mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
fixes to proof logging and checking
This commit is contained in:
parent
4388719848
commit
993ff40826
|
@ -182,9 +182,9 @@ public:
|
|||
}
|
||||
m_solver->pop(1);
|
||||
std::cout << "(verified-smt";
|
||||
if (proof_hint) std::cout << " " << mk_bounded_pp(proof_hint, m, 4);
|
||||
if (proof_hint) std::cout << "\n" << mk_bounded_pp(proof_hint, m, 4);
|
||||
for (expr* arg : clause)
|
||||
std::cout << " " << mk_bounded_pp(arg, m);
|
||||
std::cout << "\n " << mk_bounded_pp(arg, m);
|
||||
std::cout << ")\n";
|
||||
add_clause(clause);
|
||||
}
|
||||
|
|
|
@ -143,17 +143,13 @@ namespace arith {
|
|||
SASSERT(m_todo.empty());
|
||||
m_todo.push_back({ mul, e });
|
||||
rational coeff1;
|
||||
expr* e1, *e2, *e3;
|
||||
expr* e1, *e2;
|
||||
for (unsigned i = 0; i < m_todo.size(); ++i) {
|
||||
auto [coeff, e] = m_todo[i];
|
||||
if (a.is_mul(e, e1, e2) && a.is_numeral(e1, coeff1))
|
||||
if (a.is_mul(e, e1, e2) && is_numeral(e1, coeff1))
|
||||
m_todo.push_back({coeff*coeff1, e2});
|
||||
else if (a.is_mul(e, e1, e2) && a.is_uminus(e1, e3) && a.is_numeral(e3, coeff1))
|
||||
m_todo.push_back({-coeff*coeff1, e2});
|
||||
else if (a.is_mul(e, e1, e2) && a.is_uminus(e2, e3) && a.is_numeral(e3, coeff1))
|
||||
m_todo.push_back({ -coeff * coeff1, e1 });
|
||||
else if (a.is_mul(e, e1, e2) && a.is_numeral(e2, coeff1))
|
||||
m_todo.push_back({coeff*coeff1, e1});
|
||||
else if (a.is_mul(e, e1, e2) && is_numeral(e2, coeff1))
|
||||
m_todo.push_back({ coeff * coeff1, e1 });
|
||||
else if (a.is_add(e))
|
||||
for (expr* arg : *to_app(e))
|
||||
m_todo.push_back({coeff, arg});
|
||||
|
@ -163,15 +159,21 @@ namespace arith {
|
|||
m_todo.push_back({coeff, e1});
|
||||
m_todo.push_back({-coeff, e2});
|
||||
}
|
||||
else if (a.is_numeral(e, coeff1))
|
||||
else if (is_numeral(e, coeff1))
|
||||
r.m_coeff += coeff*coeff1;
|
||||
else if (a.is_uminus(e, e1) && a.is_numeral(e1, coeff1))
|
||||
r.m_coeff -= coeff*coeff1;
|
||||
else
|
||||
add(r, e, coeff);
|
||||
}
|
||||
m_todo.reset();
|
||||
}
|
||||
|
||||
bool is_numeral(expr* e, rational& n) {
|
||||
if (a.is_numeral(e, n))
|
||||
return true;
|
||||
if (a.is_uminus(e, e) && a.is_numeral(e, n))
|
||||
return n.neg(), true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool check_ineq(row& r) {
|
||||
if (r.m_coeffs.empty() && r.m_coeff > 0)
|
||||
|
@ -182,9 +184,12 @@ namespace arith {
|
|||
}
|
||||
|
||||
// triangulate equalities, substitute results into m_ineq, m_conseq.
|
||||
void reduce_eq() {
|
||||
// check consistency of equalities (they may be inconsisent)
|
||||
bool reduce_eq() {
|
||||
for (unsigned i = 0; i < m_eqs.size(); ++i) {
|
||||
auto& r = m_eqs[i];
|
||||
if (r.m_coeffs.empty() && r.m_coeff != 0)
|
||||
return false;
|
||||
if (r.m_coeffs.empty())
|
||||
continue;
|
||||
auto [v, coeff] = *r.m_coeffs.begin();
|
||||
|
@ -193,6 +198,7 @@ namespace arith {
|
|||
resolve(v, m_ineq, coeff, r);
|
||||
resolve(v, m_conseq, coeff, r);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -231,7 +237,8 @@ namespace arith {
|
|||
bool check_farkas() {
|
||||
if (check_ineq(m_ineq))
|
||||
return true;
|
||||
reduce_eq();
|
||||
if (!reduce_eq())
|
||||
return true;
|
||||
if (check_ineq(m_ineq))
|
||||
return true;
|
||||
|
||||
|
@ -244,7 +251,8 @@ namespace arith {
|
|||
// after all inequalities in ineq have been added up
|
||||
//
|
||||
bool check_bound() {
|
||||
reduce_eq();
|
||||
if (!reduce_eq())
|
||||
return true;
|
||||
if (check_ineq(m_conseq))
|
||||
return true;
|
||||
if (m_ineq.m_coeffs.empty() ||
|
||||
|
@ -401,8 +409,10 @@ namespace arith {
|
|||
return false;
|
||||
}
|
||||
num_le = coeff.get_unsigned();
|
||||
if (!add_implied_ineq(false, jst))
|
||||
if (!add_implied_ineq(false, jst)) {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "did not add implied eq"));
|
||||
return false;
|
||||
}
|
||||
++j;
|
||||
continue;
|
||||
}
|
||||
|
@ -418,10 +428,24 @@ namespace arith {
|
|||
if (num_le == 0) {
|
||||
// we processed all the first inequalities,
|
||||
// check that they imply one half of the implied equality.
|
||||
if (!check())
|
||||
return false;
|
||||
reset();
|
||||
VERIFY(add_implied_ineq(true, jst));
|
||||
if (!check()) {
|
||||
// we might have added the wrong direction of the implied equality.
|
||||
// so try the opposite inequality.
|
||||
add_implied_ineq(true, jst);
|
||||
add_implied_ineq(true, jst);
|
||||
if (check()) {
|
||||
reset();
|
||||
add_implied_ineq(false, jst);
|
||||
}
|
||||
else {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "failed to check implied eq "));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
reset();
|
||||
VERIFY(add_implied_ineq(true, jst));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
|
|
|
@ -46,7 +46,7 @@ namespace euf {
|
|||
* so it isn't necessarily an axiom over EUF,
|
||||
* We will here leave it to the EUF checker to perform resolution steps.
|
||||
*/
|
||||
void solver::log_antecedents(literal l, literal_vector const& r, eq_proof_hint* hint) {
|
||||
void solver::log_antecedents(literal l, literal_vector const& r, th_proof_hint* hint) {
|
||||
TRACE("euf", log_antecedents(tout, l, r););
|
||||
if (!use_drat())
|
||||
return;
|
||||
|
|
|
@ -19,6 +19,7 @@ Author:
|
|||
#include "ast/ast_pp.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/ast_ll_pp.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "sat/smt/euf_proof_checker.h"
|
||||
#include "sat/smt/arith_proof_checker.h"
|
||||
#include "sat/smt/q_proof_checker.h"
|
||||
|
@ -58,15 +59,29 @@ namespace euf {
|
|||
|
||||
class eq_proof_checker : public proof_checker_plugin {
|
||||
ast_manager& m;
|
||||
arith_util m_arith;
|
||||
expr_ref_vector m_trail;
|
||||
basic_union_find m_uf;
|
||||
svector<std::pair<unsigned, unsigned>> m_expr2id;
|
||||
ptr_vector<expr> m_id2expr;
|
||||
svector<std::pair<expr*,expr*>> m_diseqs;
|
||||
svector<std::pair<expr*,expr*>> m_diseqs;
|
||||
unsigned m_ts = 0;
|
||||
|
||||
void merge(expr* x, expr* y) {
|
||||
m_uf.merge(expr2id(x), expr2id(y));
|
||||
IF_VERBOSE(10, verbose_stream() << "merge " << mk_bounded_pp(x, m) << " == " << mk_bounded_pp(y, m) << "\n");
|
||||
merge_numeral(x);
|
||||
merge_numeral(y);
|
||||
}
|
||||
|
||||
void merge_numeral(expr* x) {
|
||||
rational n;
|
||||
expr* y;
|
||||
if (m_arith.is_uminus(x, y) && m_arith.is_numeral(y, n)) {
|
||||
y = m_arith.mk_numeral(-n, x->get_sort());
|
||||
m_trail.push_back(y);
|
||||
m_uf.merge(expr2id(x), expr2id(y));
|
||||
}
|
||||
}
|
||||
|
||||
bool are_equal(expr* x, expr* y) {
|
||||
|
@ -118,7 +133,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
public:
|
||||
eq_proof_checker(ast_manager& m): m(m) {}
|
||||
eq_proof_checker(ast_manager& m): m(m), m_arith(m), m_trail(m) {}
|
||||
|
||||
expr_ref_vector clause(app* jst) override {
|
||||
expr_ref_vector result(m);
|
||||
|
|
|
@ -200,16 +200,36 @@ namespace euf {
|
|||
s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), idx));
|
||||
}
|
||||
|
||||
/**
|
||||
Retrieve set of literals r that imply r.
|
||||
Since the set of literals are retrieved modulo multiple theories in a single implication
|
||||
we lose theory specific justifications. For proof logging we use a catch all rule "smt"
|
||||
for the case where an equality is derived using more than congruence closure.
|
||||
To create fully decomposed justifications it will be necessary to augment the justification
|
||||
data-structure with information about the equality that is implied by the theory.
|
||||
Then each justification will imply an equality s = t assuming literals 'r'.
|
||||
The theory lemma is then r -> s = t, where s = t is an equality that is available for the EUF hint.
|
||||
The EUF hint is resolved against r -> s = t to eliminate s = t and to create the resulting explanation.
|
||||
|
||||
Example:
|
||||
x - 3 = 0 => x = 3 by arithmetic
|
||||
x = 3 => f(x) = f(3) by EUF
|
||||
resolve to produce clause x - 3 = 0 => f(x) = f(3)
|
||||
*/
|
||||
|
||||
void solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector& r, bool probing) {
|
||||
m_egraph.begin_explain();
|
||||
m_explain.reset();
|
||||
if (use_drat() && !probing)
|
||||
push(restore_size_trail(m_explain_cc, m_explain_cc.size()));
|
||||
auto* ext = sat::constraint_base::to_extension(idx);
|
||||
bool has_theory = false;
|
||||
if (ext == this)
|
||||
get_antecedents(l, constraint::from_idx(idx), r, probing);
|
||||
else
|
||||
else {
|
||||
ext->get_antecedents(l, idx, r, probing);
|
||||
has_theory = true;
|
||||
}
|
||||
for (unsigned qhead = 0; qhead < m_explain.size(); ++qhead) {
|
||||
size_t* e = m_explain[qhead];
|
||||
if (is_literal(e))
|
||||
|
@ -220,10 +240,20 @@ namespace euf {
|
|||
SASSERT(ext != this);
|
||||
sat::literal lit = sat::null_literal;
|
||||
ext->get_antecedents(lit, idx, r, probing);
|
||||
has_theory = true;
|
||||
}
|
||||
}
|
||||
m_egraph.end_explain();
|
||||
eq_proof_hint* hint = (use_drat() && !probing) ? mk_hint(l, r) : nullptr;
|
||||
th_proof_hint* hint = nullptr;
|
||||
if (use_drat() && !probing) {
|
||||
if (has_theory) {
|
||||
r.push_back(~l);
|
||||
hint = mk_smt_hint(symbol("smt"), r);
|
||||
r.pop_back();
|
||||
}
|
||||
else
|
||||
hint = mk_hint(l, r);
|
||||
}
|
||||
unsigned j = 0;
|
||||
for (sat::literal lit : r)
|
||||
if (s().lvl(lit) > 0) r[j++] = lit;
|
||||
|
|
|
@ -193,7 +193,7 @@ namespace euf {
|
|||
|
||||
// proofs
|
||||
void log_antecedents(std::ostream& out, literal l, literal_vector const& r);
|
||||
void log_antecedents(literal l, literal_vector const& r, eq_proof_hint* hint);
|
||||
void log_antecedents(literal l, literal_vector const& r, th_proof_hint* hint);
|
||||
void log_justification(literal l, th_explain const& jst);
|
||||
|
||||
typedef std::pair<expr*, expr*> expr_pair;
|
||||
|
|
|
@ -284,11 +284,15 @@ struct goal2sat::imp : public sat::sat_internalizer {
|
|||
if (v == sat::null_bool_var) {
|
||||
if (m.is_true(t)) {
|
||||
sat::literal tt = sat::literal(mk_bool_var(t), false);
|
||||
if (m_euf && ensure_euf()->use_drat())
|
||||
ensure_euf()->set_bool_var2expr(tt.var(), t);
|
||||
mk_root_clause(tt);
|
||||
l = sign ? ~tt : tt;
|
||||
}
|
||||
else if (m.is_false(t)) {
|
||||
sat::literal ff = sat::literal(mk_bool_var(t), false);
|
||||
if (m_euf && ensure_euf()->use_drat())
|
||||
ensure_euf()->set_bool_var2expr(ff.var(), t);
|
||||
mk_root_clause(~ff);
|
||||
l = sign ? ~ff : ff;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue