mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
move eq solver functionality to common place, fixes to goal2sat
This commit is contained in:
parent
cf3002c293
commit
e398959732
|
@ -19,27 +19,44 @@ Author:
|
|||
|
||||
namespace seq {
|
||||
|
||||
bool eq_solver::reduce(expr* s, expr* t, eq_ptr& r) {
|
||||
expr_ref_vector ls(m), rs(m);
|
||||
ls.push_back(s);
|
||||
rs.push_back(t);
|
||||
eqr e(ls, rs);
|
||||
return reduce(e, r);
|
||||
}
|
||||
|
||||
bool eq_solver::solve(eq const& e, eq_ptr& r) {
|
||||
if (solve_itos1(e, r))
|
||||
bool eq_solver::reduce(eqr const& e, eq_ptr& r) {
|
||||
r = nullptr;
|
||||
if (reduce_unit(e, r))
|
||||
return true;
|
||||
if (solve_itos2(e, r))
|
||||
if (reduce_itos1(e, r))
|
||||
return true;
|
||||
|
||||
if (reduce_itos2(e, r))
|
||||
return true;
|
||||
if (reduce_binary_eq(e, r))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void eq_solver::set_conflict() {
|
||||
m_clause.reset();
|
||||
ctx.add_consequence(true, m_clause);
|
||||
}
|
||||
|
||||
void eq_solver::add_consequence(expr_ref const& a) {
|
||||
m_clause.reset();
|
||||
m_clause.push_back(a);
|
||||
m_add_consequence(true, m_clause);
|
||||
ctx.add_consequence(true, m_clause);
|
||||
}
|
||||
|
||||
void eq_solver::add_consequence(expr_ref const& a, expr_ref const& b) {
|
||||
m_clause.reset();
|
||||
m_clause.push_back(a);
|
||||
m_clause.push_back(b);
|
||||
m_add_consequence(true, m_clause);
|
||||
ctx.add_consequence(true, m_clause);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -48,17 +65,16 @@ namespace seq {
|
|||
* s = t or (s < 0 and t < 0)
|
||||
*/
|
||||
|
||||
bool eq_solver::match_itos1(eq const& e, expr*& a, expr*& b) {
|
||||
bool eq_solver::match_itos1(eqr const& e, expr*& a, expr*& b) {
|
||||
return
|
||||
e.ls.size() == 1 && e.rs.size() == 1 &&
|
||||
seq.str.is_itos(e.ls[0], a) && seq.str.is_itos(e.rs[0], b);
|
||||
}
|
||||
|
||||
bool eq_solver::solve_itos1(eq const& e, eq_ptr& r) {
|
||||
bool eq_solver::reduce_itos1(eqr const& e, eq_ptr& r) {
|
||||
expr* s = nullptr, *t = nullptr;
|
||||
if (!match_itos1(e, s, t))
|
||||
return false;
|
||||
r = nullptr;
|
||||
expr_ref eq = mk_eq(s, t);
|
||||
add_consequence(eq, mk_le(s, -1));
|
||||
add_consequence(eq, mk_le(t, -1));
|
||||
|
@ -71,7 +87,7 @@ namespace seq {
|
|||
* s < 0
|
||||
*/
|
||||
|
||||
bool eq_solver::match_itos2(eq const& e, expr*& s) {
|
||||
bool eq_solver::match_itos2(eqr const& e, expr*& s) {
|
||||
if (e.ls.size() == 1 && e.rs.empty() && seq.str.is_itos(e.ls[0], s))
|
||||
return true;
|
||||
if (e.rs.size() == 1 && e.ls.empty() && seq.str.is_itos(e.rs[0], s))
|
||||
|
@ -79,14 +95,308 @@ namespace seq {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool eq_solver::solve_itos2(eq const& e, eq_ptr& r) {
|
||||
bool eq_solver::reduce_itos2(eqr const& e, eq_ptr& r) {
|
||||
expr* s = nullptr;
|
||||
if (!match_itos2(e, s))
|
||||
return false;
|
||||
r = nullptr;
|
||||
add_consequence(mk_le(s, -1));
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* x = t, where x does not occur in t.
|
||||
*/
|
||||
bool eq_solver::reduce_unit(eqr const& e, eq_ptr& r) {
|
||||
if (e.ls == e.rs)
|
||||
return true;
|
||||
if (e.ls.size() == 1 && is_var(e.ls[0]) && !occurs(e.ls[0], e.rs)) {
|
||||
expr_ref y(seq.str.mk_concat(e.rs, e.ls[0]->get_sort()), m);
|
||||
ctx.add_solution(e.ls[0], y);
|
||||
return true;
|
||||
}
|
||||
if (e.rs.size() == 1 && is_var(e.rs[0]) && !occurs(e.rs[0], e.ls)) {
|
||||
expr_ref y(seq.str.mk_concat(e.ls, e.rs[0]->get_sort()), m);
|
||||
ctx.add_solution(e.rs[0], y);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Equation is of the form x ++ xs = ys ++ x
|
||||
* where |xs| = |ys| are units of same length
|
||||
* then xs is a wrap-around of ys
|
||||
* x ++ ab = ba ++ x
|
||||
*
|
||||
* When it is of the form x ++ a = b ++ x
|
||||
* Infer that a = b
|
||||
* It is also the case that x is a repetition of a's
|
||||
* But this information is not exposed with this inference.
|
||||
*
|
||||
*/
|
||||
bool eq_solver::reduce_binary_eq(eqr const& e, eq_ptr& r) {
|
||||
ptr_vector<expr> xs, ys;
|
||||
expr_ref x(m), y(m);
|
||||
if (!match_binary_eq(e, x, xs, ys, y))
|
||||
return false;
|
||||
|
||||
if (xs.size() != ys.size()) {
|
||||
set_conflict();
|
||||
return true;
|
||||
}
|
||||
if (xs.empty())
|
||||
return true;
|
||||
|
||||
if (xs.size() != 1)
|
||||
return false;
|
||||
|
||||
if (ctx.expr2rep(xs[0]) == ctx.expr2rep(ys[0]))
|
||||
return false;
|
||||
expr_ref eq(m.mk_eq(xs[0], ys[0]), m);
|
||||
expr* veq = ctx.expr2rep(eq);
|
||||
if (m.is_true(veq))
|
||||
return false;
|
||||
add_consequence(eq);
|
||||
return m.is_false(veq);
|
||||
}
|
||||
|
||||
|
||||
bool eq_solver::is_var(expr* a) const {
|
||||
return
|
||||
seq.is_seq(a) &&
|
||||
!seq.str.is_concat(a) &&
|
||||
!seq.str.is_empty(a) &&
|
||||
!seq.str.is_string(a) &&
|
||||
!seq.str.is_unit(a) &&
|
||||
!seq.str.is_itos(a) &&
|
||||
!seq.str.is_nth_i(a) &&
|
||||
!m.is_ite(a);
|
||||
}
|
||||
|
||||
bool eq_solver::occurs(expr* a, expr_ref_vector const& b) {
|
||||
for (auto const& elem : b)
|
||||
if (a == elem || m.is_ite(elem))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool eq_solver::occurs(expr* a, expr* b) {
|
||||
// true if a occurs under an interpreted function or under left/right selector.
