- add sat.smt option to enable the new incremental core (it is not ready for mainstream consumption as cloning and other features are not implemented and it hasn't been tested in any detail yet).
- move "name" into attribute on simplifier so it can be reused for diagnostics by the seq-simplifier.
gc-ing definitions leads to unsoundness when they are not replayed.
Instead of attempting to replay definitions theory internalization is irredundant by default.
This is also the old solver behavior where TH_LEMMA is essentially never used, but is valid for top-level theory lemmas.
#6319 - fix incompleteness in propagation of default to all array terms in the equivalence class.
Fix bug with q_mbi where domain restrictions are not using values because the current model does not evaluate certain bound variables to values. Set model completion when adding these bound variables to the model to ensure their values are not missed.
Add better propagation of diagnostics when tactics and the new solver return unknown. The reason for unknown can now be traced to what theory was culprit (currently no additional information)
This commit overhauls the proof format (in development) for the new core.
NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.
It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):
- assume - for input clauses
- learn - when a clause is learned (or redundant clause is added)
- del - when a clause is deleted.
The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.
Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.
Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```
Run z3 on a file with above content.
Then run z3 on f.proof
```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
* split sat2goal out of goal2sat
These two classes need different things out of the sat::solver class,
and separating them makes it easier to fiddle with their dependencies
independently.
I also fiddled with some headers to make it possible to include
sat_solver_core.h instead of sat_solver.h.
* limit solver_core methods to those needed by goal2sat
And switch sat2goal and sat_tactic over to relying on the derived
sat::solver class instead. There were no other uses of solver_core.
I'm hoping this makes it feasible to reuse goal2sat's CNF conversion
from places like the tseitin-cnf tactic, so they can be unified into a
single implementation.