remove bv_eq_axioms as an external option to toggle.
Diseqalities have to be enforced for extensionality.
There are no internal code paths where the option is set to false.
other updates:
- change signature of advance_qhead to simplify call sites
- have model reconstruction replay work on a tail of dependent_expr state, while adding formulas to the tail.
gc-ing definitions leads to unsoundness when they are not replayed.
Instead of attempting to replay definitions theory internalization is irredundant by default.
This is also the old solver behavior where TH_LEMMA is essentially never used, but is valid for top-level theory lemmas.
move self-checking functionality to inside sat/smt so it can be used on-line and not just off-line.
when self-validation fails, use vs, not clause, to check. It allows self-validation without checking and maintaining RUP validation.
new options sat.smt.proof.check_rup, sat.smt.proof.check for online validation.
z3 sat.smt.proof.check=true sat.euf=true /v:1 sat.smt.proof.check_rup=true /st file.smt2 sat.smt.proof=p.smt2
EUF proofs are checked modulo union-find.
Equalities are added to to union-find if they are assumptions or if they can be derived using congruence closure. The congruence closure assumptions are added as proof-hints.
Note that this proof format does not track equality inferences, symmetry and transitivity. Instead they are handled by assuming a union-find based checker.
This commit overhauls the proof format (in development) for the new core.
NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.
It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):
- assume - for input clauses
- learn - when a clause is learned (or redundant clause is added)
- del - when a clause is deleted.
The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.
Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.
Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```
Run z3 on a file with above content.
Then run z3 on f.proof
```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
this update addresses some perf regressions introduced when handling axioms for bv2int and a memory smash regression when decoupling bv-ackerman from in-processing. It adds a filter based on bv_eq_axioms for disabling ackerman reductions on disequalities.