|
||||
SASSERT(is_var(a));
|
||||
SASSERT(m_todo.empty());
|
||||
expr* e1 = nullptr, *e2 = nullptr;
|
||||
m_todo.push_back(b);
|
||||
while (!m_todo.empty()) {
|
||||
b = m_todo.back();
|
||||
if (a == b || m.is_ite(b)) {
|
||||
m_todo.reset();
|
||||
return true;
|
||||
}
|
||||
m_todo.pop_back();
|
||||
if (seq.str.is_concat(b, e1, e2)) {
|
||||
m_todo.push_back(e1);
|
||||
m_todo.push_back(e2);
|
||||
}
|
||||
else if (seq.str.is_unit(b, e1)) {
|
||||
m_todo.push_back(e1);
|
||||
}
|
||||
else if (seq.str.is_nth_i(b, e1, e2)) {
|
||||
m_todo.push_back(e1);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void eq_solver::set_prefix(expr_ref& x, expr_ref_vector const& xs, unsigned sz) const {
|
||||
SASSERT(0 < xs.size() && sz <= xs.size());
|
||||
x = seq.str.mk_concat(sz, xs.c_ptr(), xs[0]->get_sort());
|
||||
}
|
||||
|
||||
void eq_solver::set_suffix(expr_ref& x, expr_ref_vector const& xs, unsigned sz) const {
|
||||
SASSERT(0 < xs.size() && sz <= xs.size());
|
||||
x = seq.str.mk_concat(sz, xs.c_ptr() + xs.size() - sz, xs[0]->get_sort());
|
||||
}
|
||||
|
||||
unsigned eq_solver::count_units_l2r(expr_ref_vector const& es, unsigned offset) const {
|
||||
unsigned i = offset, sz = es.size();
|
||||
for (; i < sz && seq.str.is_unit(es[i]); ++i) ;
|
||||
return i - offset;
|
||||
}
|
||||
|
||||
unsigned eq_solver::count_units_r2l(expr_ref_vector const& es, unsigned offset) const {
|
||||
SASSERT(offset < es.size());
|
||||
unsigned i = offset, count = 0;
|
||||
do {
|
||||
if (!seq.str.is_unit(es[i]))
|
||||
break;
|
||||
++count;
|
||||
}
|
||||
while (i-- > 0);
|
||||
return count;
|
||||
}
|
||||
|
||||
unsigned eq_solver::count_non_units_l2r(expr_ref_vector const& es, unsigned offset) const {
|
||||
unsigned i = offset, sz = es.size();
|
||||
for (; i < sz && !seq.str.is_unit(es[i]); ++i) ;
|
||||
return i - offset;
|
||||
}
|
||||
|
||||
unsigned eq_solver::count_non_units_r2l(expr_ref_vector const& es, unsigned offset) const {
|
||||
SASSERT(offset < es.size());
|
||||
unsigned i = offset, count = 0;
|
||||
do {
|
||||
if (seq.str.is_unit(es[i]))
|
||||
break;
|
||||
++count;
|
||||
}
|
||||
while (i-- > 0);
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* match: .. X abc = Y .. Z def U
|
||||
* where U is a variable or concatenation of variables
|
||||
*/
|
||||
|
||||
bool eq_solver::match_ternary_eq_r(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (ls.size() > 1 && rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
||||
unsigned num_ls_units = count_units_r2l(ls, ls.size() - 1);
|
||||
if (num_ls_units == 0 || num_ls_units == ls.size())
|
||||
return false;
|
||||
unsigned ls_units_offset = ls.size() - num_ls_units;
|
||||
unsigned num_rs_non_units = count_non_units_r2l(rs, rs.size() - 1);
|
||||
if (num_rs_non_units == rs.size())
|
||||
return false;
|
||||
SASSERT(num_rs_non_units > 0);
|
||||
unsigned num_rs_units = count_units_r2l(rs, rs.size() - 1 - num_rs_non_units);
|
||||
if (num_rs_units == 0)
|
||||
return false;
|
||||
set_prefix(x, ls, ls.size() - num_ls_units);
|
||||
set_suffix(xs, ls, num_ls_units);
|
||||
unsigned offset = rs.size() - num_rs_non_units - num_rs_units;
|
||||
set_prefix(y1, rs, offset);
|
||||
set_extract(ys, rs, offset, num_rs_units);
|
||||
set_suffix(y2, rs, num_rs_non_units);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool eq_solver::match_ternary_eq_rhs(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (match_ternary_eq_r(ls, rs, x, xs, y1, ys, y2))
|
||||
return true;
|
||||
if (match_ternary_eq_r(rs, ls, x, xs, y1, ys, y2))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
match: abc X .. = Y def Z ..
|
||||
where Y is a variable or concatenation of variables
|
||||
*/
|
||||
|
||||
bool eq_solver::match_ternary_eq_l(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (ls.size() > 1 && rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
||||
unsigned num_ls_units = count_units_l2r(ls, 0);
|
||||
if (num_ls_units == 0 || num_ls_units == ls.size())
|
||||
return false;
|
||||
unsigned num_rs_non_units = count_non_units_l2r(rs, 0);
|
||||
if (num_rs_non_units == rs.size() || num_rs_non_units == 0)
|
||||
return false;
|
||||
unsigned num_rs_units = count_units_l2r(rs, num_rs_non_units);
|
||||
if (num_rs_units == 0)
|
||||
return false;
|
||||
set_prefix(xs, ls, num_ls_units);
|
||||
set_suffix(x, ls, ls.size() - num_ls_units);
|
||||
set_prefix(y1, rs, num_rs_non_units);
|
||||
set_extract(ys, rs, num_rs_non_units, num_rs_units);
|
||||
set_suffix(y2, rs, rs.size() - num_rs_non_units - num_rs_units);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool eq_solver::match_ternary_eq_lhs(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (match_ternary_eq_l(ls, rs, xs, x, y1, ys, y2))
|
||||
return true;
|
||||
if (match_ternary_eq_l(rs, ls, xs, x, y1, ys, y2))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool eq_solver::all_units(expr_ref_vector const& es, unsigned start, unsigned end) const {
|
||||
for (unsigned i = start; i < end; ++i)
|
||||
if (!seq.str.is_unit(es[i]))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
match X abc = defg Y, for abc, defg non-empty
|
||||
*/
|
||||
|
||||
bool eq_solver::match_binary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, ptr_vector<expr>& xs, ptr_vector<expr>& ys, expr_ref& y) {
|
||||
if (ls.size() > 1 && is_var(ls[0]) &&
|
||||
rs.size() > 1 && is_var(rs.back()) &&
|
||||
all_units(ls, 1, ls.size()) &&
|
||||
all_units(rs, 0, rs.size() - 1)) {
|
||||
x = ls[0];
|
||||
y = rs.back();
|
||||
set_suffix(xs, ls, ls.size() - 1);
|
||||
set_prefix(ys, rs, rs.size() - 1);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool eq_solver::match_binary_eq(eqr const& e, expr_ref& x, ptr_vector<expr>& xs, ptr_vector<expr>& ys, expr_ref& y) {
|
||||
if (match_binary_eq(e.ls, e.rs, x, xs, ys, y) && x == y)
|
||||
return true;
|
||||
if (match_binary_eq(e.rs, e.ls, x, xs, ys, y) && x == y)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* match: X abc Y..Y' = Z def T..T', where X,Z are variables or concatenation of variables
|
||||
*/
|
||||
|
||||
bool eq_solver::match_quat_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x1, expr_ref_vector& xs, expr_ref& x2,
|
||||
expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (ls.size() > 1 && is_var(ls[0]) && is_var(ls.back()) &&
|
||||
rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
||||
unsigned ls_non_unit = count_non_units_l2r(ls, 0);
|
||||
unsigned rs_non_unit = count_non_units_l2r(rs, 0);
|
||||
if (ls_non_unit == ls.size())
|
||||
return false;
|
||||
if (rs_non_unit == rs.size())
|
||||
return false;
|
||||
unsigned ls_unit = count_units_l2r(ls, ls_non_unit);
|
||||
unsigned rs_unit = count_units_l2r(rs, rs_non_unit);
|
||||
if (ls_unit == 0)
|
||||
return false;
|
||||
if (rs_unit == 0)
|
||||
return false;
|
||||
set_prefix(x1, ls, ls_non_unit);
|
||||
set_extract(xs, ls, ls_non_unit, ls_unit);
|
||||
set_suffix(x2, ls, ls.size() - ls_non_unit - ls_unit);
|
||||
set_prefix(y1, rs, rs_non_unit);
|
||||
set_extract(ys, rs, rs_non_unit, rs_unit);
|
||||
set_suffix(y2, rs, rs.size() - rs_non_unit - rs_unit);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ Module Name:
|
|||
|
||||
Abstract:
|
||||
|
||||
Solver-agnostic equality solving routines for sequences
|
||||
Solver core-agnostic equality inference routines for sequences
|
||||
|
||||
Author:
|
||||
|
||||
|
@ -27,23 +27,73 @@ namespace seq {
|
|||
ls(l), rs(r) {}
|
||||
};
|
||||
|
||||
struct eqr {
|
||||
expr_ref_vector const& ls;
|
||||
expr_ref_vector const& rs;
|
||||
eqr(expr_ref_vector const& l, expr_ref_vector const& r):
|
||||
ls(l), rs(r) {}
|
||||
};
|
||||
|
||||
typedef scoped_ptr<eq> eq_ptr;
|
||||
|
||||
class eq_solver_context {
|
||||
public:
|
||||
virtual void add_consequence(bool uses_dep, expr_ref_vector const& clause) = 0;
|
||||
virtual void add_solution(expr* var, expr* term) = 0;
|
||||
virtual expr* expr2rep(expr* e) = 0;
|
||||
virtual bool get_length(expr* e, rational& r) = 0;
|
||||
};
|
||||
|
||||
class eq_solver {
|
||||
ast_manager& m;
|
||||
axioms& m_ax;
|
||||
seq_util seq;
|
||||
expr_ref_vector m_clause;
|
||||
std::function<expr*(expr*)> m_value;
|
||||
std::function<bool(expr*, rational&)> m_int_value;
|
||||
std::function<void(bool, expr_ref_vector const&)> m_add_consequence;
|
||||
ast_manager& m;
|
||||
eq_solver_context& ctx;
|
||||
axioms& m_ax;
|
||||
seq_util seq;
|
||||
expr_ref_vector m_clause;
|
||||
|
||||
bool match_itos1(eq const& e, expr*& s, expr*& t);
|
||||
bool solve_itos1(eq const& e, eq_ptr& r);
|
||||
bool reduce_unit(eqr const& e, eq_ptr& r);
|
||||
|
||||
bool match_itos2(eq const& e, expr*& s);
|
||||
bool solve_itos2(eq const& e, eq_ptr& r);
|
||||
bool match_itos1(eqr const& e, expr*& s, expr*& t);
|
||||
bool reduce_itos1(eqr const& e, eq_ptr& r);
|
||||
|
||||
bool match_itos2(eqr const& e, expr*& s);
|
||||
bool reduce_itos2(eqr const& e, eq_ptr& r);
|
||||
|
||||
bool match_binary_eq(eqr const& e, expr_ref& x, ptr_vector<expr>& xs, ptr_vector<expr>& ys, expr_ref& y);
|
||||
bool reduce_binary_eq(eqr const& e, eq_ptr& r);
|
||||
|
||||
bool match_ternary_eq_r(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
|
||||
bool match_ternary_eq_l(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
|
||||
|
||||
/**
|
||||
* count unit or non-unit entries left-to-right or right-to-left starting at, and including offset.
|
||||
*/
|
||||
unsigned count_units_l2r(expr_ref_vector const& es, unsigned offset) const;
|
||||
unsigned count_units_r2l(expr_ref_vector const& es, unsigned offset) const;
|
||||
unsigned count_non_units_l2r(expr_ref_vector const& es, unsigned offset) const;
|
||||
unsigned count_non_units_r2l(expr_ref_vector const& es, unsigned offset) const;
|
||||
|
||||
void set_prefix(expr_ref& x, expr_ref_vector const& xs, unsigned sz) const;
|
||||
void set_suffix(expr_ref& x, expr_ref_vector const& xs, unsigned sz) const;
|
||||
|
||||
template<typename V>
|
||||
void set_prefix(V& dst, expr_ref_vector const& xs, unsigned sz) const { set_extract(dst, xs, 0, sz); }
|
||||
|
||||
template<typename V>
|
||||
void set_suffix(V& dst, expr_ref_vector const& xs, unsigned sz) const { set_extract(dst, xs, xs.size() - sz, sz); }
|
||||
|
||||
template<typename V>
|
||||
void set_extract(V& dst, expr_ref_vector const& xs, unsigned offset, unsigned sz) const {
|
||||
SASSERT(offset + sz <= xs.size());
|
||||
dst.reset();
|
||||
dst.append(sz, xs.c_ptr() + offset);
|
||||
}
|
||||
|
||||
void set_conflict();
|
||||
void add_consequence(expr_ref const& a);
|
||||
void add_consequence(expr_ref const& a, expr_ref const& b);
|
||||
|
||||
|
@ -53,21 +103,40 @@ namespace seq {
|
|||
expr_ref mk_ge(expr* x, rational const& n) { return m_ax.mk_ge(x, n); }
|
||||
expr_ref mk_le(expr* x, rational const& n) { return m_ax.mk_le(x, n); }
|
||||
|
||||
ptr_vector<expr> m_todo;
|
||||
bool occurs(expr* a, expr_ref_vector const& b);
|
||||
bool occurs(expr* a, expr* b);
|
||||
|
||||
bool all_units(expr_ref_vector const& es, unsigned start, unsigned end) const;
|
||||
|
||||
public:
|
||||
|
||||
eq_solver(ast_manager& m, axioms& ax):
|
||||
eq_solver(ast_manager& m, eq_solver_context& ctx, axioms& ax):
|
||||
m(m),
|
||||
ctx(ctx),
|
||||
m_ax(ax),
|
||||
seq(m),
|
||||
m_clause(m)
|
||||
{}
|
||||
|
||||
void set_value(std::function<expr*(expr*)>& v) { m_value = v; }
|
||||
void set_int_value(std::function<bool(expr*,rational&)>& iv) { m_int_value = iv; }
|
||||
void set_add_consequence(std::function<void(bool, expr_ref_vector const&)>& ac) { m_add_consequence = ac; }
|
||||
bool reduce(eqr const& e, eq_ptr& r);
|
||||
|
||||
bool solve(eq const& e, eq_ptr& r);
|
||||
bool reduce(expr* s, expr* t, eq_ptr& r);
|
||||
|
||||
bool is_var(expr* a) const;
|
||||
|
||||
bool match_binary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, ptr_vector<expr>& xs, ptr_vector<expr>& ys, expr_ref& y);
|
||||
|
||||
bool match_ternary_eq_rhs(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
|
||||
bool match_ternary_eq_lhs(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
|
||||
bool match_quat_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x1, expr_ref_vector& xs, expr_ref& x2,
|
||||
expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -257,8 +257,8 @@ struct goal2sat::imp : public sat::sat_internalizer {
|
|||
m_num_scopes = 0;
|
||||
m_map.pop(n);
|
||||
unsigned k = m_cache_lim[m_cache_lim.size() - n];
|
||||
for (; k-- > m_cache_trail.size(); ) {
|
||||
app* t = m_cache_trail[k];
|
||||
for (unsigned i = m_cache_trail.size(); i-- > k; ) {
|
||||
app* t = m_cache_trail[i];
|
||||
sat::literal lit;
|
||||
if (m_app2lit.find(t, lit)) {
|
||||
m_app2lit.remove(t);
|
||||
|
|
|
@ -60,56 +60,41 @@ bool theory_seq::solve_eq(unsigned idx) {
|
|||
TRACE("seq", tout << "simplified\n";);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!ctx.inconsistent() && lift_ite(ls, rs, deps)) {
|
||||
return true;
|
||||
}
|
||||
seq::eq_ptr r;
|
||||
m_eq_deps = deps;
|
||||
seq::eqr er(ls, rs);
|
||||
if (!ctx.inconsistent() && m_eq.reduce(er, r)) {
|
||||
if (!r)
|
||||
return true;
|
||||
m_eqs.set(idx, depeq(m_eq_id++, r->ls, r->rs, deps));
|
||||
return false;
|
||||
}
|
||||
|
||||
TRACE("seq_verbose", tout << ls << " = " << rs << "\n";);
|
||||
if (ls.empty() && rs.empty()) {
|
||||
return true;
|
||||
}
|
||||
if (!ctx.inconsistent() && solve_unit_eq(ls, rs, deps)) {
|
||||
TRACE("seq", tout << "unit\n";);
|
||||
return true;
|
||||
}
|
||||
if (!ctx.inconsistent() && solve_binary_eq(ls, rs, deps)) {
|
||||
TRACE("seq", tout << "binary\n";);
|
||||
return true;
|
||||
}
|
||||
if (!ctx.inconsistent() && solve_nth_eq1(ls, rs, deps)) {
|
||||
return true;
|
||||
}
|
||||
if (!ctx.inconsistent() && solve_nth_eq1(rs, ls, deps)) {
|
||||
return true;
|
||||
}
|
||||
seq::eq_ptr r;
|
||||
m_eq_deps = deps;
|
||||
if (!ctx.inconsistent() && m_eq.solve(e, r)) {
|
||||
if (!r)
|
||||
return true;
|
||||
m_eqs.set(idx, depeq(m_eq_id++, r->ls, r->rs, deps));
|
||||
return false;
|
||||
}
|
||||
if (!ctx.inconsistent() && solve_itos(rs, ls, deps)) {
|
||||
return true;
|
||||
}
|
||||
if (!ctx.inconsistent() && change) {
|
||||
// The propagation step from arithmetic state (e.g. length offset) to length constraints
|
||||
TRACE("seq", tout << "inserting equality\n";);
|
||||
expr_ref_vector new_ls(m);
|
||||
if (!m_offset_eq.empty() && find_better_rep(ls, rs, idx, deps, new_ls)) {
|
||||
// Find a better equivalent term for lhs of an equation based on length constraints
|
||||
m_eqs.push_back(depeq(m_eq_id++, new_ls, rs, deps));
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
m_eqs.set(idx, depeq(m_eq_id++, ls, rs, deps));
|
||||
}
|
||||
m_eqs.set(idx, depeq(m_eq_id++, ls, rs, deps));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void theory_seq::add_consequence(bool uses_eq, expr_ref_vector const& clause) {
|
||||
dependency* dep = uses_eq ? m_eq_deps : nullptr;
|
||||
m_new_propagation = true;
|
||||
if (clause.size() == 1) {
|
||||
propagate_lit(dep, 0, nullptr, mk_literal(clause[0]));
|
||||
return;
|
||||
|
@ -126,118 +111,24 @@ void theory_seq::add_consequence(bool uses_eq, expr_ref_vector const& clause) {
|
|||
add_axiom(lits);
|
||||
}
|
||||
|
||||
bool theory_seq::solve_unit_eq(expr* l, expr* r, dependency* deps) {
|
||||
if (l == r) {
|
||||
return true;
|
||||
}
|
||||
if (is_var(l) && !occurs(l, r) && add_solution(l, r, deps)) {
|
||||
return true;
|
||||
}
|
||||
if (is_var(r) && !occurs(r, l) && add_solution(r, l, deps)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool theory_seq::solve_unit_eq(expr_ref_vector const& l, expr_ref_vector const& r, dependency* deps) {
|
||||
if (l.size() == 1 && is_var(l[0]) && !occurs(l[0], r) && add_solution(l[0], mk_concat(r, l[0]->get_sort()), deps)) {
|
||||
return true;
|
||||
}
|
||||
if (r.size() == 1 && is_var(r[0]) && !occurs(r[0], l) && add_solution(r[0], mk_concat(l, r[0]->get_sort()), deps)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool theory_seq::solve_binary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep) {
|
||||
ptr_vector<expr> xs, ys;
|
||||
expr_ref x(m), y(m);
|
||||
if (!is_binary_eq(ls, rs, x, xs, ys, y) &&
|
||||
!is_binary_eq(rs, ls, x, xs, ys, y)) {
|
||||
return false;
|
||||
}
|
||||
// Equation is of the form x ++ xs = ys ++ y
|
||||
// where xs, ys are units.
|
||||
if (x != y) {
|
||||
return false;
|
||||
}
|
||||
if (xs.size() != ys.size()) {
|
||||
TRACE("seq", tout << "binary conflict\n";);
|
||||
set_conflict(dep);
|
||||
return false;
|
||||
}
|
||||
if (xs.empty()) {
|
||||
// this should have been solved already
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
|
||||
// Equation is of the form x ++ xs = ys ++ x
|
||||
// where |xs| = |ys| are units of same length
|
||||
// then xs is a wrap-around of ys
|
||||
// x ++ ab = ba ++ x
|
||||
//
|
||||
if (xs.size() == 1) {
|
||||
enode* n1 = ensure_enode(xs[0]);
|
||||
enode* n2 = ensure_enode(ys[0]);
|
||||
if (n1->get_root() == n2->get_root()) {
|
||||
return false;
|
||||
}
|
||||
literal eq = mk_eq(xs[0], ys[0], false);
|
||||
switch (ctx.get_assignment(eq)) {
|
||||
case l_false: {
|
||||
literal_vector conflict;
|
||||
conflict.push_back(~eq);
|
||||
TRACE("seq", tout << conflict << "\n";);
|
||||
set_conflict(dep, conflict);
|
||||
break;
|
||||
}
|
||||
expr* theory_seq::expr2rep(expr* e) {
|
||||
if (m.is_bool(e) && ctx.b_internalized(e)) {
|
||||
bool_var b = ctx.get_bool_var(e);
|
||||
switch (ctx.get_assignment(b)) {
|
||||
case l_true:
|
||||
break;
|
||||
case l_undef:
|
||||
propagate_lit(dep, 0, nullptr, eq);
|
||||
m_new_propagation = true;
|
||||
return m.mk_true();
|
||||
case l_false:
|
||||
return m.mk_false();
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
if (!ctx.e_internalized(e))
|
||||
return e;
|
||||
return ctx.get_enode(e)->get_root()->get_expr();
|
||||
}
|
||||
|
||||
|
||||
bool theory_seq::occurs(expr* a, expr_ref_vector const& b) {
|
||||
for (auto const& elem : b) {
|
||||
if (a == elem || m.is_ite(elem)) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool theory_seq::occurs(expr* a, expr* b) {
|
||||
// true if a occurs under an interpreted function or under left/right selector.
|
||||
SASSERT(is_var(a));
|
||||
SASSERT(m_todo.empty());
|
||||
expr* e1 = nullptr, *e2 = nullptr;
|
||||
m_todo.push_back(b);
|
||||
while (!m_todo.empty()) {
|
||||
b = m_todo.back();
|
||||
if (a == b || m.is_ite(b)) {
|
||||
m_todo.reset();
|
||||
return true;
|
||||
}
|
||||
m_todo.pop_back();
|
||||
if (m_util.str.is_concat(b, e1, e2)) {
|
||||
m_todo.push_back(e1);
|
||||
m_todo.push_back(e2);
|
||||
}
|
||||
else if (m_util.str.is_unit(b, e1)) {
|
||||
m_todo.push_back(e1);
|
||||
}
|
||||
else if (m_util.str.is_nth_i(b, e1, e2)) {
|
||||
m_todo.push_back(e1);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief
|
||||
|
||||
|
@ -270,6 +161,7 @@ bool theory_seq::occurs(expr* a, expr* b) {
|
|||
TODO: propagate length offsets for last vars
|
||||
|
||||
*/
|
||||
#if 0
|
||||
bool theory_seq::find_better_rep(expr_ref_vector const& ls, expr_ref_vector const& rs, unsigned idx,
|
||||
dependency*& deps, expr_ref_vector & res) {
|
||||
|
||||
|
@ -346,6 +238,7 @@ bool theory_seq::find_better_rep(expr_ref_vector const& ls, expr_ref_vector cons
|
|||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
bool theory_seq::has_len_offset(expr_ref_vector const& ls, expr_ref_vector const& rs, int & offset) {
|
||||
|
||||
|
@ -380,29 +273,9 @@ bool theory_seq::has_len_offset(expr_ref_vector const& ls, expr_ref_vector const
|
|||
}
|
||||
|
||||
bool theory_seq::len_based_split() {
|
||||
|
||||
if (false && m_offset_eq.propagate() && !m_offset_eq.empty()) {
|
||||
// NB: disabled until find_better_rep is handled.
|
||||
#if 0
|
||||
for (unsigned i = m_eqs.size(); i-- > 0; ) {
|
||||
eq const& e = m_eqs[i];
|
||||
expr_ref_vector new_ls(m);
|
||||
dependency *deps = e.dep();
|
||||
if (find_better_rep(e.ls, e.rs, i, deps, new_ls)) {
|
||||
expr_ref_vector rs(m);
|
||||
rs.append(e.rs);
|
||||
m_eqs.set(i, eq(m_eq_id++, new_ls, rs, deps));
|
||||
TRACE("seq", display_equation(tout, m_eqs[i]););
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
for (auto const& e : m_eqs) {
|
||||
if (len_based_split(e)) {
|
||||
for (auto const& e : m_eqs)
|
||||
if (len_based_split(e))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -670,8 +543,8 @@ bool theory_seq::branch_binary_variable(depeq const& e) {
|
|||
}
|
||||
ptr_vector<expr> xs, ys;
|
||||
expr_ref x(m), y(m);
|
||||
if (!is_binary_eq(e.ls, e.rs, x, xs, ys, y) &&
|
||||
!is_binary_eq(e.rs, e.ls, x, xs, ys, y))
|
||||
if (!m_eq.match_binary_eq(e.ls, e.rs, x, xs, ys, y) &&
|
||||
!m_eq.match_binary_eq(e.rs, e.ls, x, xs, ys, y))
|
||||
return false;
|
||||
if (x == y) {
|
||||
return false;
|
||||
|
@ -889,10 +762,8 @@ bool theory_seq::can_align_from_rhs(expr_ref_vector const& ls, expr_ref_vector c
|
|||
bool theory_seq::branch_ternary_variable_rhs(depeq const& e) {
|
||||
expr_ref_vector xs(m), ys(m);
|
||||
expr_ref x(m), y1(m), y2(m);
|
||||
if (!is_ternary_eq_rhs(e.ls, e.rs, x, xs, y1, ys, y2) &&
|
||||
!is_ternary_eq_rhs(e.rs, e.ls, x, xs, y1, ys, y2)) {
|
||||
if (!m_eq.match_ternary_eq_rhs(e.ls, e.rs, x, xs, y1, ys, y2))
|
||||
return false;
|
||||
}
|
||||
if (m_sk.is_align_l(y1) || m_sk.is_align_r(y1))
|
||||
return false;
|
||||
|
||||
|
@ -933,8 +804,7 @@ bool theory_seq::branch_ternary_variable_rhs(depeq const& e) {
|
|||
bool theory_seq::branch_ternary_variable_lhs(depeq const& e) {
|
||||
expr_ref_vector xs(m), ys(m);
|
||||
expr_ref x(m), y1(m), y2(m);
|
||||
if (!is_ternary_eq_lhs(e.ls, e.rs, xs, x, y1, ys, y2) &&
|
||||
!is_ternary_eq_lhs(e.rs, e.ls, xs, x, y1, ys, y2))
|
||||
if (!m_eq.match_ternary_eq_lhs(e.ls, e.rs, xs, x, y1, ys, y2))
|
||||
return false;
|
||||
if (m_sk.is_align_l(y1) || m_sk.is_align_r(y1))
|
||||
return false;
|
||||
|
@ -998,7 +868,7 @@ literal theory_seq::mk_alignment(expr* e1, expr* e2) {
|
|||
bool theory_seq::branch_quat_variable(depeq const& e) {
|
||||
expr_ref_vector xs(m), ys(m);
|
||||
expr_ref x1(m), x2(m), y1(m), y2(m);
|
||||
if (!is_quat_eq(e.ls, e.rs, x1, xs, x2, y1, ys, y2))
|
||||
if (!m_eq.match_quat_eq(e.ls, e.rs, x1, xs, x2, y1, ys, y2))
|
||||
return false;
|
||||
dependency* dep = e.dep();
|
||||
|
||||
|
@ -1478,150 +1348,7 @@ bool theory_seq::is_unit_eq(expr_ref_vector const& ls, expr_ref_vector const& rs
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
match X abc = defg Y, for abc, defg non-empty
|
||||
*/
|
||||
|
||||
bool theory_seq::is_binary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref& x, ptr_vector<expr>& xs, ptr_vector<expr>& ys, expr_ref& y) {
|
||||
if (ls.size() > 1 && is_var(ls[0]) &&
|
||||
rs.size() > 1 && is_var(rs.back())) {
|
||||
xs.reset();
|
||||
ys.reset();
|
||||
x = ls[0];
|
||||
y = rs.back();
|
||||
for (unsigned i = 1; i < ls.size(); ++i) {
|
||||
if (!m_util.str.is_unit(ls[i])) return false;
|
||||
}
|
||||
for (unsigned i = 0; i < rs.size()-1; ++i) {
|
||||
if (!m_util.str.is_unit(rs[i])) return false;
|
||||
}
|
||||
xs.append(ls.size()-1, ls.c_ptr() + 1);
|
||||
ys.append(rs.size()-1, rs.c_ptr());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
match: X abc Y..Y' = Z def T..T', where X,Z are variables or concatenation of variables
|
||||
*/
|
||||
|
||||
bool theory_seq::is_quat_eq(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x1, expr_ref_vector& xs, expr_ref& x2,
|
||||
expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (ls.size() > 1 && is_var(ls[0]) && is_var(ls.back()) &&
|
||||
rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
||||
unsigned l_start = 1;
|
||||
sort* srt = ls[0]->get_sort();
|
||||
for (; l_start < ls.size()-1; ++l_start) {
|
||||
if (m_util.str.is_unit(ls[l_start])) break;
|
||||
}
|
||||
if (l_start == ls.size()-1) return false;
|
||||
unsigned l_end = l_start;
|
||||
for (; l_end < ls.size()-1; ++l_end) {
|
||||
if (!m_util.str.is_unit(ls[l_end])) break;
|
||||
}
|
||||
--l_end;
|
||||
if (l_end < l_start) return false;
|
||||
unsigned r_start = 1;
|
||||
for (; r_start < rs.size()-1; ++r_start) {
|
||||
if (m_util.str.is_unit(rs[r_start])) break;
|
||||
}
|
||||
if (r_start == rs.size()-1) return false;
|
||||
unsigned r_end = r_start;
|
||||
for (; r_end < rs.size()-1; ++r_end) {
|
||||
if (!m_util.str.is_unit(rs[r_end])) break;
|
||||
}
|
||||
--r_end;
|
||||
if (r_end < r_start) return false;
|
||||
xs.reset();
|
||||
xs.append(l_end-l_start+1, ls.c_ptr()+l_start);
|
||||
x1 = mk_concat(l_start, ls.c_ptr(), srt);
|
||||
x2 = mk_concat(ls.size()-l_end-1, ls.c_ptr()+l_end+1, srt);
|
||||
ys.reset();
|
||||
ys.append(r_end-r_start+1, rs.c_ptr()+r_start);
|
||||
y1 = mk_concat(r_start, rs.c_ptr(), srt);
|
||||
y2 = mk_concat(rs.size()-r_end-1, rs.c_ptr()+r_end+1, srt);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
match: .. X abc = .. Y def Z
|
||||
where Z is a variable or concatenation of variables
|
||||
*/
|
||||
|
||||
bool theory_seq::is_ternary_eq_rhs(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (ls.size() > 1 && rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
||||
sort* srt = ls[0]->get_sort();
|
||||
unsigned l_start = ls.size()-1;
|
||||
for (; l_start > 0; --l_start) {
|
||||
if (!m_util.str.is_unit(ls[l_start])) break;
|
||||
}
|
||||
if (l_start == ls.size()-1) return false;
|
||||
++l_start;
|
||||
unsigned r_end = rs.size()-2;
|
||||
for (; r_end > 0; --r_end) {
|
||||
if (m_util.str.is_unit(rs[r_end])) break;
|
||||
}
|
||||
if (r_end == 0) return false;
|
||||
unsigned r_start = r_end;
|
||||
for (; r_start > 0; --r_start) {
|
||||
if (!m_util.str.is_unit(rs[r_start])) break;
|
||||
}
|
||||
++r_start;
|
||||
|
||||
xs.reset();
|
||||
xs.append(ls.size()-l_start, ls.c_ptr()+l_start);
|
||||
x = mk_concat(l_start, ls.c_ptr(), srt);
|
||||
ys.reset();
|
||||
ys.append(r_end-r_start+1, rs.c_ptr()+r_start);
|
||||
y1 = mk_concat(r_start, rs.c_ptr(), srt);
|
||||
y2 = mk_concat(rs.size()-r_end-1, rs.c_ptr()+r_end+1, srt);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
match: abc X .. = Y def Z ..
|
||||
where Y is a variable or concatenation of variables
|
||||
*/
|
||||
|
||||
bool theory_seq::is_ternary_eq_lhs(expr_ref_vector const& ls, expr_ref_vector const& rs,
|
||||
expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2) {
|
||||
if (ls.size() > 1 && rs.size() > 1 && is_var(rs[0]) && is_var(rs.back())) {
|
||||
sort* srt = ls[0]->get_sort();
|
||||
unsigned l_start = 0;
|
||||
for (; l_start < ls.size()-1; ++l_start) {
|
||||
if (!m_util.str.is_unit(ls[l_start])) break;
|
||||
}
|
||||
if (l_start == 0) return false;
|
||||
unsigned r_start = 1;
|
||||
for (; r_start < rs.size()-1; ++r_start) {
|
||||
if (m_util.str.is_unit(rs[r_start])) break;
|
||||
}
|
||||
if (r_start == rs.size()-1) return false;
|
||||
unsigned r_end = r_start;
|
||||
for (; r_end < rs.size()-1; ++r_end) {
|
||||
if (!m_util.str.is_unit(rs[r_end])) break;
|
||||
}
|
||||
--r_end;
|
||||
|
||||
xs.reset();
|
||||
xs.append(l_start, ls.c_ptr());
|
||||
x = mk_concat(ls.size()-l_start, ls.c_ptr()+l_start, srt);
|
||||
ys.reset();
|
||||
ys.append(r_end-r_start+1, rs.c_ptr()+r_start);
|
||||
y1 = mk_concat(r_start, rs.c_ptr(), srt);
|
||||
y2 = mk_concat(rs.size()-r_end-1, rs.c_ptr()+r_end+1, srt);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
struct remove_obj_pair_map : public trail {
|
||||
obj_pair_hashtable<expr, expr> & m_map;
|
||||
|
|
|
@ -272,7 +272,7 @@ theory_seq::theory_seq(context& ctx):
|
|||
m_autil(m),
|
||||
m_sk(m, m_rewrite),
|
||||
m_ax(*this, m_rewrite),
|
||||
m_eq(m, m_ax.ax()),
|
||||
m_eq(m, *this, m_ax.ax()),
|
||||
m_regex(*this),
|
||||
m_arith_value(m),
|
||||
m_trail_stack(*this),
|
||||
|
@ -285,13 +285,6 @@ theory_seq::theory_seq(context& ctx):
|
|||
m_has_seq(m_util.has_seq()),
|
||||
m_new_solution(false),
|
||||
m_new_propagation(false) {
|
||||
|
||||
std::function<void(bool, expr_ref_vector const&)> _add_consequence =
|
||||
[&](bool uses_eq, expr_ref_vector const& clause) {
|
||||
add_consequence(uses_eq, clause);
|
||||
};
|
||||
|
||||
m_eq.set_add_consequence(_add_consequence);
|
||||
}
|
||||
|
||||
theory_seq::~theory_seq() {
|
||||
|
@ -913,8 +906,12 @@ bool theory_seq::simplify_eq(expr_ref_vector& ls, expr_ref_vector& rs, dependenc
|
|||
break;
|
||||
expr_ref li(p.first, m);
|
||||
expr_ref ri(p.second, m);
|
||||
if (solve_unit_eq(li, ri, deps)) {
|
||||
// no-op
|
||||
seq::eq_ptr r;
|
||||
m_eq_deps = deps;
|
||||
if (m_eq.reduce(li, ri, r)) {
|
||||
if (r) {
|
||||
m_eqs.push_back(mk_eqdep(r->ls, r->rs, deps));
|
||||
}
|
||||
}
|
||||
else if (m_util.is_seq(li) || m_util.is_re(li)) {
|
||||
TRACE("seq_verbose", tout << "inserting " << li << " = " << ri << "\n";);
|
||||
|
@ -1000,15 +997,7 @@ bool theory_seq::reduce_length(expr* l, expr* r, literal_vector& lits) {
|
|||
|
||||
|
||||
bool theory_seq::is_var(expr* a) const {
|
||||
return
|
||||
m_util.is_seq(a) &&
|
||||
!m_util.str.is_concat(a) &&
|
||||
!m_util.str.is_empty(a) &&
|
||||
!m_util.str.is_string(a) &&
|
||||
!m_util.str.is_unit(a) &&
|
||||
!m_util.str.is_itos(a) &&
|
||||
!m_util.str.is_nth_i(a) &&
|
||||
!m.is_ite(a);
|
||||
return m_eq.is_var(a);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ Revision History:
|
|||
|
||||
namespace smt {
|
||||
|
||||
class theory_seq : public theory {
|
||||
class theory_seq : public theory, public seq::eq_solver_context {
|
||||
friend class seq_regex;
|
||||
|
||||
struct assumption {
|
||||
|
@ -164,6 +164,15 @@ namespace smt {
|
|||
return depeq(m_eq_id++, ls, rs, dep);
|
||||
}
|
||||
|
||||
depeq mk_eqdep(expr_ref_vector const& l, expr_ref_vector const& r, dependency* dep) {
|
||||
expr_ref_vector ls(m), rs(m);
|
||||
for (expr* e : l)
|
||||
m_util.str.get_concat_units(e, ls);
|
||||
for (expr* e : r)
|
||||
m_util.str.get_concat_units(e, rs);
|
||||
return depeq(m_eq_id++, ls, rs, dep);
|
||||
}
|
||||
|
||||
// equalities that are decomposed by conacatenations
|
||||
typedef std::pair<expr_ref_vector, expr_ref_vector> decomposed_eq;
|
||||
|
||||
|
@ -409,7 +418,6 @@ namespace smt {
|
|||
int find_fst_non_empty_idx(expr_ref_vector const& x);
|
||||
expr* find_fst_non_empty_var(expr_ref_vector const& x);
|
||||
bool has_len_offset(expr_ref_vector const& ls, expr_ref_vector const& rs, int & diff);
|
||||
bool find_better_rep(expr_ref_vector const& ls, expr_ref_vector const& rs, unsigned idx, dependency*& deps, expr_ref_vector & res);
|
||||
|
||||
// final check
|
||||
bool simplify_and_solve_eqs(); // solve unitary equalities
|
||||
|
@ -456,17 +464,11 @@ namespace smt {
|
|||
bool solve_eq(unsigned idx);
|
||||
bool simplify_eq(expr_ref_vector& l, expr_ref_vector& r, dependency* dep);
|
||||
bool lift_ite(expr_ref_vector const& l, expr_ref_vector const& r, dependency* dep);
|
||||
bool solve_unit_eq(expr* l, expr* r, dependency* dep);
|
||||
bool solve_unit_eq(expr_ref_vector const& l, expr_ref_vector const& r, dependency* dep);
|
||||
bool solve_nth_eq1(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep);
|
||||
obj_pair_hashtable<expr, expr> m_nth_eq2_cache;
|
||||
bool solve_nth_eq2(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep);
|
||||
bool solve_itos(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep);
|
||||
bool solve_itos(expr* n, expr_ref_vector const& rs, dependency* dep);
|
||||
bool is_binary_eq(expr_ref_vector const& l, expr_ref_vector const& r, expr_ref& x, ptr_vector<expr>& xunits, ptr_vector<expr>& yunits, expr_ref& y);
|
||||
bool is_quat_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref& x1, expr_ref_vector& xs, expr_ref& x2, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
bool is_ternary_eq_rhs(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
bool is_ternary_eq_lhs(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref_vector& xs, expr_ref& x, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
|
||||
bool solve_binary_eq(expr_ref_vector const& l, expr_ref_vector const& r, dependency* dep);
|
||||
bool propagate_max_length(expr* l, expr* r, dependency* dep);
|
||||
|
@ -538,8 +540,6 @@ namespace smt {
|
|||
bool assume_equality(expr* l, expr* r);
|
||||
|
||||
// variable solving utilities
|
||||
bool occurs(expr* a, expr* b);
|
||||
bool occurs(expr* a, expr_ref_vector const& b);
|
||||
bool is_var(expr* b) const;
|
||||
bool add_solution(expr* l, expr* r, dependency* dep);
|
||||
bool is_unit_nth(expr* a) const;
|
||||
|
@ -558,7 +558,6 @@ namespace smt {
|
|||
void deque_axiom(expr* e);
|
||||
void add_axiom(literal l1, literal l2 = null_literal, literal l3 = null_literal, literal l4 = null_literal, literal l5 = null_literal);
|
||||
void add_axiom(literal_vector& lits);
|
||||
void add_consequence(bool uses_eq, expr_ref_vector const& clause);
|
||||
|
||||
bool has_length(expr *e) const { return m_has_length.contains(e); }
|
||||
void add_length(expr* e, expr* l);
|
||||
|
@ -591,7 +590,6 @@ namespace smt {
|
|||
bool lower_bound(expr* s, rational& lo) const;
|
||||
bool lower_bound2(expr* s, rational& lo);
|
||||
bool upper_bound(expr* s, rational& hi) const;
|
||||
bool get_length(expr* s, rational& val);
|
||||
|
||||
void mk_decompose(expr* e, expr_ref& head, expr_ref& tail);
|
||||
|
||||
|
@ -633,6 +631,11 @@ namespace smt {
|
|||
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) { }
|
||||
void unmerge_eh(theory_var v1, theory_var v2) {}
|
||||
|
||||
// eq_solver callbacks
|
||||
void add_consequence(bool uses_eq, expr_ref_vector const& clause) override;
|
||||
void add_solution(expr* var, expr* term) override { SASSERT(var != term); add_solution(var, term, m_eq_deps); }
|
||||
expr* expr2rep(expr* e) override;
|
||||
bool get_length(expr* e, rational& r) override;
|
||||
};
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue