* b) {
row& r = fresh(m_diseqs);
linearize(r, rational(1), a);
linearize(r, rational(-1), b);
}
bool check() {
if (!m_diseqs.empty())
return check_diseq();
else if (!m_conseq.m_coeffs.empty())
return check_bound();
else
if (m_conseq.m_coeffs.empty())
return check_farkas();
else
return check_bound();
}
std::ostream& display(std::ostream& out) {
@ -375,14 +342,41 @@ namespace arith {
return out;
}
bool check(expr_ref_vector const& clause, app* jst, expr_ref_vector& units) override {
expr_ref_vector clause(app* jst) override {
expr_ref_vector result(m);
for (expr* arg : *jst)
if (m.is_bool(arg))
result.push_back(mk_not(m, arg));
return result;
}
/**
Add implied equality as an inequality
*/
bool add_implied_ineq(bool sign, app* jst) {
unsigned n = jst->get_num_args();
if (n < 2)
return false;
expr* arg1 = jst->get_arg(n - 2);
expr* arg2 = jst->get_arg(n - 1);
rational coeff;
if (!a.is_numeral(arg1, coeff))
return false;
if (!m.is_not(arg2, arg2))
return false;
if (!m.is_eq(arg2, arg1, arg2))
return false;
if (!sign)
coeff.neg();
auto& r = m_ineq;
linearize(r, coeff, arg1);
linearize(r, -coeff, arg2);
m_strict = true;
return true;
}
bool check(app* jst) override {
reset();
expr_mark pos, neg;
for (expr* e : clause)
if (m.is_not(e, e))
neg.mark(e, true);
else
pos.mark(e, true);
bool is_bound = jst->get_name() == m_bound;
bool is_implied_eq = jst->get_name() == m_implied_eq;
bool is_farkas = jst->get_name() == m_farkas;
@ -393,25 +387,51 @@ namespace arith {
bool even = true;
rational coeff;
expr* x, * y;
unsigned j = 0;
unsigned j = 0, num_le = 0;
for (expr* arg : *jst) {
if (even) {
if (!a.is_numeral(arg, coeff)) {
IF_VERBOSE(0, verbose_stream() << "not numeral " << mk_pp(jst, m) << "\n");
return false;
}
if (is_implied_eq) {
is_implied_eq = false;
if (!coeff.is_unsigned()) {
IF_VERBOSE(0, verbose_stream() << "not unsigned " << mk_pp(jst, m) << "\n");
return false;
}
num_le = coeff.get_unsigned();
if (!add_implied_ineq(false, jst))
return false;
++j;
continue;
}
}
else {
bool sign = m.is_not(arg, arg);
if (a.is_le(arg) || a.is_lt(arg) || a.is_ge(arg) || a.is_gt(arg)) {
if (is_bound && j + 1 == jst->get_num_args())
add_conseq(coeff, arg, sign);
else if (num_le > 0) {
add_ineq(coeff, arg, sign);
--num_le;
if (num_le == 0) {
// we processed all the first inequalities,
// check that they imply one half of the implied equality.
if (!check())
return false;
reset();
VERIFY(add_implied_ineq(true, jst));
}
}
else
add_ineq(coeff, arg, sign);
}
else if (m.is_eq(arg, x, y)) {
if (sign)
add_diseq(x, y);
if (sign)
return check(); // it should be an implied equality
else
add_eq(x, y);
}
@ -419,23 +439,11 @@ namespace arith {
IF_VERBOSE(0, verbose_stream() << "not a recognized arithmetical relation " << mk_pp(arg, m) << "\n");
return false;
}
if (sign && !pos.is_marked(arg)) {
units.push_back(m.mk_not(arg));
pos.mark(arg, false);
}
else if (!sign && !neg.is_marked(arg)) {
units.push_back(arg);
neg.mark(arg, false);
}
}
even = !even;
++j;
}
if (check())
return true;
return false;
return check();
}
void register_plugins(euf::proof_checker& pc) override {

View file

@ -51,14 +51,15 @@ namespace arith {
enum class hint_type {
farkas_h,
bound_h,
implied_eq_h
implied_eq_h
};
struct arith_proof_hint : public euf::th_proof_hint {
hint_type m_ty;
unsigned m_lit_head, m_lit_tail, m_eq_head, m_eq_tail;
arith_proof_hint(hint_type t, unsigned lh, unsigned lt, unsigned eh, unsigned et):
m_ty(t), m_lit_head(lh), m_lit_tail(lt), m_eq_head(eh), m_eq_tail(et) {}
hint_type m_ty;
unsigned m_num_le;
unsigned m_lit_head, m_lit_tail, m_eq_head, m_eq_tail;
arith_proof_hint(hint_type t, unsigned num_le, unsigned lh, unsigned lt, unsigned eh, unsigned et):
m_ty(t), m_num_le(num_le), m_lit_head(lh), m_lit_tail(lt), m_eq_head(eh), m_eq_tail(et) {}
expr* get_hint(euf::solver& s) const override;
};
@ -66,6 +67,7 @@ namespace arith {
vector<std::pair<rational, literal>> m_literals;
svector<std::tuple<euf::enode*,euf::enode*,bool>> m_eqs;
hint_type m_ty;
unsigned m_num_le = 0;
unsigned m_lit_head = 0, m_lit_tail = 0, m_eq_head = 0, m_eq_tail = 0;
void reset() { m_lit_head = m_lit_tail; m_eq_head = m_eq_tail; }
void add(euf::enode* a, euf::enode* b, bool is_eq) {
@ -82,6 +84,7 @@ namespace arith {
m_ty = ty;
reset();
}
void set_num_le(unsigned n) { m_num_le = n; }
void add_eq(euf::enode* a, euf::enode* b) { add(a, b, true); }
void add_diseq(euf::enode* a, euf::enode* b) { add(a, b, false); }
void add_lit(rational const& coeff, literal lit) {
@ -94,7 +97,7 @@ namespace arith {
std::pair<rational, literal> const& lit(unsigned i) const { return m_literals[i]; }
std::tuple<enode*, enode*, bool> const& eq(unsigned i) const { return m_eqs[i]; }
arith_proof_hint* mk(euf::solver& s) {
return new (s.get_region()) arith_proof_hint(m_ty, m_lit_head, m_lit_tail, m_eq_head, m_eq_tail);
return new (s.get_region()) arith_proof_hint(m_ty, m_num_le, m_lit_head, m_lit_tail, m_eq_head, m_eq_tail);
}
};
@ -474,7 +477,7 @@ namespace arith {
arith_proof_hint const* explain(hint_type ty, sat::literal lit = sat::null_literal);
arith_proof_hint const* explain_implied_eq(euf::enode* a, euf::enode* b);
arith_proof_hint const* explain_triangle_eq(sat::literal le, sat::literal ge, sat::literal eq);
arith_proof_hint const* explain_trichotomy(sat::literal le, sat::literal ge, sat::literal eq);
void explain_assumptions();

View file

@ -17,6 +17,7 @@ Author:
#include "util/union_find.h"
#include "ast/ast_pp.h"
#include "ast/ast_util.h"
#include "ast/ast_ll_pp.h"
#include "sat/smt/euf_proof_checker.h"
#include "sat/smt/arith_proof_checker.h"
@ -120,24 +121,23 @@ namespace euf {
~eq_proof_checker() override {}
bool check(expr_ref_vector const& clause, app* jst, expr_ref_vector& units) override {
IF_VERBOSE(10, verbose_stream() << clause << "\n" << mk_pp(jst, m) << "\n");
expr_ref_vector clause(app* jst) override {
expr_ref_vector result(m);
for (expr* arg : *jst)
if (m.is_bool(arg))
result.push_back(mk_not(m, arg));
return result;
}
bool check(app* jst) override {
IF_VERBOSE(10, verbose_stream() << mk_pp(jst, m) << "\n");
reset();
expr_mark pos, neg;
expr* x, *y;
for (expr* e : clause)
if (m.is_not(e, e))
neg.mark(e, true);
else
pos.mark(e, true);
for (expr* arg : *jst) {
if (m.is_bool(arg)) {
bool sign = m.is_not(arg, arg);
if (sign && !pos.is_marked(arg))
units.push_back(m.mk_not(arg));
else if (!sign & !neg.is_marked(arg))
units.push_back(arg);
expr* x, *y;
bool sign = m.is_not(arg, arg);
if (m.is_bool(arg)) {
if (m.is_eq(arg, x, y)) {
if (sign)
m_diseqs.push_back({x, y});
@ -198,38 +198,144 @@ namespace euf {
void register_plugins(proof_checker& pc) override {
pc.register_plugin(symbol("euf"), this);
}
};
/**
A resolution proof term is of the form
(res pivot proof1 proof2)
The pivot occurs with opposite signs in proof1 and proof2
*/
class res_proof_checker : public proof_checker_plugin {
ast_manager& m;
proof_checker& pc;
public:
res_proof_checker(ast_manager& m, proof_checker& pc): m(m), pc(pc) {}
~res_proof_checker() override {}
bool check(app* jst) override {
if (jst->get_num_args() != 3)
return false;
auto [pivot, proof1, proof2] = jst->args3();
if (!m.is_bool(pivot) || !m.is_proof(proof1) || !m.is_proof(proof2))
return false;
expr* narg;
bool found1 = false, found2 = false, found3 = false, found4 = false;
for (expr* arg : pc.clause(proof1)) {
found1 |= arg == pivot;
found2 |= m.is_not(arg, narg) && narg == pivot;
}
if (found1 == found2)
return false;
for (expr* arg : pc.clause(proof2)) {
found3 |= arg == pivot;
found4 |= m.is_not(arg, narg) && narg == pivot;
}
if (found3 == found4)
return false;
if (found3 == found1)
return false;
return pc.check(proof1) && pc.check(proof2);
}
expr_ref_vector clause(app* jst) override {
expr_ref_vector result(m);
auto [pivot, proof1, proof2] = jst->args3();
expr* narg;
auto is_pivot = [&](expr* arg) {
if (arg == pivot)
return true;
return m.is_not(arg, narg) && narg == pivot;
};
for (expr* arg : pc.clause(proof1))
if (!is_pivot(arg))
result.push_back(arg);
for (expr* arg : pc.clause(proof2))
if (!is_pivot(arg))
result.push_back(arg);
return result;
}
void register_plugins(proof_checker& pc) override {
pc.register_plugin(symbol("res"), this);
}
};
proof_checker::proof_checker(ast_manager& m):
m(m) {
arith::proof_checker* apc = alloc(arith::proof_checker, m);
eq_proof_checker* epc = alloc(eq_proof_checker, m);
m_plugins.push_back(apc);
m_plugins.push_back(epc);
apc->register_plugins(*this);
epc->register_plugins(*this);
add_plugin(alloc(arith::proof_checker, m));
add_plugin(alloc(eq_proof_checker, m));
add_plugin(alloc(res_proof_checker, m, *this));
}
proof_checker::~proof_checker() {}
proof_checker::~proof_checker() {
for (auto& [k, v] : m_checked_clauses)
dealloc(v);
}
void proof_checker::add_plugin(proof_checker_plugin* p) {
m_plugins.push_back(p);
p->register_plugins(*this);
}
void proof_checker::register_plugin(symbol const& rule, proof_checker_plugin* p) {
m_map.insert(rule, p);
}
bool proof_checker::check(expr_ref_vector const& clause, expr* e, expr_ref_vector& units) {
bool proof_checker::check(expr* e) {
if (m_checked_clauses.contains(e))
return true;
if (!e || !is_app(e))
return false;
units.reset();
app* a = to_app(e);
proof_checker_plugin* p = nullptr;
if (!m_map.find(a->get_decl()->get_name(), p))
return false;
if (p->check(clause, a, units))
return true;
std::cout << "(missed-hint " << mk_pp(e, m) << ")\n";
return false;
if (!p->check(a)) {
std::cout << "(missed-hint " << mk_pp(e, m) << ")\n";
return false;
}
return true;
}
expr_ref_vector proof_checker::clause(expr* e) {
expr_ref_vector* rr;
if (m_checked_clauses.find(e, rr))
return *rr;
SASSERT(is_app(e) && m_map.contains(to_app(e)->get_decl()->get_name()));
auto& r = m_map[to_app(e)->get_decl()->get_name()]->clause(to_app(e));
m_checked_clauses.insert(e, alloc(expr_ref_vector, r));
return r;
}
bool proof_checker::check(expr_ref_vector const& clause1, expr* e, expr_ref_vector & units) {
if (!check(e))
return false;
units.reset();
expr_mark literals;
auto clause2 = clause(e);
// check that all literals in clause1 are in clause2
for (expr* arg : clause2)
literals.mark(arg, true);
for (expr* arg : clause1)
if (!literals.is_marked(arg))
return false;
// extract negated units for literals in clause2 but not in clause1
// the literals should be rup
literals.reset();
for (expr* arg : clause1)
literals.mark(arg, true);
for (expr* arg : clause2)
if (!literals.is_marked(arg))
units.push_back(mk_not(m, arg));
return true;
}
}

View file

@ -27,18 +27,23 @@ namespace euf {
class proof_checker_plugin {
public:
virtual ~proof_checker_plugin() {}
virtual bool check(expr_ref_vector const& clause, app* jst, expr_ref_vector& units) = 0;
virtual bool check(app* jst) = 0;
virtual expr_ref_vector clause(app* jst) = 0;
virtual void register_plugins(proof_checker& pc) = 0;
};
class proof_checker {
ast_manager& m;
scoped_ptr_vector<proof_checker_plugin> m_plugins;
map<symbol, proof_checker_plugin*, symbol_hash_proc, symbol_eq_proc> m_map;
scoped_ptr_vector<proof_checker_plugin> m_plugins; // plugins of proof checkers
map<symbol, proof_checker_plugin*, symbol_hash_proc, symbol_eq_proc> m_map; // symbol table of proof checkers
obj_map<expr, expr_ref_vector*> m_checked_clauses; // cache of previously checked proofs and their clauses.
void add_plugin(proof_checker_plugin* p);
public:
proof_checker(ast_manager& m);
~proof_checker();
void register_plugin(symbol const& rule, proof_checker_plugin*);
bool check(expr* jst);
expr_ref_vector clause(expr* jst);
bool check(expr_ref_vector const& clause, expr* e, expr_ref_vector& units);
};