mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
adding dt-solver (#4739)
* adding dt-solver Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * dt Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * move mbp to self-contained module Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * files Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * Create CMakeLists.txt * dt Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * rename to bool_var2expr to indicate type class * mbp * na
This commit is contained in:
parent
b77c57451f
commit
2f756da294
|
@ -61,7 +61,8 @@ def init_project_def():
|
|||
add_lib('fuzzing', ['ast'], 'test/fuzzing')
|
||||
add_lib('smt_tactic', ['smt'], 'smt/tactic')
|
||||
add_lib('sls_tactic', ['tactic', 'normal_forms', 'core_tactics', 'bv_tactics'], 'tactic/sls')
|
||||
add_lib('qe', ['smt', 'sat', 'nlsat', 'tactic', 'nlsat_tactic'], 'qe')
|
||||
add_lib('mbp', ['model', 'simplex'], 'qe/mbp')
|
||||
add_lib('qe', ['smt', 'mbp', 'nlsat', 'tactic', 'nlsat_tactic'], 'qe')
|
||||
add_lib('sat_solver', ['solver', 'core_tactics', 'aig_tactic', 'bv_tactics', 'arith_tactics', 'sat_tactic'], 'sat/sat_solver')
|
||||
add_lib('fd_solver', ['core_tactics', 'arith_tactics', 'sat_solver', 'smt'], 'tactic/fd_solver')
|
||||
add_lib('muz', ['smt', 'sat', 'smt2parser', 'aig_tactic', 'qe'], 'muz/base')
|
||||
|
|
|
@ -79,6 +79,7 @@ add_subdirectory(smt)
|
|||
add_subdirectory(tactic/bv)
|
||||
add_subdirectory(smt/tactic)
|
||||
add_subdirectory(tactic/sls)
|
||||
add_subdirectory(qe/mbp)
|
||||
add_subdirectory(qe)
|
||||
add_subdirectory(muz/base)
|
||||
add_subdirectory(muz/dataflow)
|
||||
|
|
|
@ -18,6 +18,7 @@ Notes:
|
|||
--*/
|
||||
|
||||
#include <iostream>
|
||||
#include "ast/expr_map.h"
|
||||
#include "api/z3.h"
|
||||
#include "api/api_log_macros.h"
|
||||
#include "api/api_context.h"
|
||||
|
@ -25,10 +26,8 @@ Notes:
|
|||
#include "api/api_model.h"
|
||||
#include "api/api_ast_map.h"
|
||||
#include "api/api_ast_vector.h"
|
||||
#include "qe/qe_vartest.h"
|
||||
#include "qe/qe_lite.h"
|
||||
#include "muz/spacer/spacer_util.h"
|
||||
#include "ast/expr_map.h"
|
||||
|
||||
extern "C"
|
||||
{
|
||||
|
|
|
@ -896,6 +896,34 @@ bool arith_util::is_extended_numeral(expr* term, rational& r) const {
|
|||
if (is_to_real(term, term)) {
|
||||
continue;
|
||||
}
|
||||
if (is_mul(term)) {
|
||||
rational r(mul), n(0);
|
||||
for (expr* arg : *to_app(term)) {
|
||||
if (!is_extended_numeral(arg, n))
|
||||
return false;
|
||||
r *= n;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (is_add(term)) {
|
||||
rational r(0), n(0);
|
||||
for (expr* arg : *to_app(term)) {
|
||||
if (!is_extended_numeral(arg, n))
|
||||
return false;
|
||||
r += n;
|
||||
}
|
||||
r *= mul;
|
||||
return true;
|
||||
}
|
||||
rational k1, k2;
|
||||
expr* t1, *t2;
|
||||
if (is_sub(term, t1, t2) &&
|
||||
is_extended_numeral(t1, k1) &&
|
||||
is_extended_numeral(t2, k2)) {
|
||||
r = k1 - k2;
|
||||
r *= mul;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} while (false);
|
||||
return false;
|
||||
|
|
|
@ -348,7 +348,7 @@ namespace datatype {
|
|||
MATCH_UNARY(is_recognizer);
|
||||
bool is_accessor(expr const* e) const { return is_app(e) && is_app_of(to_app(e), fid(), OP_DT_ACCESSOR); }
|
||||
MATCH_UNARY(is_accessor);
|
||||
bool is_update_field(app * f) const { return is_app_of(f, fid(), OP_DT_UPDATE_FIELD); }
|
||||
bool is_update_field(expr * f) const { return is_app(f) && is_app_of(to_app(f), fid(), OP_DT_UPDATE_FIELD); }
|
||||
app* mk_is(func_decl * c, expr *f);
|
||||
ptr_vector<func_decl> const * get_datatype_constructors(sort * ty);
|
||||
unsigned get_datatype_num_constructors(sort * ty);
|
||||
|
|
|
@ -21,7 +21,6 @@ Revision History:
|
|||
#include "ast/ast.h"
|
||||
#include "util/uint_set.h"
|
||||
|
||||
// TBD: move under qe namespace
|
||||
class is_variable_proc : public std::unary_function<expr*,bool> {
|
||||
public:
|
||||
virtual bool operator()(const expr* e) const = 0;
|
|
@ -33,7 +33,7 @@ Notes:
|
|||
#include "util/gparams.h"
|
||||
#include "qe/qe_mbp.h"
|
||||
#include "qe/qe_mbi.h"
|
||||
#include "qe/qe_term_graph.h"
|
||||
#include "qe/mbp/mbp_term_graph.h"
|
||||
|
||||
|
||||
BINARY_SYM_CMD(get_quantifier_body_cmd,
|
||||
|
@ -369,7 +369,7 @@ public:
|
|||
}
|
||||
vars.push_back(to_app(v));
|
||||
}
|
||||
qe::mbp mbp(m);
|
||||
qe::mbproj mbp(m);
|
||||
expr_ref fml(m_fml, m);
|
||||
mbp.spacer(vars, *mdl.get(), fml);
|
||||
ctx.regular_stream() << fml << "\n";
|
||||
|
|
|
@ -30,7 +30,7 @@ Revision History:
|
|||
#include "ast/substitution/matcher.h"
|
||||
#include "ast/expr_functors.h"
|
||||
#include "smt/smt_solver.h"
|
||||
#include "qe/qe_term_graph.h"
|
||||
#include "qe/mbp/mbp_term_graph.h"
|
||||
|
||||
namespace spacer {
|
||||
void lemma_sanity_checker::operator()(lemma_ref &lemma) {
|
||||
|
@ -309,14 +309,13 @@ void lemma_array_eq_generalizer::operator() (lemma_ref &lemma)
|
|||
{TRACE("core_array_eq", tout << "Not-Inductive!\n";);}
|
||||
}
|
||||
|
||||
void lemma_eq_generalizer::operator() (lemma_ref &lemma)
|
||||
{
|
||||
void lemma_eq_generalizer::operator() (lemma_ref &lemma) {
|
||||
TRACE("core_eq", tout << "Transforming equivalence classes\n";);
|
||||
|
||||
if (lemma->get_cube().empty()) return;
|
||||
|
||||
ast_manager &m = m_ctx.get_ast_manager();
|
||||
qe::term_graph egraph(m);
|
||||
mbp::term_graph egraph(m);
|
||||
egraph.add_lits(lemma->get_cube());
|
||||
|
||||
// -- expand the cube with all derived equalities
|
||||
|
|
|
@ -26,6 +26,7 @@ Revision History:
|
|||
#include "ast/expr_functors.h"
|
||||
#include "ast/expr_substitution.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/is_variable_test.h"
|
||||
|
||||
#include "ast/rewriter/expr_replacer.h"
|
||||
#include "ast/rewriter/expr_safe_replace.h"
|
||||
|
@ -35,7 +36,6 @@ Revision History:
|
|||
#include "model/model_pp.h"
|
||||
|
||||
#include "qe/qe.h"
|
||||
#include "qe/qe_vartest.h"
|
||||
#include "qe/qe_lite.h"
|
||||
|
||||
#include "muz/spacer/spacer_mev_array.h"
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -2,30 +2,25 @@ z3_add_component(qe
|
|||
SOURCES
|
||||
nlarith_util.cpp
|
||||
nlqsat.cpp
|
||||
qe_arith.cpp
|
||||
qe_arith_plugin.cpp
|
||||
qe_array_plugin.cpp
|
||||
qe_arrays.cpp
|
||||
qe_bool_plugin.cpp
|
||||
qe_bv_plugin.cpp
|
||||
qe_cmd.cpp
|
||||
qe.cpp
|
||||
qe_datatype_plugin.cpp
|
||||
qe_datatypes.cpp
|
||||
qe_dl_plugin.cpp
|
||||
qe_lite.cpp
|
||||
qe_mbp.cpp
|
||||
qe_mbi.cpp
|
||||
qe_solve_plugin.cpp
|
||||
qe_mbp.cpp
|
||||
qe_tactic.cpp
|
||||
qe_term_graph.cpp
|
||||
qsat.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
nlsat_tactic
|
||||
nlsat
|
||||
sat
|
||||
smt
|
||||
tactic
|
||||
mbp
|
||||
TACTIC_HEADERS
|
||||
nlqsat.h
|
||||
qe_lite.h
|
||||
|
|
12
src/qe/mbp/CMakeLists.txt
Normal file
12
src/qe/mbp/CMakeLists.txt
Normal file
|
@ -0,0 +1,12 @@
|
|||
z3_add_component(mbp
|
||||
SOURCES
|
||||
mbp_arith.cpp
|
||||
mbp_arrays.cpp
|
||||
mbp_datatypes.cpp
|
||||
mbp_plugin.cpp
|
||||
mbp_solve_plugin.cpp
|
||||
mbp_term_graph.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
model
|
||||
simplex
|
||||
)
|
|
@ -19,20 +19,19 @@ Revision History:
|
|||
|
||||
--*/
|
||||
|
||||
#include "qe/qe_arith.h"
|
||||
#include "qe/qe_mbp.h"
|
||||
#include "qe/mbp/mbp_arith.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "model/model_v2_pp.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/expr_functors.h"
|
||||
#include "ast/rewriter/expr_safe_replace.h"
|
||||
#include "math/simplex/model_based_opt.h"
|
||||
#include "model/model_evaluator.h"
|
||||
#include "model/model_smt2_pp.h"
|
||||
#include "model/model_v2_pp.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
struct arith_project_plugin::imp {
|
||||
|
||||
|
@ -43,14 +42,13 @@ namespace qe {
|
|||
void insert_mul(expr* x, rational const& v, obj_map<expr, rational>& ts) {
|
||||
// TRACE("qe", tout << "Adding variable " << mk_pp(x, m) << " " << v << "\n";);
|
||||
rational w;
|
||||
if (ts.find(x, w)) {
|
||||
ts.insert(x, w + v);
|
||||
}
|
||||
else {
|
||||
ts.insert(x, v);
|
||||
}
|
||||
if (ts.find(x, w))
|
||||
ts.insert(x, w + v);
|
||||
else
|
||||
ts.insert(x, v);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// extract linear inequalities from literal 'lit' into the model-based optimization manager 'mbo'.
|
||||
// It uses the current model to choose values for conditionals and it primes mbo with the current
|
||||
|
@ -227,37 +225,7 @@ namespace qe {
|
|||
}
|
||||
|
||||
bool is_numeral(expr* t, rational& r) {
|
||||
expr* t1, *t2;
|
||||
rational r1, r2;
|
||||
if (a.is_numeral(t, r)) {
|
||||
// no-op
|
||||
}
|
||||
else if (a.is_uminus(t, t1) && is_numeral(t1, r)) {
|
||||
r.neg();
|
||||
}
|
||||
else if (a.is_mul(t)) {
|
||||
app* ap = to_app(t);
|
||||
r = rational(1);
|
||||
for (expr * arg : *ap) {
|
||||
if (!is_numeral(arg, r1)) return false;
|
||||
r *= r1;
|
||||
}
|
||||
}
|
||||
else if (a.is_add(t)) {
|
||||
app* ap = to_app(t);
|
||||
r = rational(0);
|
||||
for (expr * arg : *ap) {
|
||||
if (!is_numeral(arg, r1)) return false;
|
||||
r += r1;
|
||||
}
|
||||
}
|
||||
else if (a.is_sub(t, t1, t2) && is_numeral(t1, r1) && is_numeral(t2, r2)) {
|
||||
r = r1 - r2;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
return a.is_extended_numeral(t, r);
|
||||
}
|
||||
|
||||
struct compare_second {
|
||||
|
@ -280,10 +248,6 @@ namespace qe {
|
|||
|
||||
~imp() {}
|
||||
|
||||
bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool operator()(model& model, app* v, app_ref_vector& vars, expr_ref_vector& lits) {
|
||||
app_ref_vector vs(m);
|
||||
vs.push_back(v);
|
||||
|
@ -308,9 +272,8 @@ namespace qe {
|
|||
for (expr* v : vars) {
|
||||
has_arith |= is_arith(v);
|
||||
}
|
||||
if (!has_arith) {
|
||||
return vector<def>();
|
||||
}
|
||||
if (!has_arith)
|
||||
return vector<def>();
|
||||
model_evaluator eval(model);
|
||||
TRACE("qe", tout << model;);
|
||||
eval.set_model_completion(true);
|
||||
|
@ -356,9 +319,8 @@ namespace qe {
|
|||
}
|
||||
}
|
||||
if (m_check_purified) {
|
||||
for (expr* fml : fmls) {
|
||||
mark_rec(fmls_mark, fml);
|
||||
}
|
||||
for (expr* fml : fmls)
|
||||
mark_rec(fmls_mark, fml);
|
||||
for (auto& kv : tids) {
|
||||
expr* e = kv.m_key;
|
||||
if (!var_mark.is_marked(e)) {
|
||||
|
@ -368,36 +330,57 @@ namespace qe {
|
|||
}
|
||||
|
||||
ptr_vector<expr> index2expr;
|
||||
for (auto& kv : tids) {
|
||||
index2expr.setx(kv.m_value, kv.m_key, nullptr);
|
||||
}
|
||||
for (auto& kv : tids)
|
||||
index2expr.setx(kv.m_value, kv.m_key, nullptr);
|
||||
|
||||
j = 0;
|
||||
unsigned_vector real_vars;
|
||||
for (app* v : vars) {
|
||||
if (is_arith(v) && !fmls_mark.is_marked(v)) {
|
||||
real_vars.push_back(tids.find(v));
|
||||
}
|
||||
else {
|
||||
vars[j++] = v;
|
||||
}
|
||||
if (is_arith(v) && !fmls_mark.is_marked(v))
|
||||
real_vars.push_back(tids.find(v));
|
||||
else
|
||||
vars[j++] = v;
|
||||
}
|
||||
vars.shrink(j);
|
||||
|
||||
TRACE("qe", tout << "remaining vars: " << vars << "\n";
|
||||
for (unsigned v : real_vars) {
|
||||
tout << "v" << v << " " << mk_pp(index2expr[v], m) << "\n";
|
||||
}
|
||||
for (unsigned v : real_vars) tout << "v" << v << " " << mk_pp(index2expr[v], m) << "\n";
|
||||
mbo.display(tout););
|
||||
vector<opt::model_based_opt::def> defs = mbo.project(real_vars.size(), real_vars.c_ptr(), compute_def);
|
||||
TRACE("qe", mbo.display(tout << "mbo result\n");
|
||||
for (auto const& d : defs) {
|
||||
tout << "def: " << d << "\n";
|
||||
}
|
||||
);
|
||||
for (auto const& d : defs) tout << "def: " << d << "\n";);
|
||||
vector<row> rows;
|
||||
mbo.get_live_rows(rows);
|
||||
rows2fmls(rows, index2expr, fmls);
|
||||
|
||||
vector<def> result;
|
||||
if (compute_def)
|
||||
optdefs2mbpdef(defs, index2expr, real_vars, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
void optdefs2mbpdef(vector<opt::model_based_opt::def> const& defs, ptr_vector<expr> const& index2expr, unsigned_vector const& real_vars, vector<def>& result) {
|
||||
SASSERT(defs.size() == real_vars.size());
|
||||
for (unsigned i = 0; i < defs.size(); ++i) {
|
||||
auto const& d = defs[i];
|
||||
expr* x = index2expr[real_vars[i]];
|
||||
bool is_int = a.is_int(x);
|
||||
expr_ref_vector ts(m);
|
||||
expr_ref t(m);
|
||||
for (var const& v : d.m_vars)
|
||||
ts.push_back(var2expr(index2expr, v));
|
||||
if (!d.m_coeff.is_zero())
|
||||
ts.push_back(a.mk_numeral(d.m_coeff, is_int));
|
||||
t = mk_add(ts);
|
||||
if (!d.m_div.is_one() && is_int)
|
||||
t = a.mk_idiv(t, a.mk_numeral(d.m_div, is_int));
|
||||
else if (!d.m_div.is_one() && !is_int)
|
||||
t = a.mk_div(t, a.mk_numeral(d.m_div, is_int));
|
||||
result.push_back(def(expr_ref(x, m), t));
|
||||
}
|
||||
}
|
||||
|
||||
void rows2fmls(vector<row> const& rows, ptr_vector<expr> const& index2expr, expr_ref_vector& fmls) {
|
||||
for (row const& r : rows) {
|
||||
expr_ref_vector ts(m);
|
||||
expr_ref t(m), s(m), val(m);
|
||||
|
@ -418,8 +401,6 @@ namespace qe {
|
|||
default: UNREACHABLE();
|
||||
}
|
||||
fmls.push_back(t);
|
||||
val = eval(t);
|
||||
CTRACE("qe", !m.is_true(val), tout << "Evaluated unit " << t << " to " << val << "\n";);
|
||||
continue;
|
||||
}
|
||||
for (var const& v : r.m_vars) {
|
||||
|
@ -435,7 +416,7 @@ namespace qe {
|
|||
case opt::t_lt: t = a.mk_lt(t, s); break;
|
||||
case opt::t_le: t = a.mk_le(t, s); break;
|
||||
case opt::t_eq: t = a.mk_eq(t, s); break;
|
||||
case opt::t_mod:
|
||||
case opt::t_mod:
|
||||
if (!r.m_coeff.is_zero()) {
|
||||
t = a.mk_sub(t, s);
|
||||
}
|
||||
|
@ -443,46 +424,11 @@ namespace qe {
|
|||
break;
|
||||
}
|
||||
fmls.push_back(t);
|
||||
val = eval(t);
|
||||
CTRACE("qe", !m.is_true(val), tout << "Evaluated " << t << " to " << val << "\n";);
|
||||
}
|
||||
vector<def> result;
|
||||
if (compute_def) {
|
||||
SASSERT(defs.size() == real_vars.size());
|
||||
for (unsigned i = 0; i < defs.size(); ++i) {
|
||||
auto const& d = defs[i];
|
||||
expr* x = index2expr[real_vars[i]];
|
||||
bool is_int = a.is_int(x);
|
||||
expr_ref_vector ts(m);
|
||||
expr_ref t(m);
|
||||
for (var const& v : d.m_vars) {
|
||||
ts.push_back(var2expr(index2expr, v));
|
||||
}
|
||||
if (!d.m_coeff.is_zero())
|
||||
ts.push_back(a.mk_numeral(d.m_coeff, is_int));
|
||||
t = mk_add(ts);
|
||||
if (!d.m_div.is_one() && is_int) {
|
||||
t = a.mk_idiv(t, a.mk_numeral(d.m_div, is_int));
|
||||
}
|
||||
else if (!d.m_div.is_one() && !is_int) {
|
||||
t = a.mk_div(t, a.mk_numeral(d.m_div, is_int));
|
||||
}
|
||||
|
||||
result.push_back(def(expr_ref(x, m), t));
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
expr_ref mk_add(expr_ref_vector const& ts) {
|
||||
switch (ts.size()) {
|
||||
case 0:
|
||||
return expr_ref(a.mk_int(0), m);
|
||||
case 1:
|
||||
return expr_ref(ts.get(0), m);
|
||||
default:
|
||||
return expr_ref(a.mk_add(ts.size(), ts.c_ptr()), m);
|
||||
}
|
||||
return a.mk_add_simplify(ts);
|
||||
}
|
||||
|
||||
opt::inf_eps maximize(expr_ref_vector const& fmls0, model& mdl, app* t, expr_ref& ge, expr_ref& gt) {
|
||||
|
@ -550,11 +496,11 @@ namespace qe {
|
|||
|
||||
bool validate_model(model_evaluator& eval, expr_ref_vector const& fmls) {
|
||||
bool valid = true;
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
expr_ref val = eval(fmls[i]);
|
||||
for (expr* fml : fmls) {
|
||||
expr_ref val = eval(fml);
|
||||
if (!m.is_true(val)) {
|
||||
valid = false;
|
||||
TRACE("qe", tout << mk_pp(fmls[i], m) << " := " << val << "\n";);
|
||||
TRACE("qe", tout << mk_pp(fml, m) << " := " << val << "\n";);
|
||||
}
|
||||
}
|
||||
return valid;
|
||||
|
@ -586,7 +532,7 @@ namespace qe {
|
|||
|
||||
};
|
||||
|
||||
arith_project_plugin::arith_project_plugin(ast_manager& m) {
|
||||
arith_project_plugin::arith_project_plugin(ast_manager& m):project_plugin(m) {
|
||||
m_imp = alloc(imp, m);
|
||||
}
|
||||
|
||||
|
@ -610,10 +556,6 @@ namespace qe {
|
|||
m_imp->m_check_purified = check_purified;
|
||||
}
|
||||
|
||||
bool arith_project_plugin::solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) {
|
||||
return m_imp->solve(model, vars, lits);
|
||||
}
|
||||
|
||||
family_id arith_project_plugin::get_family_id() {
|
||||
return m_imp->a.get_family_id();
|
||||
}
|
||||
|
@ -622,11 +564,6 @@ namespace qe {
|
|||
return m_imp->maximize(fmls, mdl, t, ge, gt);
|
||||
}
|
||||
|
||||
void arith_project_plugin::saturate(model& model, func_decl_ref_vector const& shared, expr_ref_vector& lits) {
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
|
||||
bool arith_project(model& model, app* var, expr_ref_vector& lits) {
|
||||
ast_manager& m = lits.get_manager();
|
||||
arith_project_plugin ap(m);
|
|
@ -7,11 +7,11 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "model/model.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "qe/qe_mbp.h"
|
||||
#include "model/model.h"
|
||||
#include "qe/mbp/mbp_plugin.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
/**
|
||||
Loos-Weispfenning model-based projection for a basic conjunction.
|
||||
|
@ -25,12 +25,13 @@ namespace qe {
|
|||
public:
|
||||
arith_project_plugin(ast_manager& m);
|
||||
~arith_project_plugin() override;
|
||||
|
||||
bool operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits) override;
|
||||
bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) override;
|
||||
bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) override { return false; }
|
||||
family_id get_family_id() override;
|
||||
void operator()(model& model, app_ref_vector& vars, expr_ref_vector& lits) override;
|
||||
vector<def> project(model& model, app_ref_vector& vars, expr_ref_vector& lits) override;
|
||||
void saturate(model& model, func_decl_ref_vector const& shared, expr_ref_vector& lits) override;
|
||||
void saturate(model& model, func_decl_ref_vector const& shared, expr_ref_vector& lits) override { UNREACHABLE(); }
|
||||
|
||||
opt::inf_eps maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& ge, expr_ref& gt);
|
||||
|
||||
|
@ -39,6 +40,7 @@ namespace qe {
|
|||
* arithmetic variables nested under foreign functions are handled properly.
|
||||
*/
|
||||
void set_check_purified(bool check_purified);
|
||||
|
||||
};
|
||||
|
||||
bool arith_project(model& model, app* var, expr_ref_vector& lits);
|
|
@ -3,7 +3,7 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
qe_arrays.cpp
|
||||
mbp_arrays.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
|
@ -27,8 +27,8 @@ Revision History:
|
|||
#include "ast/ast_util.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "model/model_evaluator.h"
|
||||
#include "qe/qe_arrays.h"
|
||||
#include "qe/qe_term_graph.h"
|
||||
#include "qe/mbp/mbp_arrays.h"
|
||||
#include "qe/mbp/mbp_term_graph.h"
|
||||
|
||||
|
||||
namespace {
|
||||
|
@ -154,7 +154,7 @@ namespace {
|
|||
}
|
||||
}
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
|
||||
static bool is_eq(expr_ref_vector const& xs, expr_ref_vector const& ys) {
|
||||
|
@ -1571,7 +1571,7 @@ namespace qe {
|
|||
};
|
||||
|
||||
|
||||
array_project_plugin::array_project_plugin(ast_manager& m) {
|
||||
array_project_plugin::array_project_plugin(ast_manager& m):project_plugin(m) {
|
||||
m_imp = alloc(imp, m);
|
||||
}
|
||||
|
|
@ -3,7 +3,7 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
qe_arrays.h
|
||||
mbp_arrays.h
|
||||
|
||||
Abstract:
|
||||
|
||||
|
@ -21,9 +21,9 @@ Revision History:
|
|||
#pragma once
|
||||
|
||||
#include "ast/array_decl_plugin.h"
|
||||
#include "qe/qe_mbp.h"
|
||||
#include "qe/mbp/mbp_plugin.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
class array_project_plugin : public project_plugin {
|
||||
struct imp;
|
|
@ -17,16 +17,15 @@ Revision History:
|
|||
|
||||
--*/
|
||||
|
||||
#include "qe/qe_arith.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/expr_functors.h"
|
||||
#include "model/model_v2_pp.h"
|
||||
#include "ast/rewriter/expr_safe_replace.h"
|
||||
#include "util/obj_pair_hashtable.h"
|
||||
#include "qe/qe_datatypes.h"
|
||||
#include "qe/mbp/mbp_datatypes.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
struct datatype_project_plugin::imp {
|
||||
ast_manager& m;
|
||||
|
@ -285,7 +284,8 @@ namespace qe {
|
|||
|
||||
};
|
||||
|
||||
datatype_project_plugin::datatype_project_plugin(ast_manager& m) {
|
||||
datatype_project_plugin::datatype_project_plugin(ast_manager& m):
|
||||
project_plugin(m) {
|
||||
m_imp = alloc(imp, m);
|
||||
}
|
||||
|
|
@ -21,9 +21,9 @@ Revision History:
|
|||
#pragma once
|
||||
|
||||
#include "ast/datatype_decl_plugin.h"
|
||||
#include "qe/qe_mbp.h"
|
||||
#include "qe/mbp/mbp_plugin.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
class datatype_project_plugin : public project_plugin {
|
||||
struct imp;
|
262
src/qe/mbp/mbp_plugin.cpp
Normal file
262
src/qe/mbp/mbp_plugin.cpp
Normal file
|
@ -0,0 +1,262 @@
|
|||
/*++
|
||||
Copyright (c) 2015 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
qe_mbp.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Model-based projection utilities
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2015-5-29
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast/rewriter/expr_safe_replace.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/occurs.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/expr_functors.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
#include "ast/scoped_proof.h"
|
||||
#include "qe/mbp/mbp_plugin.h"
|
||||
#include "model/model_pp.h"
|
||||
#include "model/model_evaluator.h"
|
||||
|
||||
|
||||
namespace mbp {
|
||||
|
||||
struct noop_op_proc {
|
||||
void operator()(expr*) {}
|
||||
};
|
||||
|
||||
void project_plugin::mark_rec(expr_mark& visited, expr* e) {
|
||||
for_each_expr_proc<noop_op_proc> fe;
|
||||
for_each_expr(fe, visited, e);
|
||||
}
|
||||
|
||||
void project_plugin::mark_rec(expr_mark& visited, expr_ref_vector const& es) {
|
||||
for (expr* e : es)
|
||||
mark_rec(visited, e);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief return two terms that are equal in the model.
|
||||
The distinct term t is false in model, so there
|
||||
are at least two arguments of t that are equal in the model.
|
||||
*/
|
||||
expr_ref project_plugin::pick_equality(ast_manager& m, model& model, expr* t) {
|
||||
SASSERT(m.is_distinct(t));
|
||||
expr_ref val(m);
|
||||
expr_ref_vector vals(m);
|
||||
obj_map<expr, expr*> val2expr;
|
||||
app* alit = to_app(t);
|
||||
if (alit->get_num_args() == 2) {
|
||||
return expr_ref(m.mk_eq(alit->get_arg(0), alit->get_arg(1)), m);
|
||||
}
|
||||
for (expr* e1 : *alit) {
|
||||
expr* e2;
|
||||
val = model(e1);
|
||||
TRACE("qe", tout << mk_pp(e1, m) << " |-> " << val << "\n";);
|
||||
if (val2expr.find(val, e2)) {
|
||||
return expr_ref(m.mk_eq(e1, e2), m);
|
||||
}
|
||||
val2expr.insert(val, e1);
|
||||
vals.push_back(val);
|
||||
}
|
||||
for (unsigned i = 0; i < alit->get_num_args(); ++i) {
|
||||
for (unsigned j = i + 1; j < alit->get_num_args(); ++j) {
|
||||
expr* e1 = alit->get_arg(i);
|
||||
expr* e2 = alit->get_arg(j);
|
||||
val = m.mk_eq(e1, e2);
|
||||
if (!model.is_false(val))
|
||||
return expr_ref(m.mk_eq(e1, e2), m);
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
return expr_ref(nullptr, m);
|
||||
}
|
||||
|
||||
|
||||
void project_plugin::erase(expr_ref_vector& lits, unsigned& i) {
|
||||
lits[i] = lits.back();
|
||||
lits.pop_back();
|
||||
--i;
|
||||
}
|
||||
|
||||
void project_plugin::push_back(expr_ref_vector& lits, expr* e) {
|
||||
if (!m.is_true(e))
|
||||
lits.push_back(e);
|
||||
}
|
||||
|
||||
void project_plugin::extract_literals(model& model, app_ref_vector const& vars, expr_ref_vector& fmls) {
|
||||
m_bool_visited.reset();
|
||||
expr_ref val(m);
|
||||
model_evaluator eval(model);
|
||||
eval.set_expand_array_equalities(true);
|
||||
TRACE("qe", tout << fmls << "\n";);
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
expr* fml = fmls.get(i), * nfml, * f1, * f2, * f3;
|
||||
SASSERT(m.is_bool(fml));
|
||||
if (m.is_not(fml, nfml) && m.is_distinct(nfml))
|
||||
fmls[i--] = mbp::project_plugin::pick_equality(m, model, nfml);
|
||||
else if (m.is_or(fml)) {
|
||||
for (expr* arg : *to_app(fml)) {
|
||||
val = eval(arg);
|
||||
if (m.is_true(val)) {
|
||||
fmls[i] = arg;
|
||||
--i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (m.is_and(fml)) {
|
||||
fmls.append(to_app(fml)->get_num_args(), to_app(fml)->get_args());
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_iff(fml, f1, f2) || (m.is_not(fml, nfml) && m.is_xor(nfml, f1, f2))) {
|
||||
val = eval(f1);
|
||||
if (m.is_false(val)) {
|
||||
f1 = mk_not(m, f1);
|
||||
f2 = mk_not(m, f2);
|
||||
}
|
||||
fmls[i--] = f1;
|
||||
push_back(fmls, f2);
|
||||
}
|
||||
else if (m.is_implies(fml, f1, f2)) {
|
||||
val = eval(f2);
|
||||
if (m.is_true(val)) {
|
||||
fmls[i] = f2;
|
||||
}
|
||||
else {
|
||||
fmls[i] = mk_not(m, f1);
|
||||
}
|
||||
--i;
|
||||
}
|
||||
else if (m.is_ite(fml, f1, f2, f3)) {
|
||||
val = eval(f1);
|
||||
if (m.is_true(val)) {
|
||||
push_back(fmls, f1);
|
||||
push_back(fmls, f2);
|
||||
}
|
||||
else {
|
||||
push_back(fmls, mk_not(m, f1));
|
||||
push_back(fmls, f3);
|
||||
}
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_not(nfml, nfml)) {
|
||||
push_back(fmls, nfml);
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_and(nfml)) {
|
||||
for (expr* arg : *to_app(nfml)) {
|
||||
val = eval(arg);
|
||||
if (m.is_false(val)) {
|
||||
fmls[i--] = mk_not(m, arg);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_or(nfml)) {
|
||||
for (expr* arg : *to_app(nfml))
|
||||
push_back(fmls, mk_not(m, arg));
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if ((m.is_not(fml, nfml) && m.is_iff(nfml, f1, f2)) || m.is_xor(fml, f1, f2)) {
|
||||
val = eval(f1);
|
||||
if (m.is_true(val)) {
|
||||
f2 = mk_not(m, f2);
|
||||
}
|
||||
else {
|
||||
f1 = mk_not(m, f1);
|
||||
}
|
||||
push_back(fmls, f1);
|
||||
push_back(fmls, f2);
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_implies(nfml, f1, f2)) {
|
||||
push_back(fmls, f1);
|
||||
push_back(fmls, mk_not(m, f2));
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_ite(nfml, f1, f2, f3)) {
|
||||
val = eval(f1);
|
||||
if (m.is_true(val)) {
|
||||
push_back(fmls, f1);
|
||||
push_back(fmls, mk_not(m, f2));
|
||||
}
|
||||
else {
|
||||
push_back(fmls, mk_not(m, f1));
|
||||
push_back(fmls, mk_not(m, f3));
|
||||
}
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml)) {
|
||||
if (extract_bools(eval, fmls, nfml)) {
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
}
|
||||
else if (extract_bools(eval, fmls, fml))
|
||||
mbp::project_plugin::erase(fmls, i);
|
||||
}
|
||||
TRACE("qe", tout << fmls << "\n";);
|
||||
}
|
||||
|
||||
bool project_plugin::extract_bools(model_evaluator& eval, expr_ref_vector& fmls, expr* fml) {
|
||||
TRACE("qe", tout << "extract bools: " << mk_pp(fml, m) << "\n";);
|
||||
ptr_vector<expr> todo;
|
||||
expr_safe_replace sub(m);
|
||||
m_visited.reset();
|
||||
bool found_bool = false;
|
||||
if (is_app(fml)) {
|
||||
todo.append(to_app(fml)->get_num_args(), to_app(fml)->get_args());
|
||||
}
|
||||
while (!todo.empty() && m.inc()) {
|
||||
expr* e = todo.back();
|
||||
todo.pop_back();
|
||||
if (m_visited.is_marked(e)) {
|
||||
continue;
|
||||
}
|
||||
m_visited.mark(e);
|
||||
if (m.is_bool(e) && !m.is_true(e) && !m.is_false(e)) {
|
||||
expr_ref val = eval(e);
|
||||
TRACE("qe", tout << "found: " << mk_pp(e, m) << " " << val << "\n";);
|
||||
if (!m.inc())
|
||||
continue;
|
||||
if (!m.is_true(val) && !m.is_false(val) && contains_uninterpreted(val))
|
||||
throw default_exception("could not evaluate Boolean in model");
|
||||
SASSERT(m.is_true(val) || m.is_false(val));
|
||||
|
||||
if (!m_bool_visited.is_marked(e))
|
||||
fmls.push_back(m.is_true(val) ? e : mk_not(m, e));
|
||||
sub.insert(e, val);
|
||||
m_bool_visited.mark(e);
|
||||
found_bool = true;
|
||||
}
|
||||
else if (is_app(e)) {
|
||||
todo.append(to_app(e)->get_num_args(), to_app(e)->get_args());
|
||||
}
|
||||
else {
|
||||
TRACE("qe", tout << "expression not handled " << mk_pp(e, m) << "\n";);
|
||||
}
|
||||
}
|
||||
if (found_bool) {
|
||||
expr_ref tmp(m);
|
||||
sub(fml, tmp);
|
||||
expr_ref val = eval(tmp);
|
||||
if (!m.is_true(val) && !m.is_false(val))
|
||||
return false;
|
||||
fmls.push_back(m.is_true(val) ? tmp : mk_not(m, tmp));
|
||||
}
|
||||
return found_bool;
|
||||
}
|
||||
|
||||
}
|
93
src/qe/mbp/mbp_plugin.h
Normal file
93
src/qe/mbp/mbp_plugin.h
Normal file
|
@ -0,0 +1,93 @@
|
|||
/*++
|
||||
Copyright (c) 2015 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
mbp_plugin.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Model-based projection utilities
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2015-5-28
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "util/params.h"
|
||||
#include "model/model.h"
|
||||
#include "math/simplex/model_based_opt.h"
|
||||
|
||||
|
||||
namespace mbp {
|
||||
|
||||
struct cant_project {};
|
||||
|
||||
struct def {
|
||||
expr_ref var, term;
|
||||
def(const expr_ref& v, expr_ref& t): var(v), term(t) {}
|
||||
};
|
||||
|
||||
class project_plugin {
|
||||
ast_manager& m;
|
||||
expr_mark m_visited;
|
||||
expr_mark m_bool_visited;
|
||||
|
||||
bool extract_bools(model_evaluator& eval, expr_ref_vector& fmls, expr* fml);
|
||||
// over-approximation
|
||||
bool contains_uninterpreted(expr* v) { return true; }
|
||||
|
||||
void push_back(expr_ref_vector& lits, expr* lit);
|
||||
public:
|
||||
project_plugin(ast_manager& m) :m(m) {}
|
||||
virtual ~project_plugin() {}
|
||||
virtual bool operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits) { return false; }
|
||||
/**
|
||||
\brief partial solver.
|
||||
*/
|
||||
virtual bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) { return false; }
|
||||
virtual family_id get_family_id() { return null_family_id; }
|
||||
|
||||
virtual void operator()(model& model, app_ref_vector& vars, expr_ref_vector& lits) { };
|
||||
|
||||
/**
|
||||
\brief project vars modulo model, return set of definitions for eliminated variables.
|
||||
- vars in/out: returns variables that were not eliminated
|
||||
- lits in/out: returns projected literals
|
||||
- returns set of definitions
|
||||
(TBD: in triangular form, the last definition can be substituted into definitions that come before)
|
||||
*/
|
||||
virtual vector<def> project(model& model, app_ref_vector& vars, expr_ref_vector& lits) { return vector<def>(); }
|
||||
|
||||
/**
|
||||
\brief model based saturation. Saturates theory axioms to equi-satisfiable literals over EUF,
|
||||
such that 'shared' are not retained for EUF.
|
||||
*/
|
||||
virtual void saturate(model& model, func_decl_ref_vector const& shared, expr_ref_vector& lits) {}
|
||||
|
||||
|
||||
/*
|
||||
* extract top-level literals
|
||||
*/
|
||||
void extract_literals(model& model, app_ref_vector const& vars, expr_ref_vector& fmls);
|
||||
|
||||
/*
|
||||
* Purify literals into linear inequalities or constraints without arithmetic variables.
|
||||
*/
|
||||
void purify(model& model, app_ref_vector const& vars, expr_ref_vector& fmls);
|
||||
|
||||
static expr_ref pick_equality(ast_manager& m, model& model, expr* t);
|
||||
static void erase(expr_ref_vector& lits, unsigned& i);
|
||||
|
||||
static void mark_rec(expr_mark& visited, expr* e);
|
||||
static void mark_rec(expr_mark& visited, expr_ref_vector const& es);
|
||||
};
|
||||
}
|
||||
|
|
@ -23,9 +23,9 @@ Revision History:
|
|||
#include "ast/datatype_decl_plugin.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "qe/qe_solve_plugin.h"
|
||||
#include "qe/mbp/mbp_solve_plugin.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
expr_ref solve_plugin::operator()(expr* lit) {
|
||||
if (m.is_not(lit, lit))
|
|
@ -3,7 +3,7 @@ Copyright (c) 2018 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
qe_solve.h
|
||||
mbp_solve_plugin.h
|
||||
|
||||
Abstract:
|
||||
|
||||
|
@ -21,10 +21,10 @@ Revision History:
|
|||
#pragma once
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "ast/is_variable_test.h"
|
||||
#include "util/plugin_manager.h"
|
||||
#include "qe/qe_vartest.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
class solve_plugin {
|
||||
protected:
|
|
@ -24,10 +24,10 @@ Notes:
|
|||
#include "ast/ast_util.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
#include "ast/occurs.h"
|
||||
#include "qe/qe_term_graph.h"
|
||||
#include "model/model_evaluator.h"
|
||||
#include "qe/mbp/mbp_term_graph.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
static expr_ref mk_neq(ast_manager &m, expr *e1, expr *e2) {
|
||||
expr *t = nullptr;
|
||||
|
@ -245,8 +245,8 @@ namespace qe {
|
|||
bool term_graph::term_eq::operator()(term const* a, term const* b) const { return term::cg_eq(a, b); }
|
||||
|
||||
term_graph::term_graph(ast_manager &man) : m(man), m_lits(m), m_pinned(m), m_projector(nullptr) {
|
||||
m_plugins.register_plugin(mk_basic_solve_plugin(m, m_is_var));
|
||||
m_plugins.register_plugin(mk_arith_solve_plugin(m, m_is_var));
|
||||
m_plugins.register_plugin(mbp::mk_basic_solve_plugin(m, m_is_var));
|
||||
m_plugins.register_plugin(mbp::mk_arith_solve_plugin(m, m_is_var));
|
||||
}
|
||||
|
||||
term_graph::~term_graph() {
|
||||
|
@ -283,7 +283,7 @@ namespace qe {
|
|||
for (unsigned i = 0; i < lits.size(); ++i) {
|
||||
l = lits.get(i);
|
||||
family_id fid = get_family_id(m, l);
|
||||
qe::solve_plugin *pin = m_plugins.get_plugin(fid);
|
||||
mbp::solve_plugin *pin = m_plugins.get_plugin(fid);
|
||||
lit = pin ? (*pin)(l) : l;
|
||||
if (m.is_and(lit)) {
|
||||
lits.append(::to_app(lit)->get_num_args(), ::to_app(lit)->get_args());
|
|
@ -3,7 +3,7 @@ Copyright (c) Arie Gurfinkel
|
|||
|
||||
Module Name:
|
||||
|
||||
qe_term_graph.h
|
||||
mbp_term_graph.h
|
||||
|
||||
Abstract:
|
||||
|
||||
|
@ -19,12 +19,12 @@ Notes:
|
|||
#pragma once
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "ast/is_variable_test.h"
|
||||
#include "util/plugin_manager.h"
|
||||
#include "qe/qe_solve_plugin.h"
|
||||
#include "qe/qe_vartest.h"
|
||||
#include "qe/mbp/mbp_solve_plugin.h"
|
||||
#include "model/model.h"
|
||||
|
||||
namespace qe {
|
||||
namespace mbp {
|
||||
|
||||
class term;
|
||||
|
||||
|
@ -53,7 +53,7 @@ namespace qe {
|
|||
ast_ref_vector m_pinned;
|
||||
projector* m_projector;
|
||||
u_map<expr*> m_term2app;
|
||||
plugin_manager<qe::solve_plugin> m_plugins;
|
||||
plugin_manager<solve_plugin> m_plugins;
|
||||
ptr_hashtable<term, term_hash, term_eq> m_cg_table;
|
||||
vector<std::pair<term*,term*>> m_merge;
|
||||
|
|
@ -32,7 +32,7 @@ Revision History:
|
|||
#include "qe/nlarith_util.h"
|
||||
#include "model/model_evaluator.h"
|
||||
#include "smt/smt_kernel.h"
|
||||
#include "qe/qe_arith.h"
|
||||
#include "qe/mbp/mbp_arith.h"
|
||||
|
||||
namespace qe {
|
||||
|
||||
|
|
|
@ -17,25 +17,24 @@ Revision History:
|
|||
|
||||
|
||||
--*/
|
||||
#include "qe/qe_lite.h"
|
||||
#include "util/uint_set.h"
|
||||
#include "ast/expr_abstract.h"
|
||||
#include "ast/used_vars.h"
|
||||
#include "ast/rewriter/rewriter_def.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/ast_ll_pp.h"
|
||||
#include "ast/ast_smt2_pp.h"
|
||||
#include "tactic/tactical.h"
|
||||
#include "ast/is_variable_test.h"
|
||||
#include "ast/rewriter/bool_rewriter.h"
|
||||
#include "ast/rewriter/var_subst.h"
|
||||
#include "util/uint_set.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
#include "ast/rewriter/expr_safe_replace.h"
|
||||
#include "ast/datatype_decl_plugin.h"
|
||||
|
||||
#include "qe/qe_vartest.h"
|
||||
#include "qe/qe_solve_plugin.h"
|
||||
#include "tactic/tactical.h"
|
||||
#include "qe/mbp/mbp_solve_plugin.h"
|
||||
#include "qe/qe_lite.h"
|
||||
|
||||
namespace qel {
|
||||
|
||||
|
@ -73,7 +72,7 @@ namespace qel {
|
|||
beta_reducer m_subst;
|
||||
expr_ref_vector m_subst_map;
|
||||
expr_ref_vector m_new_exprs;
|
||||
plugin_manager<qe::solve_plugin> m_solvers;
|
||||
plugin_manager<mbp::solve_plugin> m_solvers;
|
||||
|
||||
ptr_vector<expr> m_map;
|
||||
int_vector m_pos2var;
|
||||
|
@ -296,7 +295,7 @@ namespace qel {
|
|||
if (m.is_eq(e, lhs, rhs)) {
|
||||
fid = get_sort(lhs)->get_family_id();
|
||||
}
|
||||
qe::solve_plugin* p = m_solvers.get_plugin(fid);
|
||||
auto* p = m_solvers.get_plugin(fid);
|
||||
if (p) {
|
||||
expr_ref res = (*p)(e);
|
||||
if (res != e && m.is_eq(res, lhs, rhs) && is_variable(lhs)) {
|
||||
|
@ -703,9 +702,9 @@ namespace qel {
|
|||
void set_is_variable_proc(is_variable_proc& proc) {
|
||||
m_is_variable = &proc;
|
||||
m_solvers.reset();
|
||||
m_solvers.register_plugin(qe::mk_arith_solve_plugin(m, proc));
|
||||
m_solvers.register_plugin(qe::mk_basic_solve_plugin(m, proc));
|
||||
m_solvers.register_plugin(qe::mk_bv_solve_plugin(m, proc));
|
||||
m_solvers.register_plugin(mbp::mk_arith_solve_plugin(m, proc));
|
||||
m_solvers.register_plugin(mbp::mk_basic_solve_plugin(m, proc));
|
||||
m_solvers.register_plugin(mbp::mk_bv_solve_plugin(m, proc));
|
||||
}
|
||||
|
||||
void operator()(quantifier * q, expr_ref & r, proof_ref & pr) {
|
||||
|
|
|
@ -38,9 +38,9 @@ Notes:
|
|||
#include "model/model_evaluator.h"
|
||||
#include "solver/solver.h"
|
||||
#include "qe/qe_mbi.h"
|
||||
#include "qe/qe_term_graph.h"
|
||||
#include "qe/qe_arith.h"
|
||||
#include "qe/qe_arrays.h"
|
||||
#include "qe/mbp/mbp_term_graph.h"
|
||||
#include "qe/mbp/mbp_arith.h"
|
||||
#include "qe/mbp/mbp_arrays.h"
|
||||
|
||||
|
||||
namespace qe {
|
||||
|
@ -263,8 +263,8 @@ namespace qe {
|
|||
return avars;
|
||||
}
|
||||
|
||||
vector<def> uflia_mbi::arith_project(model_ref& mdl, app_ref_vector& avars, expr_ref_vector& lits) {
|
||||
arith_project_plugin ap(m);
|
||||
vector<mbp::def> uflia_mbi::arith_project(model_ref& mdl, app_ref_vector& avars, expr_ref_vector& lits) {
|
||||
mbp::arith_project_plugin ap(m);
|
||||
ap.set_check_purified(false);
|
||||
return ap.project(*mdl.get(), avars, lits);
|
||||
}
|
||||
|
@ -308,7 +308,7 @@ namespace qe {
|
|||
expr_ref_vector alits(m), uflits(m);
|
||||
split_arith(lits, alits, uflits);
|
||||
auto avars = get_arith_vars(lits);
|
||||
vector<def> defs = arith_project(mdl, avars, alits);
|
||||
vector<mbp::def> defs = arith_project(mdl, avars, alits);
|
||||
for (auto const& d : defs) uflits.push_back(m.mk_eq(d.var, d.term));
|
||||
TRACE("qe", tout << "uflits: " << uflits << "\n";);
|
||||
project_euf(mdl, uflits);
|
||||
|
@ -354,7 +354,7 @@ namespace qe {
|
|||
\brief add difference certificates to formula.
|
||||
*/
|
||||
void uflia_mbi::add_dcert(model_ref& mdl, expr_ref_vector& lits) {
|
||||
term_graph tg(m);
|
||||
mbp::term_graph tg(m);
|
||||
add_arith_dcert(*mdl.get(), lits);
|
||||
func_decl_ref_vector shared(m_shared_trail);
|
||||
tg.set_vars(shared, false);
|
||||
|
@ -406,7 +406,7 @@ namespace qe {
|
|||
* \brief project private symbols.
|
||||
*/
|
||||
void uflia_mbi::project_euf(model_ref& mdl, expr_ref_vector& lits) {
|
||||
term_graph tg(m);
|
||||
mbp::term_graph tg(m);
|
||||
func_decl_ref_vector shared(m_shared_trail);
|
||||
tg.set_vars(shared, false);
|
||||
tg.add_lits(lits);
|
||||
|
|
|
@ -20,7 +20,8 @@ Revision History:
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "qe/qe_arith.h"
|
||||
#include "qe/mbp/mbp_arith.h"
|
||||
#include "qe/mbp/mbp_plugin.h"
|
||||
#include "util/lbool.h"
|
||||
|
||||
namespace qe {
|
||||
|
@ -126,7 +127,7 @@ namespace qe {
|
|||
void add_arith_dcert(model& mdl, expr_ref_vector& lits);
|
||||
void add_arith_dcert(model& mdl, expr_ref_vector& lits, app* a, app* b);
|
||||
app_ref_vector get_arith_vars(expr_ref_vector const& lits);
|
||||
vector<def> arith_project(model_ref& mdl, app_ref_vector& avars, expr_ref_vector& lits);
|
||||
vector<::mbp::def> arith_project(model_ref& mdl, app_ref_vector& avars, expr_ref_vector& lits);
|
||||
void project_euf(model_ref& mdl, expr_ref_vector& lits);
|
||||
void split_arith(expr_ref_vector const& lits,
|
||||
expr_ref_vector& alits,
|
||||
|
|
|
@ -27,9 +27,9 @@ Revision History:
|
|||
#include "ast/for_each_expr.h"
|
||||
#include "ast/scoped_proof.h"
|
||||
#include "qe/qe_mbp.h"
|
||||
#include "qe/qe_arith.h"
|
||||
#include "qe/qe_arrays.h"
|
||||
#include "qe/qe_datatypes.h"
|
||||
#include "qe/mbp/mbp_arith.h"
|
||||
#include "qe/mbp/mbp_arrays.h"
|
||||
#include "qe/mbp/mbp_datatypes.h"
|
||||
#include "qe/qe_lite.h"
|
||||
#include "model/model_pp.h"
|
||||
#include "model/model_evaluator.h"
|
||||
|
@ -37,93 +37,26 @@ Revision History:
|
|||
|
||||
using namespace qe;
|
||||
|
||||
struct noop_op_proc {
|
||||
void operator()(expr*) {}
|
||||
};
|
||||
|
||||
|
||||
void project_plugin::mark_rec(expr_mark& visited, expr* e) {
|
||||
for_each_expr_proc<noop_op_proc> fe;
|
||||
for_each_expr(fe, visited, e);
|
||||
}
|
||||
|
||||
void project_plugin::mark_rec(expr_mark& visited, expr_ref_vector const& es) {
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
mark_rec(visited, es[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief return two terms that are equal in the model.
|
||||
The distinct term t is false in model, so there
|
||||
are at least two arguments of t that are equal in the model.
|
||||
*/
|
||||
expr_ref project_plugin::pick_equality(ast_manager& m, model& model, expr* t) {
|
||||
SASSERT(m.is_distinct(t));
|
||||
expr_ref val(m);
|
||||
expr_ref_vector vals(m);
|
||||
obj_map<expr, expr*> val2expr;
|
||||
app* alit = to_app(t);
|
||||
if (alit->get_num_args() == 2) {
|
||||
return expr_ref(m.mk_eq(alit->get_arg(0), alit->get_arg(1)), m);
|
||||
}
|
||||
for (expr * e1 : *alit) {
|
||||
expr *e2;
|
||||
val = model(e1);
|
||||
TRACE("qe", tout << mk_pp(e1, m) << " |-> " << val << "\n";);
|
||||
if (val2expr.find(val, e2)) {
|
||||
return expr_ref(m.mk_eq(e1, e2), m);
|
||||
}
|
||||
val2expr.insert(val, e1);
|
||||
vals.push_back(val);
|
||||
}
|
||||
for (unsigned i = 0; i < alit->get_num_args(); ++i) {
|
||||
for (unsigned j = i + 1; j < alit->get_num_args(); ++j) {
|
||||
expr* e1 = alit->get_arg(i);
|
||||
expr* e2 = alit->get_arg(j);
|
||||
val = m.mk_eq(e1, e2);
|
||||
if (!model.is_false(val))
|
||||
return expr_ref(m.mk_eq(e1, e2), m);
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
return expr_ref(nullptr, m);
|
||||
}
|
||||
|
||||
|
||||
void project_plugin::erase(expr_ref_vector& lits, unsigned& i) {
|
||||
lits[i] = lits.back();
|
||||
lits.pop_back();
|
||||
--i;
|
||||
}
|
||||
|
||||
void project_plugin::push_back(expr_ref_vector& lits, expr* e) {
|
||||
if (lits.get_manager().is_true(e)) return;
|
||||
lits.push_back(e);
|
||||
}
|
||||
|
||||
|
||||
class mbp::impl {
|
||||
class mbproj::impl {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
th_rewriter m_rw;
|
||||
ptr_vector<project_plugin> m_plugins;
|
||||
expr_mark m_visited;
|
||||
expr_mark m_bool_visited;
|
||||
params_ref m_params;
|
||||
th_rewriter m_rw;
|
||||
ptr_vector<mbp::project_plugin> m_plugins;
|
||||
|
||||
// parameters
|
||||
bool m_reduce_all_selects;
|
||||
bool m_dont_sub;
|
||||
|
||||
void add_plugin(project_plugin* p) {
|
||||
void add_plugin(mbp::project_plugin* p) {
|
||||
family_id fid = p->get_family_id();
|
||||
SASSERT(!m_plugins.get(fid, 0));
|
||||
m_plugins.setx(fid, p, 0);
|
||||
SASSERT(!m_plugins.get(fid, nullptr));
|
||||
m_plugins.setx(fid, p, nullptr);
|
||||
}
|
||||
|
||||
project_plugin* get_plugin(app* var) {
|
||||
mbp::project_plugin* get_plugin(app* var) {
|
||||
family_id fid = m.get_sort(var)->get_family_id();
|
||||
return m_plugins.get(fid, 0);
|
||||
return m_plugins.get(fid, nullptr);
|
||||
}
|
||||
|
||||
bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) {
|
||||
|
@ -132,20 +65,20 @@ class mbp::impl {
|
|||
return false;
|
||||
}
|
||||
bool reduced = false;
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
is_var.mark(vars[i].get());
|
||||
}
|
||||
expr_ref tmp(m), t(m), v(m);
|
||||
for (expr* v : vars)
|
||||
is_var.mark(v);
|
||||
expr_ref tmp(m), t(m), v(m);
|
||||
|
||||
for (unsigned i = 0; i < lits.size(); ++i) {
|
||||
expr* e = lits[i].get(), *l, *r;
|
||||
expr* e = lits.get(i), * l, * r;
|
||||
if (m.is_eq(e, l, r) && reduce_eq(is_var, l, r, v, t)) {
|
||||
reduced = true;
|
||||
project_plugin::erase(lits, i);
|
||||
mbp::project_plugin::erase(lits, i);
|
||||
expr_safe_replace sub(m);
|
||||
sub.insert(v, t);
|
||||
is_rem.mark(v);
|
||||
for (unsigned j = 0; j < lits.size(); ++j) {
|
||||
sub(lits[j].get(), tmp);
|
||||
sub(lits.get(j), tmp);
|
||||
m_rw(tmp);
|
||||
lits[j] = tmp;
|
||||
}
|
||||
|
@ -153,20 +86,17 @@ class mbp::impl {
|
|||
}
|
||||
if (reduced) {
|
||||
unsigned j = 0;
|
||||
for (app* v : vars) {
|
||||
if (!is_rem.is_marked(v)) {
|
||||
for (app* v : vars)
|
||||
if (!is_rem.is_marked(v))
|
||||
vars[j++] = v;
|
||||
}
|
||||
}
|
||||
vars.shrink(j);
|
||||
}
|
||||
return reduced;
|
||||
}
|
||||
|
||||
bool reduce_eq(expr_mark& is_var, expr* l, expr* r, expr_ref& v, expr_ref& t) {
|
||||
if (is_var.is_marked(r)) {
|
||||
std::swap(l, r);
|
||||
}
|
||||
if (is_var.is_marked(r))
|
||||
std::swap(l, r);
|
||||
if (is_var.is_marked(l)) {
|
||||
contains_app cont(m, to_app(l));
|
||||
if (!cont(r)) {
|
||||
|
@ -178,340 +108,155 @@ class mbp::impl {
|
|||
return false;
|
||||
}
|
||||
|
||||
|
||||
void filter_variables(model& model, app_ref_vector& vars, expr_ref_vector& lits, expr_ref_vector& unused_lits) {
|
||||
expr_mark lit_visited;
|
||||
project_plugin::mark_rec(lit_visited, lits);
|
||||
mbp::project_plugin::mark_rec(lit_visited, lits);
|
||||
unsigned j = 0;
|
||||
for (app* var : vars) {
|
||||
if (lit_visited.is_marked(var)) {
|
||||
for (app* var : vars)
|
||||
if (lit_visited.is_marked(var))
|
||||
vars[j++] = var;
|
||||
}
|
||||
}
|
||||
vars.shrink(j);
|
||||
}
|
||||
|
||||
// over-approximation
|
||||
bool contains_uninterpreted(expr* v) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool extract_bools(model_evaluator& eval, expr_ref_vector& fmls, expr* fml) {
|
||||
TRACE("qe", tout << "extract bools: " << mk_pp(fml, m) << "\n";);
|
||||
ptr_vector<expr> todo;
|
||||
expr_safe_replace sub(m);
|
||||
m_visited.reset();
|
||||
bool found_bool = false;
|
||||
if (is_app(fml)) {
|
||||
todo.append(to_app(fml)->get_num_args(), to_app(fml)->get_args());
|
||||
}
|
||||
while (!todo.empty()) {
|
||||
expr* e = todo.back();
|
||||
todo.pop_back();
|
||||
if (m_visited.is_marked(e)) {
|
||||
continue;
|
||||
}
|
||||
m_visited.mark(e);
|
||||
if (m.is_bool(e) && !m.is_true(e) && !m.is_false(e) && m.inc()) {
|
||||
expr_ref val = eval(e);
|
||||
TRACE("qe", tout << "found: " << mk_pp(e, m) << " " << val << "\n";);
|
||||
if (!m.inc())
|
||||
continue;
|
||||
if (!m.is_true(val) && !m.is_false(val) && contains_uninterpreted(val)) {
|
||||
throw default_exception("could not evaluate Boolean in model");
|
||||
}
|
||||
SASSERT(m.is_true(val) || m.is_false(val));
|
||||
|
||||
if (!m_bool_visited.is_marked(e)) {
|
||||
fmls.push_back(m.is_true(val) ? e : mk_not(m, e));
|
||||
}
|
||||
sub.insert(e, val);
|
||||
m_bool_visited.mark(e);
|
||||
found_bool = true;
|
||||
}
|
||||
else if (is_app(e)) {
|
||||
todo.append(to_app(e)->get_num_args(), to_app(e)->get_args());
|
||||
}
|
||||
else {
|
||||
TRACE("qe", tout << "expression not handled " << mk_pp(e, m) << "\n";);
|
||||
}
|
||||
}
|
||||
if (found_bool) {
|
||||
expr_ref tmp(m);
|
||||
sub(fml, tmp);
|
||||
expr_ref val = eval(tmp);
|
||||
if (!m.is_true(val) && !m.is_false(val))
|
||||
return false;
|
||||
fmls.push_back(m.is_true(val) ? tmp : mk_not(m, tmp));
|
||||
}
|
||||
return found_bool;
|
||||
}
|
||||
|
||||
void project_bools(model& mdl, app_ref_vector& vars, expr_ref_vector& fmls) {
|
||||
expr_safe_replace sub(m);
|
||||
expr_ref val(m);
|
||||
model_evaluator eval(mdl, m_params);
|
||||
model_evaluator eval(mdl, m_params);
|
||||
eval.set_model_completion(true);
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
app* var = vars[i].get();
|
||||
if (m.is_bool(var)) {
|
||||
sub.insert(var, eval(var));
|
||||
}
|
||||
else {
|
||||
vars[j++] = var;
|
||||
}
|
||||
}
|
||||
if (j == vars.size()) {
|
||||
return;
|
||||
for (app* var : vars) {
|
||||
if (m.is_bool(var))
|
||||
sub.insert(var, eval(var));
|
||||
else
|
||||
vars[j++] = var;
|
||||
}
|
||||
if (j == vars.size())
|
||||
return;
|
||||
vars.shrink(j);
|
||||
j = 0;
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
expr* fml = fmls[i].get();
|
||||
j = 0;
|
||||
for (expr* fml : fmls) {
|
||||
sub(fml, val);
|
||||
m_rw(val);
|
||||
if (!m.is_true(val)) {
|
||||
m_rw(val);
|
||||
if (!m.is_true(val)) {
|
||||
TRACE("qe", tout << mk_pp(fml, m) << " -> " << val << "\n";);
|
||||
fmls[j++] = val;
|
||||
}
|
||||
}
|
||||
fmls.shrink(j);
|
||||
}
|
||||
}
|
||||
fmls.shrink(j);
|
||||
}
|
||||
|
||||
|
||||
void subst_vars(model_evaluator& eval, app_ref_vector const& vars, expr_ref& fml) {
|
||||
expr_safe_replace sub (m);
|
||||
for (app * v : vars) {
|
||||
sub.insert(v, eval(v));
|
||||
}
|
||||
expr_safe_replace sub(m);
|
||||
for (app* v : vars)
|
||||
sub.insert(v, eval(v));
|
||||
sub(fml);
|
||||
}
|
||||
}
|
||||
|
||||
struct index_term_finder {
|
||||
ast_manager& m;
|
||||
ast_manager& m;
|
||||
array_util m_array;
|
||||
app_ref m_var;
|
||||
expr_ref_vector& m_res;
|
||||
|
||||
index_term_finder (ast_manager &mgr, app* v, expr_ref_vector &res):
|
||||
m(mgr), m_array (m), m_var (v, m), m_res (res) {}
|
||||
index_term_finder(ast_manager& mgr, app* v, expr_ref_vector& res) :
|
||||
m(mgr), m_array(m), m_var(v, m), m_res(res) {}
|
||||
|
||||
void operator() (var *n) {}
|
||||
void operator() (quantifier *n) {}
|
||||
void operator() (app *n) {
|
||||
expr *e1, *e2;
|
||||
if (m_array.is_select (n)) {
|
||||
for (expr * arg : *n) {
|
||||
if (m.get_sort(arg) == m.get_sort(m_var) && arg != m_var)
|
||||
m_res.push_back (arg);
|
||||
}
|
||||
void operator() (var* n) {}
|
||||
void operator() (quantifier* n) {}
|
||||
void operator() (app* n) {
|
||||
expr* e1, * e2;
|
||||
if (m_array.is_select(n)) {
|
||||
for (expr* arg : *n) {
|
||||
if (m.get_sort(arg) == m.get_sort(m_var) && arg != m_var)
|
||||
m_res.push_back(arg);
|
||||
}
|
||||
}
|
||||
else if (m.is_eq(n, e1, e2)) {
|
||||
if (e1 == m_var)
|
||||
m_res.push_back(e2);
|
||||
else if (e2 == m_var)
|
||||
m_res.push_back(e1);
|
||||
if (e1 == m_var)
|
||||
m_res.push_back(e2);
|
||||
else if (e2 == m_var)
|
||||
m_res.push_back(e1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
bool project_var (model_evaluator& eval, app* var, expr_ref& fml) {
|
||||
bool project_var(model_evaluator& eval, app* var, expr_ref& fml) {
|
||||
expr_ref val = eval(var);
|
||||
|
||||
TRACE ("mbqi_project_verbose", tout << "MBQI: var: " << mk_pp (var, m) << "\n" << "fml: " << fml << "\n";);
|
||||
expr_ref_vector terms (m);
|
||||
index_term_finder finder (m, var, terms);
|
||||
for_each_expr (finder, fml);
|
||||
|
||||
TRACE ("mbqi_project_verbose", tout << "terms:\n" << terms;);
|
||||
|
||||
for (expr * term : terms) {
|
||||
|
||||
TRACE("mbqi_project_verbose", tout << "MBQI: var: " << mk_pp(var, m) << "\n" << "fml: " << fml << "\n";);
|
||||
expr_ref_vector terms(m);
|
||||
index_term_finder finder(m, var, terms);
|
||||
for_each_expr(finder, fml);
|
||||
|
||||
TRACE("mbqi_project_verbose", tout << "terms:\n" << terms;);
|
||||
|
||||
for (expr* term : terms) {
|
||||
expr_ref tval = eval(term);
|
||||
|
||||
TRACE ("mbqi_project_verbose", tout << "term: " << mk_pp (term, m) << " tval: " << tval << " val: " << val << "\n";);
|
||||
|
||||
TRACE("mbqi_project_verbose", tout << "term: " << mk_pp(term, m) << " tval: " << tval << " val: " << val << "\n";);
|
||||
|
||||
// -- if the term does not contain an occurrence of var
|
||||
// -- and is in the same equivalence class in the model
|
||||
if (tval == val && !occurs (var, term)) {
|
||||
TRACE ("mbqi_project",
|
||||
tout << "MBQI: replacing " << mk_pp (var, m) << " with " << mk_pp (term, m) << "\n";);
|
||||
if (tval == val && !occurs(var, term)) {
|
||||
TRACE("mbqi_project",
|
||||
tout << "MBQI: replacing " << mk_pp(var, m) << " with " << mk_pp(term, m) << "\n";);
|
||||
expr_safe_replace sub(m);
|
||||
sub.insert (var, term);
|
||||
sub (fml);
|
||||
sub.insert(var, term);
|
||||
sub(fml);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
TRACE ("mbqi_project",
|
||||
tout << "MBQI: failed to eliminate " << mk_pp (var, m) << " from " << fml << "\n";);
|
||||
TRACE("mbqi_project",
|
||||
tout << "MBQI: failed to eliminate " << mk_pp(var, m) << " from " << fml << "\n";);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void project_vars (model &M, app_ref_vector &vars, expr_ref &fml) {
|
||||
void project_vars(model& M, app_ref_vector& vars, expr_ref& fml) {
|
||||
model_evaluator eval(M);
|
||||
eval.set_model_completion(false);
|
||||
// -- evaluate to initialize eval cache
|
||||
(void) eval (fml);
|
||||
eval(fml);
|
||||
unsigned j = 0;
|
||||
for (app * v : vars) {
|
||||
if (!project_var (eval, v, fml)) {
|
||||
vars[j++] = v;
|
||||
}
|
||||
}
|
||||
for (app* v : vars)
|
||||
if (!project_var(eval, v, fml))
|
||||
vars[j++] = v;
|
||||
vars.shrink(j);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
opt::inf_eps maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& ge, expr_ref& gt) {
|
||||
arith_project_plugin arith(m);
|
||||
mbp::arith_project_plugin arith(m);
|
||||
return arith.maximize(fmls, mdl, t, ge, gt);
|
||||
}
|
||||
|
||||
void extract_literals(model& model, expr_ref_vector& fmls) {
|
||||
expr_ref val(m);
|
||||
model_evaluator eval(model);
|
||||
eval.set_expand_array_equalities(true);
|
||||
TRACE("qe", tout << fmls << "\n";);
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
expr* fml = fmls[i].get(), *nfml, *f1, *f2, *f3;
|
||||
SASSERT(m.is_bool(fml));
|
||||
if (m.is_not(fml, nfml) && m.is_distinct(nfml)) {
|
||||
fmls[i] = project_plugin::pick_equality(m, model, nfml);
|
||||
--i;
|
||||
}
|
||||
else if (m.is_or(fml)) {
|
||||
for (unsigned j = 0; j < to_app(fml)->get_num_args(); ++j) {
|
||||
val = eval(to_app(fml)->get_arg(j));
|
||||
if (m.is_true(val)) {
|
||||
fmls[i] = to_app(fml)->get_arg(j);
|
||||
--i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (m.is_and(fml)) {
|
||||
fmls.append(to_app(fml)->get_num_args(), to_app(fml)->get_args());
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_iff(fml, f1, f2) || (m.is_not(fml, nfml) && m.is_xor(nfml, f1, f2))) {
|
||||
val = eval(f1);
|
||||
if (m.is_false(val)) {
|
||||
f1 = mk_not(m, f1);
|
||||
f2 = mk_not(m, f2);
|
||||
}
|
||||
fmls[i] = f1;
|
||||
project_plugin::push_back(fmls, f2);
|
||||
--i;
|
||||
}
|
||||
else if (m.is_implies(fml, f1, f2)) {
|
||||
val = eval(f2);
|
||||
if (m.is_true(val)) {
|
||||
fmls[i] = f2;
|
||||
}
|
||||
else {
|
||||
fmls[i] = mk_not(m, f1);
|
||||
}
|
||||
--i;
|
||||
}
|
||||
else if (m.is_ite(fml, f1, f2, f3)) {
|
||||
val = eval(f1);
|
||||
if (m.is_true(val)) {
|
||||
project_plugin::push_back(fmls, f1);
|
||||
project_plugin::push_back(fmls, f2);
|
||||
}
|
||||
else {
|
||||
project_plugin::push_back(fmls, mk_not(m, f1));
|
||||
project_plugin::push_back(fmls, f3);
|
||||
}
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_not(nfml, nfml)) {
|
||||
project_plugin::push_back(fmls, nfml);
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_and(nfml)) {
|
||||
for (unsigned j = 0; j < to_app(nfml)->get_num_args(); ++j) {
|
||||
val = eval(to_app(nfml)->get_arg(j));
|
||||
if (m.is_false(val)) {
|
||||
fmls[i] = mk_not(m, to_app(nfml)->get_arg(j));
|
||||
--i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_or(nfml)) {
|
||||
for (unsigned j = 0; j < to_app(nfml)->get_num_args(); ++j) {
|
||||
project_plugin::push_back(fmls, mk_not(m, to_app(nfml)->get_arg(j)));
|
||||
}
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if ((m.is_not(fml, nfml) && m.is_iff(nfml, f1, f2)) || m.is_xor(fml, f1, f2)) {
|
||||
val = eval(f1);
|
||||
if (m.is_true(val)) {
|
||||
f2 = mk_not(m, f2);
|
||||
}
|
||||
else {
|
||||
f1 = mk_not(m, f1);
|
||||
}
|
||||
project_plugin::push_back(fmls, f1);
|
||||
project_plugin::push_back(fmls, f2);
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_implies(nfml, f1, f2)) {
|
||||
project_plugin::push_back(fmls, f1);
|
||||
project_plugin::push_back(fmls, mk_not(m, f2));
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml) && m.is_ite(nfml, f1, f2, f3)) {
|
||||
val = eval(f1);
|
||||
if (m.is_true(val)) {
|
||||
project_plugin::push_back(fmls, f1);
|
||||
project_plugin::push_back(fmls, mk_not(m, f2));
|
||||
}
|
||||
else {
|
||||
project_plugin::push_back(fmls, mk_not(m, f1));
|
||||
project_plugin::push_back(fmls, mk_not(m, f3));
|
||||
}
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else if (m.is_not(fml, nfml)) {
|
||||
if (extract_bools(eval, fmls, nfml)) {
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (extract_bools(eval, fmls, fml)) {
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
// TBD other Boolean operations.
|
||||
}
|
||||
}
|
||||
TRACE("qe", tout << fmls << "\n";);
|
||||
m_bool_visited.reset();
|
||||
void extract_literals(model& model, app_ref_vector const& vars, expr_ref_vector& fmls) {
|
||||
mbp::project_plugin proj(m);
|
||||
proj.extract_literals(model, vars, fmls);
|
||||
}
|
||||
|
||||
impl(ast_manager& m, params_ref const& p):m(m), m_params(p), m_rw(m) {
|
||||
add_plugin(alloc(arith_project_plugin, m));
|
||||
add_plugin(alloc(datatype_project_plugin, m));
|
||||
add_plugin(alloc(array_project_plugin, m));
|
||||
impl(ast_manager& m, params_ref const& p) :m(m), m_params(p), m_rw(m) {
|
||||
add_plugin(alloc(mbp::arith_project_plugin, m));
|
||||
add_plugin(alloc(mbp::datatype_project_plugin, m));
|
||||
add_plugin(alloc(mbp::array_project_plugin, m));
|
||||
updt_params(p);
|
||||
}
|
||||
|
||||
~impl() {
|
||||
std::for_each(m_plugins.begin(), m_plugins.end(), delete_proc<project_plugin>());
|
||||
std::for_each(m_plugins.begin(), m_plugins.end(), delete_proc<mbp::project_plugin>());
|
||||
}
|
||||
|
||||
void updt_params(params_ref const& p) {
|
||||
m_params.append(p);
|
||||
m_reduce_all_selects = m_params.get_bool("reduce_all_selects", false);
|
||||
m_dont_sub = m_params.get_bool("dont_sub", false);
|
||||
m_dont_sub = m_params.get_bool("dont_sub", false);
|
||||
}
|
||||
|
||||
void preprocess_solve(model& model, app_ref_vector& vars, expr_ref_vector& fmls) {
|
||||
extract_literals(model, fmls);
|
||||
extract_literals(model, vars, fmls);
|
||||
bool change = true;
|
||||
while (change && !vars.empty()) {
|
||||
change = solve(model, vars, fmls);
|
||||
|
@ -520,13 +265,13 @@ public:
|
|||
change = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool validate_model(model& model, expr_ref_vector const& fmls) {
|
||||
expr_ref val(m);
|
||||
model_evaluator eval(model);
|
||||
for (expr * f : fmls) {
|
||||
for (expr* f : fmls) {
|
||||
VERIFY(!model.is_false(f));
|
||||
}
|
||||
return true;
|
||||
|
@ -544,7 +289,7 @@ public:
|
|||
while (progress && !vars.empty() && !fmls.empty() && m.limit().inc()) {
|
||||
app_ref_vector new_vars(m);
|
||||
progress = false;
|
||||
for (project_plugin * p : m_plugins) {
|
||||
for (mbp::project_plugin* p : m_plugins) {
|
||||
if (p) {
|
||||
(*p)(model, vars, fmls);
|
||||
}
|
||||
|
@ -552,7 +297,7 @@ public:
|
|||
while (!vars.empty() && !fmls.empty() && m.limit().inc()) {
|
||||
var = vars.back();
|
||||
vars.pop_back();
|
||||
project_plugin* p = get_plugin(var);
|
||||
mbp::project_plugin* p = get_plugin(var);
|
||||
if (p && (*p)(model, var, vars, fmls)) {
|
||||
progress = true;
|
||||
}
|
||||
|
@ -566,19 +311,17 @@ public:
|
|||
expr_safe_replace sub(m);
|
||||
val = model(var);
|
||||
sub.insert(var, val);
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
sub(fmls[i].get(), tmp);
|
||||
unsigned j = 0;
|
||||
for (expr* f : fmls) {
|
||||
sub(f, tmp);
|
||||
m_rw(tmp);
|
||||
if (m.is_true(tmp)) {
|
||||
project_plugin::erase(fmls, i);
|
||||
}
|
||||
else {
|
||||
fmls[i] = tmp;
|
||||
}
|
||||
}
|
||||
if (!m.is_true(tmp))
|
||||
fmls[j++] = tmp;
|
||||
}
|
||||
fmls.shrink(j);
|
||||
progress = true;
|
||||
}
|
||||
if (!m.limit().inc())
|
||||
}
|
||||
if (!m.limit().inc())
|
||||
return;
|
||||
vars.append(new_vars);
|
||||
if (progress) {
|
||||
|
@ -592,13 +335,13 @@ public:
|
|||
SASSERT(validate_model(model, fmls));
|
||||
TRACE("qe", tout << vars << " " << fmls << "\n";);
|
||||
}
|
||||
|
||||
|
||||
void do_qe_lite(app_ref_vector& vars, expr_ref& fml) {
|
||||
qe_lite qe(m, m_params, false);
|
||||
qe (vars, fml);
|
||||
m_rw (fml);
|
||||
TRACE ("qe", tout << "After qe_lite:\n" << fml << "\n" << "Vars: " << vars << "\n";);
|
||||
SASSERT (!m.is_false (fml));
|
||||
qe(vars, fml);
|
||||
m_rw(fml);
|
||||
TRACE("qe", tout << "After qe_lite:\n" << fml << "\n" << "Vars: " << vars << "\n";);
|
||||
SASSERT(!m.is_false(fml));
|
||||
}
|
||||
|
||||
void do_qe_bool(model& mdl, app_ref_vector& vars, expr_ref& fml) {
|
||||
|
@ -609,130 +352,122 @@ public:
|
|||
}
|
||||
|
||||
void spacer(app_ref_vector& vars, model& mdl, expr_ref& fml) {
|
||||
TRACE ("qe", tout << "Before projection:\n" << fml << "\n" << "Vars: " << vars << "\n";);
|
||||
TRACE("qe", tout << "Before projection:\n" << fml << "\n" << "Vars: " << vars << "\n";);
|
||||
|
||||
model_evaluator eval(mdl, m_params);
|
||||
model_evaluator eval(mdl, m_params);
|
||||
eval.set_model_completion(true);
|
||||
app_ref_vector other_vars (m);
|
||||
app_ref_vector array_vars (m);
|
||||
array_util arr_u (m);
|
||||
arith_util ari_u (m);
|
||||
app_ref_vector other_vars(m);
|
||||
app_ref_vector array_vars(m);
|
||||
array_util arr_u(m);
|
||||
arith_util ari_u(m);
|
||||
|
||||
flatten_and(fml);
|
||||
|
||||
|
||||
while (!vars.empty()) {
|
||||
|
||||
do_qe_lite(vars, fml);
|
||||
|
||||
do_qe_bool(mdl, vars, fml);
|
||||
|
||||
|
||||
// sort out vars into bools, arith (int/real), and arrays
|
||||
for (app* v : vars) {
|
||||
if (arr_u.is_array(v)) {
|
||||
array_vars.push_back (v);
|
||||
}
|
||||
else {
|
||||
other_vars.push_back (v);
|
||||
array_vars.push_back(v);
|
||||
}
|
||||
}
|
||||
|
||||
TRACE ("qe", tout << "Array vars: " << array_vars << "\n";);
|
||||
|
||||
vars.reset ();
|
||||
|
||||
// project arrays
|
||||
qe::array_project_plugin ap(m);
|
||||
ap(mdl, array_vars, fml, vars, m_reduce_all_selects);
|
||||
SASSERT (array_vars.empty ());
|
||||
m_rw (fml);
|
||||
SASSERT (!m.is_false (fml));
|
||||
else {
|
||||
other_vars.push_back(v);
|
||||
}
|
||||
}
|
||||
|
||||
TRACE ("qe",
|
||||
tout << "extended model:\n" << mdl;
|
||||
tout << "Vars: " << vars << "\n";
|
||||
);
|
||||
TRACE("qe", tout << "Array vars: " << array_vars << "\n";);
|
||||
|
||||
vars.reset();
|
||||
|
||||
// project arrays
|
||||
mbp::array_project_plugin ap(m);
|
||||
ap(mdl, array_vars, fml, vars, m_reduce_all_selects);
|
||||
SASSERT(array_vars.empty());
|
||||
m_rw(fml);
|
||||
SASSERT(!m.is_false(fml));
|
||||
|
||||
TRACE("qe",
|
||||
tout << "extended model:\n" << mdl;
|
||||
tout << "Vars: " << vars << "\n";);
|
||||
}
|
||||
|
||||
|
||||
// project reals, ints and other variables.
|
||||
if (!other_vars.empty ()) {
|
||||
TRACE ("qe", tout << "Other vars: " << other_vars << "\n" << mdl;);
|
||||
|
||||
if (!other_vars.empty()) {
|
||||
TRACE("qe", tout << "Other vars: " << other_vars << "\n" << mdl;);
|
||||
|
||||
expr_ref_vector fmls(m);
|
||||
flatten_and (fml, fmls);
|
||||
|
||||
flatten_and(fml, fmls);
|
||||
|
||||
(*this)(false, other_vars, mdl, fmls);
|
||||
fml = mk_and (fmls);
|
||||
fml = mk_and(fmls);
|
||||
m_rw(fml);
|
||||
|
||||
TRACE ("qe",
|
||||
tout << "Projected other vars:\n" << fml << "\n";
|
||||
tout << "Remaining other vars:\n" << other_vars << "\n";);
|
||||
SASSERT (!m.is_false (fml));
|
||||
|
||||
TRACE("qe",
|
||||
tout << "Projected other vars:\n" << fml << "\n";
|
||||
tout << "Remaining other vars:\n" << other_vars << "\n";);
|
||||
SASSERT(!m.is_false(fml));
|
||||
}
|
||||
|
||||
if (!other_vars.empty ()) {
|
||||
project_vars (mdl, other_vars, fml);
|
||||
|
||||
if (!other_vars.empty()) {
|
||||
project_vars(mdl, other_vars, fml);
|
||||
m_rw(fml);
|
||||
}
|
||||
|
||||
|
||||
// substitute any remaining other vars
|
||||
if (!m_dont_sub && !other_vars.empty ()) {
|
||||
subst_vars (eval, other_vars, fml);
|
||||
TRACE ("qe", tout << "After substituting remaining other vars:\n" << fml << "\n";);
|
||||
if (!m_dont_sub && !other_vars.empty()) {
|
||||
subst_vars(eval, other_vars, fml);
|
||||
TRACE("qe", tout << "After substituting remaining other vars:\n" << fml << "\n";);
|
||||
// an extra round of simplification because subst_vars is not simplifying
|
||||
m_rw(fml);
|
||||
other_vars.reset();
|
||||
}
|
||||
|
||||
|
||||
SASSERT(!eval.is_false(fml));
|
||||
|
||||
vars.reset ();
|
||||
|
||||
vars.reset();
|
||||
vars.append(other_vars);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
mbp::mbp(ast_manager& m, params_ref const& p) {
|
||||
scoped_no_proof _sp (m);
|
||||
|
||||
mbproj::mbproj(ast_manager& m, params_ref const& p) {
|
||||
scoped_no_proof _sp(m);
|
||||
m_impl = alloc(impl, m, p);
|
||||
}
|
||||
|
||||
mbp::~mbp() {
|
||||
|
||||
mbproj::~mbproj() {
|
||||
dealloc(m_impl);
|
||||
}
|
||||
|
||||
void mbp::updt_params(params_ref const& p) {
|
||||
|
||||
void mbproj::updt_params(params_ref const& p) {
|
||||
m_impl->updt_params(p);
|
||||
}
|
||||
|
||||
void mbp::get_param_descrs(param_descrs & r) {
|
||||
|
||||
void mbproj::get_param_descrs(param_descrs& r) {
|
||||
r.insert("reduce_all_selects", CPK_BOOL, "(default: false) reduce selects");
|
||||
r.insert("dont_sub", CPK_BOOL, "(default: false) disable substitution of values for free variables");
|
||||
}
|
||||
|
||||
void mbp::operator()(bool force_elim, app_ref_vector& vars, model& mdl, expr_ref_vector& fmls) {
|
||||
scoped_no_proof _sp (fmls.get_manager());
|
||||
|
||||
void mbproj::operator()(bool force_elim, app_ref_vector& vars, model& mdl, expr_ref_vector& fmls) {
|
||||
scoped_no_proof _sp(fmls.get_manager());
|
||||
(*m_impl)(force_elim, vars, mdl, fmls);
|
||||
}
|
||||
|
||||
void mbp::spacer(app_ref_vector& vars, model& mdl, expr_ref& fml) {
|
||||
scoped_no_proof _sp (fml.get_manager());
|
||||
void mbproj::spacer(app_ref_vector& vars, model& mdl, expr_ref& fml) {
|
||||
scoped_no_proof _sp(fml.get_manager());
|
||||
m_impl->spacer(vars, mdl, fml);
|
||||
}
|
||||
|
||||
void mbp::solve(model& model, app_ref_vector& vars, expr_ref_vector& fmls) {
|
||||
scoped_no_proof _sp (fmls.get_manager());
|
||||
void mbproj::solve(model& model, app_ref_vector& vars, expr_ref_vector& fmls) {
|
||||
scoped_no_proof _sp(fmls.get_manager());
|
||||
m_impl->preprocess_solve(model, vars, fmls);
|
||||
}
|
||||
|
||||
void mbp::extract_literals(model& model, expr_ref_vector& lits) {
|
||||
scoped_no_proof _sp (lits.get_manager());
|
||||
m_impl->extract_literals(model, lits);
|
||||
}
|
||||
|
||||
|
||||
opt::inf_eps mbp::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& ge, expr_ref& gt) {
|
||||
scoped_no_proof _sp (fmls.get_manager());
|
||||
opt::inf_eps mbproj::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& ge, expr_ref& gt) {
|
||||
scoped_no_proof _sp(fmls.get_manager());
|
||||
return m_impl->maximize(fmls, mdl, t, ge, gt);
|
||||
}
|
||||
|
|
|
@ -28,55 +28,13 @@ Revision History:
|
|||
|
||||
namespace qe {
|
||||
|
||||
struct cant_project {};
|
||||
|
||||
struct def {
|
||||
expr_ref var, term;
|
||||
def(const expr_ref& v, expr_ref& t): var(v), term(t) {}
|
||||
};
|
||||
|
||||
class project_plugin {
|
||||
public:
|
||||
virtual ~project_plugin() {}
|
||||
virtual bool operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits) = 0;
|
||||
/**
|
||||
\brief partial solver.
|
||||
*/
|
||||
virtual bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) = 0;
|
||||
virtual family_id get_family_id() = 0;
|
||||
|
||||
virtual void operator()(model& model, app_ref_vector& vars, expr_ref_vector& lits) { };
|
||||
|
||||
/**
|
||||
\brief project vars modulo model, return set of definitions for eliminated variables.
|
||||
- vars in/out: returns variables that were not eliminated
|
||||
- lits in/out: returns projected literals
|
||||
- returns set of definitions
|
||||
(TBD: in triangular form, the last definition can be substituted into definitions that come before)
|
||||
*/
|
||||
virtual vector<def> project(model& model, app_ref_vector& vars, expr_ref_vector& lits) = 0;
|
||||
|
||||
/**
|
||||
\brief model based saturation. Saturates theory axioms to equi-satisfiable literals over EUF,
|
||||
such that 'shared' are not retained for EUF.
|
||||
*/
|
||||
virtual void saturate(model& model, func_decl_ref_vector const& shared, expr_ref_vector& lits) = 0;
|
||||
|
||||
|
||||
static expr_ref pick_equality(ast_manager& m, model& model, expr* t);
|
||||
static void erase(expr_ref_vector& lits, unsigned& i);
|
||||
static void push_back(expr_ref_vector& lits, expr* lit);
|
||||
static void mark_rec(expr_mark& visited, expr* e);
|
||||
static void mark_rec(expr_mark& visited, expr_ref_vector const& es);
|
||||
};
|
||||
|
||||
class mbp {
|
||||
class mbproj {
|
||||
class impl;
|
||||
impl * m_impl;
|
||||
public:
|
||||
mbp(ast_manager& m, params_ref const& p = params_ref());
|
||||
mbproj(ast_manager& m, params_ref const& p = params_ref());
|
||||
|
||||
~mbp();
|
||||
~mbproj();
|
||||
|
||||
void updt_params(params_ref const& p);
|
||||
|
||||
|
@ -95,12 +53,6 @@ namespace qe {
|
|||
*/
|
||||
void solve(model& model, app_ref_vector& vars, expr_ref_vector& lits);
|
||||
|
||||
/**
|
||||
\brief
|
||||
Extract literals from formulas based on model.
|
||||
*/
|
||||
void extract_literals(model& model, expr_ref_vector& lits);
|
||||
|
||||
/**
|
||||
\brief
|
||||
Maximize objective t under current model for constraints in fmls.
|
||||
|
|
|
@ -607,7 +607,7 @@ namespace qe {
|
|||
params_ref m_params;
|
||||
stats m_stats;
|
||||
statistics m_st;
|
||||
qe::mbp m_mbp;
|
||||
qe::mbproj m_mbp;
|
||||
kernel m_fa;
|
||||
kernel m_ex;
|
||||
pred_abs m_pred_abs;
|
||||
|
|
|
@ -76,7 +76,7 @@ namespace sat {
|
|||
~scoped_drating() { ext.m_drating = false; }
|
||||
};
|
||||
virtual void init_search() {}
|
||||
virtual bool propagate(sat::literal l, sat::ext_constraint_idx idx) { UNREACHABLE(); return false; }
|
||||
virtual bool propagated(sat::literal l, sat::ext_constraint_idx idx) { UNREACHABLE(); return false; }
|
||||
virtual bool unit_propagate() = 0;
|
||||
virtual bool is_external(bool_var v) { return false; }
|
||||
virtual double get_reward(literal l, ext_constraint_idx idx, literal_occs_fun& occs) const { return 0; }
|
||||
|
|
|
@ -1354,7 +1354,7 @@ namespace sat {
|
|||
watch_list::iterator it = wlist.begin(), it2 = it, end = wlist.end();
|
||||
for (; it != end && !inconsistent(); ++it) {
|
||||
SASSERT(it->get_kind() == watched::EXT_CONSTRAINT);
|
||||
bool keep = m_s.m_ext->propagate(l, it->get_ext_constraint_idx());
|
||||
bool keep = m_s.m_ext->propagated(l, it->get_ext_constraint_idx());
|
||||
if (m_search_mode == lookahead_mode::lookahead1 && !m_inconsistent) {
|
||||
lookahead_literal_occs_fun literal_occs_fn(*this);
|
||||
m_lookahead_reward += m_s.m_ext->get_reward(l, it->get_ext_constraint_idx(), literal_occs_fn);
|
||||
|
|
|
@ -1180,7 +1180,7 @@ namespace sat {
|
|||
}
|
||||
case watched::EXT_CONSTRAINT:
|
||||
SASSERT(m_ext);
|
||||
keep = m_ext->propagate(l, it->get_ext_constraint_idx());
|
||||
keep = m_ext->propagated(l, it->get_ext_constraint_idx());
|
||||
if (m_inconsistent) {
|
||||
if (!keep) {
|
||||
++it;
|
||||
|
|
|
@ -20,6 +20,7 @@ z3_add_component(sat_smt
|
|||
bv_internalize.cpp
|
||||
bv_invariant.cpp
|
||||
bv_solver.cpp
|
||||
dt_solver.cpp
|
||||
euf_ackerman.cpp
|
||||
euf_internalize.cpp
|
||||
euf_invariant.cpp
|
||||
|
|
|
@ -53,12 +53,7 @@ namespace arith {
|
|||
}
|
||||
|
||||
std::ostream& solver::display_justification(std::ostream& out, sat::ext_justification_idx idx) const {
|
||||
auto& jst = euf::th_propagation::from_index(idx);
|
||||
for (auto lit : euf::th_propagation::lits(jst))
|
||||
out << lit << " ";
|
||||
for (auto eq : euf::th_propagation::eqs(jst))
|
||||
out << eq.first->get_expr_id() << " == " << eq.second->get_expr_id() << " ";
|
||||
return out;
|
||||
return euf::th_propagation::from_index(idx).display(out);
|
||||
}
|
||||
|
||||
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
|
||||
|
|
|
@ -61,14 +61,10 @@ namespace arith {
|
|||
m_asserted.push_back(l);
|
||||
}
|
||||
|
||||
euf::th_solver* solver::clone(sat::solver* s, euf::solver& ctx) {
|
||||
arith::solver* result = alloc(arith::solver, ctx, get_id());
|
||||
ast_translation tr(m, ctx.get_manager());
|
||||
for (unsigned i = result->get_num_vars(); i < get_num_vars(); ++i) {
|
||||
expr* e1 = var2expr(i);
|
||||
expr* e2 = tr(e1);
|
||||
result->mk_evar(e2);
|
||||
}
|
||||
euf::th_solver* solver::clone(euf::solver& dst_ctx) {
|
||||
arith::solver* result = alloc(arith::solver, dst_ctx, get_id());
|
||||
for (unsigned i = result->get_num_vars(); i < get_num_vars(); ++i)
|
||||
result->mk_evar(ctx.copy(dst_ctx, var2enode(i))->get_expr());
|
||||
|
||||
unsigned v = 0;
|
||||
result->m_bounds.resize(m_bounds.size());
|
||||
|
@ -1425,19 +1421,7 @@ namespace arith {
|
|||
|
||||
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
|
||||
auto& jst = euf::th_propagation::from_index(idx);
|
||||
for (auto lit : euf::th_propagation::lits(jst))
|
||||
r.push_back(lit);
|
||||
for (auto eq : euf::th_propagation::eqs(jst))
|
||||
ctx.add_antecedent(eq.first, eq.second);
|
||||
|
||||
if (!probing && ctx.use_drat()) {
|
||||
literal_vector lits;
|
||||
for (auto lit : euf::th_propagation::lits(jst))
|
||||
lits.push_back(~lit);
|
||||
lits.push_back(l);
|
||||
ctx.get_drat().add(lits, status());
|
||||
for (auto eq : euf::th_propagation::eqs(jst))
|
||||
IF_VERBOSE(0, verbose_stream() << "drat-log with equalities is TBD " << eq.first->get_expr_id() << "\n");
|
||||
}
|
||||
ctx.get_antecedents(l, jst, r, probing);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -410,7 +410,6 @@ namespace arith {
|
|||
solver(euf::solver& ctx, theory_id id);
|
||||
~solver() override;
|
||||
bool is_external(bool_var v) override { return false; }
|
||||
bool propagate(literal l, sat::ext_constraint_idx idx) override { UNREACHABLE(); return false; }
|
||||
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) override;
|
||||
void asserted(literal l) override;
|
||||
sat::check_result check() override;
|
||||
|
@ -419,7 +418,7 @@ namespace arith {
|
|||
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
|
||||
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
|
||||
void collect_statistics(statistics& st) const override;
|
||||
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
bool use_diseqs() const override { return true; }
|
||||
void new_eq_eh(euf::th_eq const& eq) override { mk_eq_axiom(eq.v1(), eq.v2()); }
|
||||
void new_diseq_eh(euf::th_eq const& de) override { mk_eq_axiom(de.v1(), de.v2()); }
|
||||
|
|
|
@ -26,7 +26,10 @@ namespace array {
|
|||
TRACE("array", tout << mk_pp(e, m) << "\n";);
|
||||
return sat::null_literal;
|
||||
}
|
||||
return expr2literal(e);
|
||||
auto lit = expr2literal(e);
|
||||
if (sign)
|
||||
lit.neg();
|
||||
return lit;
|
||||
}
|
||||
|
||||
void solver::internalize(expr* e, bool redundant) {
|
||||
|
|
|
@ -151,15 +151,10 @@ namespace array {
|
|||
st.update("array splits", m_stats.m_num_eq_splits);
|
||||
}
|
||||
|
||||
euf::th_solver* solver::clone(sat::solver* s, euf::solver& ctx) {
|
||||
auto* result = alloc(solver, ctx, get_id());
|
||||
ast_translation tr(m, ctx.get_manager());
|
||||
for (unsigned i = 0; i < get_num_vars(); ++i) {
|
||||
expr* e1 = var2expr(i);
|
||||
expr* e2 = tr(e1);
|
||||
euf::enode* n = ctx.get_enode(e2);
|
||||
result->mk_var(n);
|
||||
}
|
||||
euf::th_solver* solver::clone(euf::solver& dst_ctx) {
|
||||
auto* result = alloc(solver, dst_ctx, get_id());
|
||||
for (unsigned i = 0; i < get_num_vars(); ++i)
|
||||
result->mk_var(ctx.copy(dst_ctx, var2enode(i)));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
@ -192,7 +192,6 @@ namespace array {
|
|||
solver(euf::solver& ctx, theory_id id);
|
||||
~solver() override;
|
||||
bool is_external(bool_var v) override { return false; }
|
||||
bool propagate(literal l, sat::ext_constraint_idx idx) override { UNREACHABLE(); return false; }
|
||||
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) override {}
|
||||
void asserted(literal l) override {}
|
||||
sat::check_result check() override;
|
||||
|
@ -201,7 +200,7 @@ namespace array {
|
|||
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
|
||||
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
|
||||
void collect_statistics(statistics& st) const override;
|
||||
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
void new_eq_eh(euf::th_eq const& eq) override;
|
||||
bool use_diseqs() const override { return true; }
|
||||
void new_diseq_eh(euf::th_eq const& eq) override;
|
||||
|
@ -217,5 +216,7 @@ namespace array {
|
|||
void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2);
|
||||
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {}
|
||||
void unmerge_eh(theory_var v1, theory_var v2) {}
|
||||
|
||||
euf::enode_vector const& parent_selects(euf::enode* n) const { return m_var_data[n->get_th_var(get_id())]->m_parent_selects; }
|
||||
};
|
||||
}
|
||||
|
|
|
@ -1484,7 +1484,7 @@ namespace sat {
|
|||
/*
|
||||
\brief return true to keep watching literal.
|
||||
*/
|
||||
bool ba_solver::propagate(literal l, ext_constraint_idx idx) {
|
||||
bool ba_solver::propagated(literal l, ext_constraint_idx idx) {
|
||||
SASSERT(value(l) == l_true);
|
||||
constraint& c = index2constraint(idx);
|
||||
if (c.lit() != null_literal && l.var() == c.lit().var()) {
|
||||
|
@ -3137,16 +3137,16 @@ namespace sat {
|
|||
}
|
||||
|
||||
extension* ba_solver::copy(solver* s) {
|
||||
return clone_aux(s, m, si, m_id);
|
||||
return clone_aux(m, *s, si, m_id);
|
||||
}
|
||||
|
||||
euf::th_solver* ba_solver::clone(solver* new_s, euf::solver& new_ctx) {
|
||||
return clone_aux(new_s, new_ctx.get_manager(), new_ctx.get_si(), get_id());
|
||||
euf::th_solver* ba_solver::clone(euf::solver& new_ctx) {
|
||||
return clone_aux(new_ctx.get_manager(), new_ctx.s(), new_ctx.get_si(), get_id());
|
||||
}
|
||||
|
||||
euf::th_solver* ba_solver::clone_aux(solver* new_s, ast_manager& m, sat::sat_internalizer& si, euf::theory_id id) {
|
||||
euf::th_solver* ba_solver::clone_aux(ast_manager& m, sat::solver& s, sat::sat_internalizer& si, euf::theory_id id) {
|
||||
ba_solver* result = alloc(ba_solver, m, si, id);
|
||||
result->set_solver(new_s);
|
||||
result->set_solver(&s);
|
||||
copy_constraints(result, m_constraints);
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -151,7 +151,7 @@ namespace sat {
|
|||
unsigned_vector m_weights;
|
||||
svector<wliteral> m_wlits;
|
||||
|
||||
euf::th_solver* clone_aux(sat::solver* new_s, ast_manager& m, sat::sat_internalizer& si, euf::theory_id id);
|
||||
euf::th_solver* clone_aux(ast_manager& m, sat::solver& s, sat::sat_internalizer& si, euf::theory_id id);
|
||||
|
||||
bool subsumes(card& c1, card& c2, literal_vector& comp);
|
||||
bool subsumes(card& c1, clause& c2, bool& self);
|
||||
|
@ -402,7 +402,7 @@ namespace sat {
|
|||
void add_xr(literal_vector const& lits);
|
||||
|
||||
bool is_external(bool_var v) override;
|
||||
bool propagate(literal l, ext_constraint_idx idx) override;
|
||||
bool propagated(literal l, ext_constraint_idx idx) override;
|
||||
bool unit_propagate() override { return false; }
|
||||
lbool resolve_conflict() override;
|
||||
void get_antecedents(literal l, ext_justification_idx idx, literal_vector & r, bool probing) override;
|
||||
|
@ -433,7 +433,7 @@ namespace sat {
|
|||
literal internalize(expr* e, bool sign, bool root, bool redundant) override;
|
||||
void internalize(expr* e, bool redundant) override;
|
||||
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override;
|
||||
euf::th_solver* clone(solver* s, euf::solver& ctx) override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
|
||||
ptr_vector<constraint> const & constraints() const { return m_constraints; }
|
||||
std::ostream& display(std::ostream& out, constraint const& c, bool values) const;
|
||||
|
|
|
@ -260,7 +260,6 @@ namespace bv {
|
|||
double solver::get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const { return 0; }
|
||||
bool solver::is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) { return false; }
|
||||
bool solver::is_external(bool_var v) { return true; }
|
||||
bool solver::propagate(literal l, sat::ext_constraint_idx idx) { return false; }
|
||||
|
||||
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
|
||||
auto& c = bv_justification::from_index(idx);
|
||||
|
@ -649,7 +648,7 @@ namespace bv {
|
|||
|
||||
sat::extension* solver::copy(sat::solver* s) { UNREACHABLE(); return nullptr; }
|
||||
|
||||
euf::th_solver* solver::clone(sat::solver* s, euf::solver& ctx) {
|
||||
euf::th_solver* solver::clone(euf::solver& ctx) {
|
||||
bv::solver* result = alloc(bv::solver, ctx, get_id());
|
||||
ast_translation tr(m, ctx.get_manager());
|
||||
for (unsigned i = 0; i < get_num_vars(); ++i) {
|
||||
|
|
|
@ -309,7 +309,6 @@ namespace bv {
|
|||
double get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const override;
|
||||
bool is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) override;
|
||||
bool is_external(bool_var v) override;
|
||||
bool propagate(literal l, sat::ext_constraint_idx idx) override;
|
||||
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector & r, bool probing) override;
|
||||
void asserted(literal l) override;
|
||||
sat::check_result check() override;
|
||||
|
@ -324,7 +323,7 @@ namespace bv {
|
|||
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
|
||||
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
|
||||
void collect_statistics(statistics& st) const override;
|
||||
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
extension* copy(sat::solver* s) override;
|
||||
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override {}
|
||||
void gc() override {}
|
||||
|
|
785
src/sat/smt/dt_solver.cpp
Normal file
785
src/sat/smt/dt_solver.cpp
Normal file
|
@ -0,0 +1,785 @@
|
|||
/*++
|
||||
Copyright (c) 2020 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dt_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Theory plugin for altegraic datatypes
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2020-09-08
|
||||
|
||||
--*/
|
||||
|
||||
#include "sat/smt/dt_solver.h"
|
||||
#include "sat/smt/euf_solver.h"
|
||||
#include "sat/smt/array_solver.h"
|
||||
|
||||
namespace euf {
|
||||
class solver;
|
||||
}
|
||||
|
||||
namespace dt {
|
||||
|
||||
solver::solver(euf::solver& ctx, theory_id id) :
|
||||
th_euf_solver(ctx, m.get_family_name(id), id),
|
||||
dt(m),
|
||||
m_autil(m),
|
||||
m_find(*this),
|
||||
m_args(m)
|
||||
{}
|
||||
|
||||
solver::~solver() {
|
||||
std::for_each(m_var_data.begin(), m_var_data.end(), delete_proc<var_data>());
|
||||
m_var_data.reset();
|
||||
}
|
||||
|
||||
void solver::clone_var(solver& src, theory_var v) {
|
||||
enode* n = src.ctx.copy(ctx, src.var2enode(v));
|
||||
VERIFY(v == th_euf_solver::mk_var(n));
|
||||
m_var_data.push_back(alloc(var_data));
|
||||
var_data* d_dst = m_var_data[v];
|
||||
var_data* d_src = src.m_var_data[v];
|
||||
ctx.attach_th_var(n, this, v);
|
||||
if (d_src->m_constructor && !d_dst->m_constructor)
|
||||
d_dst->m_constructor = src.ctx.copy(ctx, d_src->m_constructor);
|
||||
for (auto* r : d_src->m_recognizers)
|
||||
d_dst->m_recognizers.push_back(src.ctx.copy(ctx, r));
|
||||
}
|
||||
|
||||
euf::th_solver* solver::clone(euf::solver& dst_ctx) {
|
||||
auto* result = alloc(solver, dst_ctx, get_id());
|
||||
for (unsigned v = 0; v < get_num_vars(); ++v)
|
||||
result->clone_var(*this, v);
|
||||
return result;
|
||||
}
|
||||
|
||||
solver::final_check_st::final_check_st(solver& s) : s(s) {
|
||||
SASSERT(s.m_to_unmark1.empty());
|
||||
SASSERT(s.m_to_unmark2.empty());
|
||||
s.m_used_eqs.reset();
|
||||
s.m_dfs.reset();
|
||||
}
|
||||
|
||||
solver::final_check_st::~final_check_st() {
|
||||
s.clear_mark();
|
||||
}
|
||||
|
||||
void solver::clear_mark() {
|
||||
for (enode* n : m_to_unmark1)
|
||||
n->unmark1();
|
||||
for (enode* n : m_to_unmark2)
|
||||
n->unmark2();
|
||||
m_to_unmark1.reset();
|
||||
m_to_unmark2.reset();
|
||||
}
|
||||
|
||||
void solver::oc_mark_on_stack(enode* n) {
|
||||
n = n->get_root();
|
||||
n->mark1();
|
||||
m_to_unmark1.push_back(n);
|
||||
}
|
||||
|
||||
void solver::oc_mark_cycle_free(enode* n) {
|
||||
n = n->get_root();
|
||||
n->mark2();
|
||||
m_to_unmark2.push_back(n);
|
||||
}
|
||||
|
||||
void solver::oc_push_stack(enode* n) {
|
||||
m_dfs.push_back(std::make_pair(EXIT, n));
|
||||
m_dfs.push_back(std::make_pair(ENTER, n));
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Assert the axiom (antecedent => lhs = rhs)
|
||||
antecedent may be null_literal
|
||||
*/
|
||||
void solver::assert_eq_axiom(enode* lhs, expr* rhs, literal antecedent) {
|
||||
if (antecedent == sat::null_literal)
|
||||
add_unit(eq_internalize(lhs->get_expr(), rhs));
|
||||
else if (s().value(antecedent) == l_true) {
|
||||
euf::th_propagation* jst = euf::th_propagation::mk(*this, antecedent);
|
||||
ctx.propagate(lhs, e_internalize(rhs), jst);
|
||||
}
|
||||
else
|
||||
add_clause(~antecedent, eq_internalize(lhs->get_expr(), rhs));
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Assert the equality (= n (c (acc_1 n) ... (acc_m n))) where
|
||||
where acc_i are the accessors of constructor c.
|
||||
*/
|
||||
void solver::assert_is_constructor_axiom(enode* n, func_decl* c, literal antecedent) {
|
||||
expr* e = n->get_expr();
|
||||
TRACE("dt", tout << "creating axiom (= n (c (acc_1 n) ... (acc_m n))) for\n"
|
||||
<< mk_pp(c, m) << " " << mk_pp(e, m) << "\n";);
|
||||
m_stats.m_assert_cnstr++;
|
||||
SASSERT(dt.is_constructor(c));
|
||||
SASSERT(is_datatype(e));
|
||||
SASSERT(c->get_range() == m.get_sort(e));
|
||||
m_args.reset();
|
||||
ptr_vector<func_decl> const& accessors = *dt.get_constructor_accessors(c);
|
||||
SASSERT(c->get_arity() == accessors.size());
|
||||
for (func_decl* d : accessors)
|
||||
m_args.push_back(m.mk_app(d, e));
|
||||
expr_ref con(m.mk_app(c, m_args), m);
|
||||
assert_eq_axiom(n, con, antecedent);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given a constructor n := (c a_1 ... a_m) assert the axioms
|
||||
(= (acc_1 n) a_1)
|
||||
...
|
||||
(= (acc_m n) a_m)
|
||||
*/
|
||||
void solver::assert_accessor_axioms(enode* n) {
|
||||
m_stats.m_assert_accessor++;
|
||||
expr* e = n->get_expr();
|
||||
SASSERT(is_constructor(n));
|
||||
func_decl* d = n->get_decl();
|
||||
ptr_vector<func_decl> const& accessors = *dt.get_constructor_accessors(d);
|
||||
SASSERT(n->num_args() == accessors.size());
|
||||
unsigned i = 0;
|
||||
for (func_decl* acc : accessors) {
|
||||
app_ref acc_app(m.mk_app(acc, e), m);
|
||||
assert_eq_axiom(n->get_arg(i), acc_app);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Sign a conflict for r := is_mk(a), c := mk(...), not(r), and c == a.
|
||||
*/
|
||||
void solver::sign_recognizer_conflict(enode* c, enode* r) {
|
||||
SASSERT(is_constructor(c));
|
||||
SASSERT(is_recognizer(r));
|
||||
SASSERT(dt.get_recognizer_constructor(r->get_decl()) == c->get_decl());
|
||||
SASSERT(c->get_root() == r->get_arg(0)->get_root());
|
||||
TRACE("dt", tout << ctx.bpp(c) << "\n" << ctx.bpp(r) << "\n";);
|
||||
literal l = ctx.enode2literal(r);
|
||||
SASSERT(s().value(l) == l_false);
|
||||
clear_mark();
|
||||
auto* jst = euf::th_propagation::mk(*this, ~l, c, r->get_arg(0));
|
||||
ctx.set_conflict(jst);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given a field update n := { r with field := v } for constructor C, assert the axioms:
|
||||
(=> (is-C r) (= (acc_j n) (acc_j r))) for acc_j != field
|
||||
(=> (is-C r) (= (field n) v)) for acc_j != field
|
||||
(=> (not (is-C r)) (= n r))
|
||||
(=> (is-C r) (is-C n))
|
||||
*/
|
||||
void solver::assert_update_field_axioms(enode* n) {
|
||||
m_stats.m_assert_update_field++;
|
||||
SASSERT(is_update_field(n));
|
||||
expr* own = n->get_expr();
|
||||
expr* arg1 = n->get_arg(0)->get_expr();
|
||||
func_decl* upd = n->get_decl();
|
||||
func_decl* acc = to_func_decl(upd->get_parameter(0).get_ast());
|
||||
func_decl* con = dt.get_accessor_constructor(acc);
|
||||
func_decl* rec = dt.get_constructor_is(con);
|
||||
ptr_vector<func_decl> const& accessors = *dt.get_constructor_accessors(con);
|
||||
app_ref rec_app(m.mk_app(rec, arg1), m);
|
||||
app_ref acc_app(m);
|
||||
literal is_con = b_internalize(rec_app);
|
||||
for (func_decl* acc1 : accessors) {
|
||||
enode* arg;
|
||||
if (acc1 == acc) {
|
||||
arg = n->get_arg(1);
|
||||
}
|
||||
else {
|
||||
acc_app = m.mk_app(acc1, arg1);
|
||||
arg = e_internalize(acc_app);
|
||||
}
|
||||
app_ref acc_own(m.mk_app(acc1, own), m);
|
||||
assert_eq_axiom(arg, acc_own, is_con);
|
||||
}
|
||||
// update_field is identity if 'n' is not created by a matching constructor.
|
||||
assert_eq_axiom(n, arg1, ~is_con);
|
||||
app_ref n_is_con(m.mk_app(rec, own), m);
|
||||
add_clause(~is_con, mk_literal(n_is_con));
|
||||
}
|
||||
|
||||
euf::theory_var solver::mk_var(enode* n) {
|
||||
if (is_attached_to_var(n))
|
||||
return n->get_th_var(get_id());
|
||||
euf::theory_var r = th_euf_solver::mk_var(n);
|
||||
VERIFY(r == static_cast<theory_var>(m_find.mk_var()));
|
||||
SASSERT(r == static_cast<int>(m_var_data.size()));
|
||||
m_var_data.push_back(alloc(var_data));
|
||||
var_data* d = m_var_data[r];
|
||||
ctx.attach_th_var(n, this, r);
|
||||
if (is_constructor(n)) {
|
||||
d->m_constructor = n;
|
||||
assert_accessor_axioms(n);
|
||||
}
|
||||
else if (is_update_field(n)) {
|
||||
assert_update_field_axioms(n);
|
||||
}
|
||||
else {
|
||||
sort* s = m.get_sort(n->get_expr());
|
||||
if (dt.get_datatype_num_constructors(s) == 1)
|
||||
assert_is_constructor_axiom(n, dt.get_datatype_constructors(s)->get(0));
|
||||
else if (get_config().m_dt_lazy_splits == 0 || (get_config().m_dt_lazy_splits == 1 && !s->is_infinite()))
|
||||
mk_split(r);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief Create a new case split for v. That is, create the atom (is_mk v) and mark it as relevant.
|
||||
If first is true, it means that v does not have recognizer yet.
|
||||
*/
|
||||
void solver::mk_split(theory_var v) {
|
||||
m_stats.m_splits++;
|
||||
|
||||
v = m_find.find(v);
|
||||
enode* n = var2enode(v);
|
||||
sort* srt = m.get_sort(n->get_expr());
|
||||
func_decl* non_rec_c = dt.get_non_rec_constructor(srt);
|
||||
unsigned non_rec_idx = dt.get_constructor_idx(non_rec_c);
|
||||
var_data* d = m_var_data[v];
|
||||
SASSERT(d->m_constructor == nullptr);
|
||||
func_decl* r = nullptr;
|
||||
|
||||
TRACE("dt", tout << "non_rec_c: " << non_rec_c->get_name() << " #rec: " << d->m_recognizers.size() << "\n";);
|
||||
|
||||
enode* recognizer = d->m_recognizers.get(non_rec_idx, nullptr);
|
||||
if (recognizer == nullptr)
|
||||
r = dt.get_constructor_is(non_rec_c);
|
||||
else if (ctx.value(recognizer) != l_false)
|
||||
// if is l_true, then we are done
|
||||
// otherwise wait for recognizer to be assigned.
|
||||
return;
|
||||
else {
|
||||
// look for a slot of d->m_recognizers that is 0, or it is not marked as relevant and is unassigned.
|
||||
unsigned idx = 0;
|
||||
ptr_vector<func_decl> const& constructors = *dt.get_datatype_constructors(srt);
|
||||
for (enode* curr : d->m_recognizers) {
|
||||
if (curr == nullptr) {
|
||||
// found empty slot...
|
||||
r = dt.get_constructor_is(constructors[idx]);
|
||||
break;
|
||||
}
|
||||
else if (ctx.value(curr) != l_false)
|
||||
return;
|
||||
++idx;
|
||||
}
|
||||
if (r == nullptr)
|
||||
return; // all recognizers are asserted to false... conflict will be detected...
|
||||
}
|
||||
SASSERT(r != nullptr);
|
||||
app_ref r_app(m.mk_app(r, n->get_expr()), m);
|
||||
TRACE("dt", tout << "creating split: " << mk_pp(r_app, m) << "\n";);
|
||||
b_internalize(r_app);
|
||||
}
|
||||
|
||||
void solver::apply_sort_cnstr(enode* n, sort* s) {
|
||||
force_push();
|
||||
// Remark: If s is an infinite sort, then it is not necessary to create
|
||||
// a theory variable.
|
||||
//
|
||||
// Actually, when the logical context has quantifiers, it is better to
|
||||
// disable this optimization.
|
||||
// Example:
|
||||
//
|
||||
// (forall (l list) (a Int) (= (len (cons a l)) (+ (len l) 1)))
|
||||
// (assert (> (len a) 1)
|
||||
//
|
||||
// If the theory variable is not created for 'a', then a wrong model will be generated.
|
||||
TRACE("dt", tout << "apply_sort_cnstr: #" << n->get_expr_id() << " " << mk_pp(n->get_expr(), m) << "\n";);
|
||||
TRACE("dt_bug",
|
||||
tout << "apply_sort_cnstr:\n" << mk_pp(n->get_expr(), m) << " ";
|
||||
tout << dt.is_datatype(s) << " ";
|
||||
if (dt.is_datatype(s)) tout << "is-infinite: " << s->is_infinite() << " ";
|
||||
if (dt.is_datatype(s)) tout << "attached: " << is_attached_to_var(n) << " ";
|
||||
tout << "\n";);
|
||||
|
||||
if (!is_attached_to_var(n) &&
|
||||
(/*ctx.has_quantifiers()*/ true ||
|
||||
(dt.is_datatype(s) && dt.has_nested_arrays()) ||
|
||||
(dt.is_datatype(s) && !s->is_infinite()))) {
|
||||
mk_var(n);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void solver::new_eq_eh(euf::th_eq const& eq) {
|
||||
force_push();
|
||||
m_find.merge(eq.v1(), eq.v2());
|
||||
}
|
||||
|
||||
void solver::asserted(literal lit) {
|
||||
force_push();
|
||||
enode* n = bool_var2enode(lit.var());
|
||||
if (!is_recognizer(n))
|
||||
return;
|
||||
TRACE("dt", tout << "assigning recognizer: #" << n->get_expr_id() << " " << ctx.bpp(n) << "\n";);
|
||||
SASSERT(n->num_args() == 1);
|
||||
enode* arg = n->get_arg(0);
|
||||
theory_var tv = arg->get_th_var(get_id());
|
||||
tv = m_find.find(tv);
|
||||
var_data* d = m_var_data[tv];
|
||||
func_decl* r = n->get_decl();
|
||||
func_decl* c = dt.get_recognizer_constructor(r);
|
||||
if (!lit.sign()) {
|
||||
SASSERT(tv != euf::null_theory_var);
|
||||
if (d->m_constructor != nullptr && d->m_constructor->get_decl() == c)
|
||||
return; // do nothing
|
||||
assert_is_constructor_axiom(arg, c, lit);
|
||||
}
|
||||
else if (d->m_constructor == nullptr) // make sure a constructor is attached
|
||||
propagate_recognizer(tv, n);
|
||||
else if (d->m_constructor->get_decl() == c) // conflict
|
||||
sign_recognizer_conflict(d->m_constructor, n);
|
||||
}
|
||||
|
||||
void solver::add_recognizer(theory_var v, enode* recognizer) {
|
||||
SASSERT(is_recognizer(recognizer));
|
||||
v = m_find.find(v);
|
||||
var_data* d = m_var_data[v];
|
||||
sort* s = recognizer->get_decl()->get_domain(0);
|
||||
if (d->m_recognizers.empty()) {
|
||||
SASSERT(dt.is_datatype(s));
|
||||
d->m_recognizers.resize(dt.get_datatype_num_constructors(s), nullptr);
|
||||
}
|
||||
SASSERT(d->m_recognizers.size() == dt.get_datatype_num_constructors(s));
|
||||
unsigned c_idx = dt.get_recognizer_constructor_idx(recognizer->get_decl());
|
||||
if (d->m_recognizers[c_idx] == nullptr) {
|
||||
lbool val = ctx.value(recognizer);
|
||||
TRACE("dt", tout << "adding recognizer to v" << v << " rec: #" << recognizer->get_expr_id() << " val: " << val << "\n";);
|
||||
if (val == l_true) {
|
||||
// do nothing...
|
||||
// If recognizer assignment was already processed, then
|
||||
// d->m_constructor is already set.
|
||||
// Otherwise, it will be set when asserted is invoked.
|
||||
return;
|
||||
}
|
||||
if (val == l_false && d->m_constructor != nullptr) {
|
||||
func_decl* c_decl = dt.get_recognizer_constructor(recognizer->get_decl());
|
||||
if (d->m_constructor->get_decl() == c_decl) {
|
||||
// conflict
|
||||
sign_recognizer_conflict(d->m_constructor, recognizer);
|
||||
}
|
||||
return;
|
||||
}
|
||||
SASSERT(val == l_undef || (val == l_false && d->m_constructor == nullptr));
|
||||
d->m_recognizers[c_idx] = recognizer;
|
||||
ctx.push(set_vector_idx_trail<euf::solver, enode>(d->m_recognizers, c_idx));
|
||||
if (val == l_false)
|
||||
propagate_recognizer(v, recognizer);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Propagate a recognizer assigned to false.
|
||||
*/
|
||||
void solver::propagate_recognizer(theory_var v, enode* recognizer) {
|
||||
SASSERT(is_recognizer(recognizer));
|
||||
SASSERT(static_cast<int>(m_find.find(v)) == v);
|
||||
SASSERT(ctx.value(recognizer) == l_false);
|
||||
unsigned num_unassigned = 0;
|
||||
unsigned unassigned_idx = UINT_MAX;
|
||||
enode* n = var2enode(v);
|
||||
sort* srt = m.get_sort(n->get_expr());
|
||||
var_data* d = m_var_data[v];
|
||||
if (d->m_recognizers.empty()) {
|
||||
theory_var w = recognizer->get_arg(0)->get_th_var(get_id());
|
||||
SASSERT(w != euf::null_theory_var);
|
||||
add_recognizer(w, recognizer);
|
||||
}
|
||||
CTRACE("dt", d->m_recognizers.empty(), ctx.display(tout););
|
||||
SASSERT(!d->m_recognizers.empty());
|
||||
literal_vector lits;
|
||||
enode_pair_vector eqs;
|
||||
unsigned idx = 0;
|
||||
for (enode* r : d->m_recognizers) {
|
||||
if (!r) {
|
||||
if (num_unassigned == 0)
|
||||
unassigned_idx = idx;
|
||||
num_unassigned++;
|
||||
}
|
||||
else if (ctx.value(r) == l_true)
|
||||
return; // nothing to be propagated
|
||||
else if (ctx.value(r) == l_false) {
|
||||
SASSERT(r->num_args() == 1);
|
||||
lits.push_back(~ctx.enode2literal(r));
|
||||
if (n != r->get_arg(0)) {
|
||||
// Argument of the current recognizer is not necessarily equal to n.
|
||||
// This can happen when n and r->get_arg(0) are in the same equivalence class.
|
||||
// We must add equality as an assumption to the conflict or propagation
|
||||
SASSERT(n->get_root() == r->get_arg(0)->get_root());
|
||||
eqs.push_back(euf::enode_pair(n, r->get_arg(0)));
|
||||
}
|
||||
}
|
||||
++idx;
|
||||
}
|
||||
TRACE("dt", tout << "propagate " << num_unassigned << " eqs: " << eqs.size() << "\n";);
|
||||
if (num_unassigned == 0)
|
||||
ctx.set_conflict(euf::th_propagation::mk(*this, lits, eqs));
|
||||
else if (num_unassigned == 1) {
|
||||
// propagate remaining recognizer
|
||||
SASSERT(!lits.empty());
|
||||
enode* r = d->m_recognizers[unassigned_idx];
|
||||
literal consequent;
|
||||
if (!r) {
|
||||
ptr_vector<func_decl> const& constructors = *dt.get_datatype_constructors(srt);
|
||||
func_decl* rec = dt.get_constructor_is(constructors[unassigned_idx]);
|
||||
app_ref rec_app(m.mk_app(rec, n->get_expr()), m);
|
||||
consequent = b_internalize(rec_app);
|
||||
}
|
||||
else
|
||||
consequent = ctx.enode2literal(r);
|
||||
ctx.propagate(consequent, euf::th_propagation::mk(*this, lits, eqs));
|
||||
}
|
||||
else if (get_config().m_dt_lazy_splits == 0 || (!srt->is_infinite() && get_config().m_dt_lazy_splits == 1))
|
||||
// there are more than 2 unassigned recognizers...
|
||||
// if eager splits are enabled... create new case split
|
||||
mk_split(v);
|
||||
}
|
||||
|
||||
void solver::merge_eh(theory_var v1, theory_var v2, theory_var, theory_var) {
|
||||
// v1 is the new root
|
||||
TRACE("dt", tout << "merging v" << v1 << " v" << v2 << "\n";);
|
||||
SASSERT(v1 == static_cast<int>(m_find.find(v1)));
|
||||
var_data* d1 = m_var_data[v1];
|
||||
var_data* d2 = m_var_data[v2];
|
||||
auto* con1 = d1->m_constructor;
|
||||
auto* con2 = d2->m_constructor;
|
||||
if (con2 != nullptr) {
|
||||
if (con1 == nullptr) {
|
||||
ctx.push(set_ptr_trail<euf::solver, enode>(con1));
|
||||
// check whether there is a recognizer in d1 that conflicts with con2;
|
||||
if (!d1->m_recognizers.empty()) {
|
||||
unsigned c_idx = dt.get_constructor_idx(con2->get_decl());
|
||||
enode* recognizer = d1->m_recognizers[c_idx];
|
||||
if (recognizer != nullptr && ctx.value(recognizer) == l_false) {
|
||||
sign_recognizer_conflict(con2, recognizer);
|
||||
return;
|
||||
}
|
||||
}
|
||||
d1->m_constructor = con2;
|
||||
}
|
||||
else if (con1->get_decl() != con2->get_decl())
|
||||
add_unit(~eq_internalize(con1->get_expr(), con2->get_expr()));
|
||||
}
|
||||
for (enode* e : d2->m_recognizers)
|
||||
if (e)
|
||||
add_recognizer(v1, e);
|
||||
}
|
||||
|
||||
ptr_vector<euf::enode> const& solver::get_array_args(enode* n) {
|
||||
m_array_args.reset();
|
||||
array::solver* th = dynamic_cast<array::solver*>(ctx.fid2solver(m_autil.get_family_id()));
|
||||
for (enode* p : th->parent_selects(n))
|
||||
m_array_args.push_back(p);
|
||||
app_ref def(m_autil.mk_default(n->get_expr()), m);
|
||||
m_array_args.push_back(ctx.get_enode(def));
|
||||
return m_array_args;
|
||||
}
|
||||
|
||||
// Assuming `app` is equal to a constructor term, return the constructor enode
|
||||
inline euf::enode* solver::oc_get_cstor(enode* app) {
|
||||
theory_var v = app->get_root()->get_th_var(get_id());
|
||||
SASSERT(v != euf::null_theory_var);
|
||||
v = m_find.find(v);
|
||||
var_data* d = m_var_data[v];
|
||||
SASSERT(d->m_constructor);
|
||||
return d->m_constructor;
|
||||
}
|
||||
|
||||
void solver::explain_is_child(enode* parent, enode* child) {
|
||||
enode* parentc = oc_get_cstor(parent);
|
||||
if (parent != parentc)
|
||||
m_used_eqs.push_back(enode_pair(parent, parentc));
|
||||
|
||||
// collect equalities on all children that may have been used.
|
||||
bool found = false;
|
||||
auto add = [&](enode* arg) {
|
||||
if (arg->get_root() == child->get_root()) {
|
||||
if (arg != child)
|
||||
m_used_eqs.push_back(enode_pair(arg, child));
|
||||
found = true;
|
||||
}
|
||||
};
|
||||
for (enode* arg : euf::enode_args(parentc)) {
|
||||
add(arg);
|
||||
sort* s = m.get_sort(arg->get_expr());
|
||||
if (m_autil.is_array(s) && dt.is_datatype(get_array_range(s)))
|
||||
for (enode* aarg : get_array_args(arg))
|
||||
add(aarg);
|
||||
}
|
||||
VERIFY(found);
|
||||
}
|
||||
|
||||
// explain the cycle root -> ... -> app -> root
|
||||
void solver::occurs_check_explain(enode* app, enode* root) {
|
||||
TRACE("dt", tout << "occurs_check_explain " << ctx.bpp(app) << " <-> " << ctx.bpp(root) << "\n";);
|
||||
|
||||
// first: explain that root=v, given that app=cstor(...,v,...)
|
||||
|
||||
explain_is_child(app, root);
|
||||
|
||||
// now explain app=cstor(..,v,..) where v=root, and recurse with parent of app
|
||||
while (app->get_root() != root->get_root()) {
|
||||
enode* parent_app = m_parent[app->get_root()];
|
||||
explain_is_child(parent_app, app);
|
||||
SASSERT(is_constructor(parent_app));
|
||||
app = parent_app;
|
||||
}
|
||||
|
||||
SASSERT(app->get_root() == root->get_root());
|
||||
if (app != root)
|
||||
m_used_eqs.push_back(enode_pair(app, root));
|
||||
|
||||
TRACE("dt",
|
||||
tout << "occurs_check\n"; for (enode_pair const& p : m_used_eqs) tout << ctx.bpp(p.first) << " - " << ctx.bpp(p.second) << " ";);
|
||||
}
|
||||
|
||||
// start exploring subgraph below `app`
|
||||
bool solver::occurs_check_enter(enode* app) {
|
||||
app = app->get_root();
|
||||
theory_var v = app->get_th_var(get_id());
|
||||
if (v == euf::null_theory_var)
|
||||
return false;
|
||||
v = m_find.find(v);
|
||||
var_data* d = m_var_data[v];
|
||||
if (!d->m_constructor)
|
||||
return false;
|
||||
enode* parent = d->m_constructor;
|
||||
oc_mark_on_stack(parent);
|
||||
for (enode* arg : euf::enode_args(parent)) {
|
||||
if (oc_cycle_free(arg))
|
||||
continue;
|
||||
if (oc_on_stack(arg)) {
|
||||
// arg was explored before app, and is still on the stack: cycle
|
||||
occurs_check_explain(parent, arg);
|
||||
return true;
|
||||
}
|
||||
// explore `arg` (with parent)
|
||||
expr* earg = arg->get_expr();
|
||||
sort* s = m.get_sort(earg);
|
||||
if (dt.is_datatype(s)) {
|
||||
m_parent.insert(arg->get_root(), parent);
|
||||
oc_push_stack(arg);
|
||||
}
|
||||
else if (m_autil.is_array(s) && dt.is_datatype(get_array_range(s))) {
|
||||
for (enode* aarg : get_array_args(arg)) {
|
||||
if (oc_cycle_free(aarg))
|
||||
continue;
|
||||
if (oc_on_stack(aarg)) {
|
||||
occurs_check_explain(parent, aarg);
|
||||
return true;
|
||||
}
|
||||
if (is_datatype(aarg)) {
|
||||
m_parent.insert(aarg->get_root(), parent);
|
||||
oc_push_stack(aarg);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Check if n can be reached starting from n and following equalities and constructors.
|
||||
For example, occur_check(a1) returns true in the following set of equalities:
|
||||
a1 = cons(v1, a2)
|
||||
a2 = cons(v2, a3)
|
||||
a3 = cons(v3, a1)
|
||||
*/
|
||||
bool solver::occurs_check(enode* n) {
|
||||
TRACE("dt", tout << "occurs check: " << ctx.bpp(n) << "\n";);
|
||||
m_stats.m_occurs_check++;
|
||||
|
||||
bool res = false;
|
||||
oc_push_stack(n);
|
||||
|
||||
// DFS traversal from `n`. Look at top element and explore it.
|
||||
while (!res && !m_dfs.empty()) {
|
||||
stack_op op = m_dfs.back().first;
|
||||
enode* app = m_dfs.back().second;
|
||||
m_dfs.pop_back();
|
||||
|
||||
if (oc_cycle_free(app))
|
||||
continue;
|
||||
|
||||
TRACE("dt", tout << "occurs check loop: " << ctx.bpp(app) << (op == ENTER ? " enter" : " exit") << "\n";);
|
||||
|
||||
switch (op) {
|
||||
case ENTER:
|
||||
res = occurs_check_enter(app);
|
||||
break;
|
||||
|
||||
case EXIT:
|
||||
oc_mark_cycle_free(app);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (res) {
|
||||
clear_mark();
|
||||
ctx.set_conflict(euf::th_propagation::mk(*this, m_used_eqs));
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
sat::check_result solver::check() {
|
||||
force_push();
|
||||
int num_vars = get_num_vars();
|
||||
sat::check_result r = sat::check_result::CR_DONE;
|
||||
final_check_st _guard(*this);
|
||||
int start = s().rand()();
|
||||
for (int i = 0; i < num_vars; i++) {
|
||||
theory_var v = (i + start) % num_vars;
|
||||
if (v == static_cast<int>(m_find.find(v))) {
|
||||
enode* node = var2enode(v);
|
||||
if (!is_datatype(node))
|
||||
continue;
|
||||
if (!oc_cycle_free(node) && occurs_check(node))
|
||||
// conflict was detected...
|
||||
return sat::check_result::CR_CONTINUE;
|
||||
if (get_config().m_dt_lazy_splits > 0) {
|
||||
// using lazy case splits...
|
||||
var_data* d = m_var_data[v];
|
||||
if (d->m_constructor == nullptr) {
|
||||
clear_mark();
|
||||
mk_split(v);
|
||||
r = sat::check_result::CR_CONTINUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void solver::pop_core(unsigned num_scopes) {
|
||||
th_euf_solver::pop_core(num_scopes);
|
||||
std::for_each(m_var_data.begin() + get_num_vars(), m_var_data.end(), delete_proc<var_data>());
|
||||
m_var_data.shrink(get_num_vars());
|
||||
SASSERT(m_find.get_num_vars() == m_var_data.size());
|
||||
SASSERT(m_find.get_num_vars() == get_num_vars());
|
||||
}
|
||||
|
||||
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
|
||||
auto& jst = euf::th_propagation::from_index(idx);
|
||||
ctx.get_antecedents(l, jst, r, probing);
|
||||
}
|
||||
|
||||
void solver::add_value(euf::enode* n, model& mdl, expr_ref_vector& values) {
|
||||
theory_var v = n->get_th_var(get_id());
|
||||
v = m_find.find(v);
|
||||
SASSERT(v != euf::null_theory_var);
|
||||
enode* con = m_var_data[v]->m_constructor;
|
||||
func_decl* c_decl = con->get_decl();
|
||||
m_args.reset();
|
||||
for (enode* arg : euf::enode_args(m_var_data[v]->m_constructor))
|
||||
m_args.push_back(values.get(arg->get_root_id()));
|
||||
values.set(n->get_root_id(), m.mk_app(c_decl, m_args));
|
||||
}
|
||||
|
||||
void solver::add_dep(euf::enode* n, top_sort<euf::enode>& dep) {
|
||||
theory_var v = n->get_th_var(get_id());
|
||||
for (enode* arg : euf::enode_args(m_var_data[m_find.find(v)]->m_constructor))
|
||||
dep.add(n, arg);
|
||||
}
|
||||
|
||||
sat::literal solver::internalize(expr* e, bool sign, bool root, bool redundant) {
|
||||
if (!visit_rec(m, e, sign, root, redundant)) {
|
||||
TRACE("dt", tout << mk_pp(e, m) << "\n";);
|
||||
return sat::null_literal;
|
||||
}
|
||||
auto lit = ctx.expr2literal(e);
|
||||
if (sign)
|
||||
lit.neg();
|
||||
return lit;
|
||||
}
|
||||
|
||||
void solver::internalize(expr* e, bool redundant) {
|
||||
visit_rec(m, e, false, false, redundant);
|
||||
}
|
||||
|
||||
bool solver::visit(expr* e) {
|
||||
if (visited(e))
|
||||
return true;
|
||||
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
|
||||
ctx.internalize(e, m_is_redundant);
|
||||
if (is_datatype(e))
|
||||
mk_var(expr2enode(e));
|
||||
return true;
|
||||
}
|
||||
m_stack.push_back(sat::eframe(e));
|
||||
return false;
|
||||
}
|
||||
|
||||
bool solver::visited(expr* e) {
|
||||
euf::enode* n = expr2enode(e);
|
||||
return n && n->is_attached_to(get_id());
|
||||
}
|
||||
|
||||
bool solver::post_visit(expr* term, bool sign, bool root) {
|
||||
euf::enode* n = expr2enode(term);
|
||||
SASSERT(!n || !n->is_attached_to(get_id()));
|
||||
if (!n)
|
||||
n = mk_enode(term);
|
||||
SASSERT(!n->is_attached_to(get_id()));
|
||||
if (is_constructor(term) || is_update_field(term)) {
|
||||
for (enode* arg : euf::enode_args(n)) {
|
||||
sort* s = m.get_sort(arg->get_expr());
|
||||
if (dt.is_datatype(s))
|
||||
mk_var(arg);
|
||||
else if (m_autil.is_array(s) && dt.is_datatype(get_array_range(s))) {
|
||||
app_ref def(m_autil.mk_default(arg->get_expr()), m);
|
||||
mk_var(e_internalize(def));
|
||||
}
|
||||
}
|
||||
mk_var(n);
|
||||
}
|
||||
else if (is_recognizer(term)) {
|
||||
enode* arg = n->get_arg(0);
|
||||
theory_var v = mk_var(arg);
|
||||
add_recognizer(v, n);
|
||||
mk_var(n);
|
||||
}
|
||||
else {
|
||||
SASSERT(is_accessor(term));
|
||||
SASSERT(n->num_args() == 1);
|
||||
mk_var(n->get_arg(0));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void solver::collect_statistics(::statistics& st) const {
|
||||
st.update("datatype occurs check", m_stats.m_occurs_check);
|
||||
st.update("datatype splits", m_stats.m_splits);
|
||||
st.update("datatype constructor ax", m_stats.m_assert_cnstr);
|
||||
st.update("datatype accessor ax", m_stats.m_assert_accessor);
|
||||
st.update("datatype update ax", m_stats.m_assert_update_field);
|
||||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream& out) const {
|
||||
unsigned num_vars = get_num_vars();
|
||||
if (num_vars > 0)
|
||||
out << "Theory datatype:\n";
|
||||
for (unsigned v = 0; v < num_vars; v++)
|
||||
display_var(out, v);
|
||||
return out;
|
||||
}
|
||||
|
||||
void solver::display_var(std::ostream& out, theory_var v) const {
|
||||
var_data* d = m_var_data[v];
|
||||
out << "v" << v << " #" << var2expr(v)->get_id() << " -> v" << m_find.find(v) << " ";
|
||||
if (d->m_constructor)
|
||||
out << ctx.bpp(d->m_constructor);
|
||||
else
|
||||
out << "(null)";
|
||||
out << "\n";
|
||||
}
|
||||
}
|
159
src/sat/smt/dt_solver.h
Normal file
159
src/sat/smt/dt_solver.h
Normal file
|
@ -0,0 +1,159 @@
|
|||
/*++
|
||||
Copyright (c) 2020 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dt_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Theory plugin for altegraic datatypes
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2020-09-08
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "sat/smt/sat_th.h"
|
||||
#include "ast/datatype_decl_plugin.h"
|
||||
#include "ast/array_decl_plugin.h"
|
||||
|
||||
namespace euf {
|
||||
class solver;
|
||||
}
|
||||
|
||||
namespace dt {
|
||||
|
||||
class solver : public euf::th_euf_solver {
|
||||
typedef euf::theory_var theory_var;
|
||||
typedef euf::theory_id theory_id;
|
||||
typedef euf::enode enode;
|
||||
typedef euf::enode_pair enode_pair;
|
||||
typedef euf::enode_pair_vector enode_pair_vector;
|
||||
typedef sat::bool_var bool_var;
|
||||
typedef sat::literal literal;
|
||||
typedef sat::literal_vector literal_vector;
|
||||
typedef union_find<solver, euf::solver> dt_union_find;
|
||||
|
||||
struct var_data {
|
||||
ptr_vector<enode> m_recognizers; //!< recognizers of this equivalence class that are being watched.
|
||||
enode * m_constructor; //!< constructor of this equivalence class, 0 if there is no constructor in the eqc.
|
||||
var_data():
|
||||
m_constructor(nullptr) {
|
||||
}
|
||||
};
|
||||
|
||||
// class for managing state of final_check
|
||||
class final_check_st {
|
||||
solver& s;
|
||||
public:
|
||||
final_check_st(solver& s);
|
||||
~final_check_st();
|
||||
};
|
||||
|
||||
struct stats {
|
||||
unsigned m_occurs_check, m_splits;
|
||||
unsigned m_assert_cnstr, m_assert_accessor, m_assert_update_field;
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
stats() { reset(); }
|
||||
};
|
||||
|
||||
datatype_util dt;
|
||||
array_util m_autil;
|
||||
stats m_stats;
|
||||
ptr_vector<var_data> m_var_data;
|
||||
dt_union_find m_find;
|
||||
expr_ref_vector m_args;
|
||||
|
||||
bool is_constructor(expr * f) const { return dt.is_constructor(f); }
|
||||
bool is_recognizer(expr * f) const { return dt.is_recognizer(f); }
|
||||
bool is_accessor(expr * f) const { return dt.is_accessor(f); }
|
||||
bool is_update_field(expr * f) const { return dt.is_update_field(f); }
|
||||
|
||||
bool is_constructor(enode * n) const { return is_constructor(n->get_expr()); }
|
||||
bool is_recognizer(enode * n) const { return is_recognizer(n->get_expr()); }
|
||||
bool is_accessor(enode * n) const { return is_accessor(n->get_expr()); }
|
||||
bool is_update_field(enode * n) const { return dt.is_update_field(n->get_expr()); }
|
||||
|
||||
bool is_datatype(expr* e) const { return dt.is_datatype(m.get_sort(e)); }
|
||||
bool is_datatype(enode* n) const { return is_datatype(n->get_expr()); }
|
||||
|
||||
void assert_eq_axiom(enode * lhs, expr * rhs, literal antecedent = sat::null_literal);
|
||||
void assert_is_constructor_axiom(enode * n, func_decl * c, literal antecedent = sat::null_literal);
|
||||
void assert_accessor_axioms(enode * n);
|
||||
void assert_update_field_axioms(enode * n);
|
||||
void add_recognizer(theory_var v, enode * recognizer);
|
||||
void propagate_recognizer(theory_var v, enode * r);
|
||||
void sign_recognizer_conflict(enode * c, enode * r);
|
||||
|
||||
typedef enum { ENTER, EXIT } stack_op;
|
||||
typedef obj_map<enode, enode*> parent_tbl;
|
||||
typedef std::pair<stack_op, enode*> stack_entry;
|
||||
|
||||
ptr_vector<enode> m_to_unmark1;
|
||||
ptr_vector<enode> m_to_unmark2;
|
||||
enode_pair_vector m_used_eqs; // conflict, if any
|
||||
parent_tbl m_parent; // parent explanation for occurs_check
|
||||
svector<stack_entry> m_dfs; // stack for DFS for occurs_check
|
||||
|
||||
void clear_mark();
|
||||
|
||||
void oc_mark_on_stack(enode * n);
|
||||
bool oc_on_stack(enode * n) const { return n->get_root()->is_marked1(); }
|
||||
|
||||
void oc_mark_cycle_free(enode * n);
|
||||
bool oc_cycle_free(enode * n) const { return n->get_root()->is_marked2(); }
|
||||
|
||||
void oc_push_stack(enode * n);
|
||||
ptr_vector<enode> m_array_args;
|
||||
ptr_vector<enode> const& get_array_args(enode* n);
|
||||
|
||||
void pop_core(unsigned n) override;
|
||||
|
||||
enode * oc_get_cstor(enode * n);
|
||||
bool occurs_check(enode * n);
|
||||
bool occurs_check_enter(enode * n);
|
||||
void occurs_check_explain(enode * top, enode * root);
|
||||
void explain_is_child(enode* parent, enode* child);
|
||||
|
||||
void mk_split(theory_var v);
|
||||
|
||||
void display_var(std::ostream & out, theory_var v) const;
|
||||
|
||||
// internalize
|
||||
bool visit(expr* e) override;
|
||||
bool visited(expr* e) override;
|
||||
bool post_visit(expr* e, bool sign, bool root) override;
|
||||
void clone_var(solver& src, theory_var v);
|
||||
|
||||
public:
|
||||
solver(euf::solver& ctx, theory_id id);
|
||||
~solver() override;
|
||||
|
||||
bool is_external(bool_var v) override { return false; }
|
||||
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) override;
|
||||
void asserted(literal l) override;
|
||||
sat::check_result check() override;
|
||||
|
||||
std::ostream& display(std::ostream& out) const override;
|
||||
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override { return euf::th_propagation::from_index(idx).display(out); }
|
||||
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override { return display_justification(out, idx); }
|
||||
void collect_statistics(statistics& st) const override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
void new_eq_eh(euf::th_eq const& eq) override;
|
||||
bool unit_propagate() override { return false; }
|
||||
void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override;
|
||||
void add_dep(euf::enode* n, top_sort<euf::enode>& dep) override;
|
||||
sat::literal internalize(expr* e, bool sign, bool root, bool redundant) override;
|
||||
void internalize(expr* e, bool redundant) override;
|
||||
euf::theory_var mk_var(euf::enode* n) override;
|
||||
void apply_sort_cnstr(euf::enode* n, sort* s) override;
|
||||
bool is_shared(theory_var v) const override { return false; }
|
||||
|
||||
void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2);
|
||||
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {}
|
||||
void unmerge_eh(theory_var v1, theory_var v2) {}
|
||||
};
|
||||
}
|
|
@ -134,14 +134,14 @@ namespace euf {
|
|||
lit = lit2;
|
||||
}
|
||||
|
||||
m_var2expr.reserve(v + 1, nullptr);
|
||||
if (m_var2expr[v]) {
|
||||
m_bool_var2expr.reserve(v + 1, nullptr);
|
||||
if (m_bool_var2expr[v]) {
|
||||
SASSERT(m_egraph.find(e));
|
||||
SASSERT(m_egraph.find(e)->bool_var() == v);
|
||||
return lit;
|
||||
}
|
||||
TRACE("euf", tout << "attach " << v << " " << mk_bounded_pp(e, m) << "\n";);
|
||||
m_var2expr[v] = e;
|
||||
m_bool_var2expr[v] = e;
|
||||
m_var_trail.push_back(v);
|
||||
enode* n = m_egraph.find(e);
|
||||
if (!n)
|
||||
|
@ -367,12 +367,15 @@ namespace euf {
|
|||
return true;
|
||||
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
expr_ref solver::mk_eq(expr* e1, expr* e2) {
|
||||
if (e1 == e2)
|
||||
expr_ref _e1(e1, m);
|
||||
expr_ref _e2(e2, m);
|
||||
if (m.are_equal(e1, e2))
|
||||
return expr_ref(m.mk_true(), m);
|
||||
if (m.are_distinct(e1, e2))
|
||||
return expr_ref(m.mk_false(), m);
|
||||
expr_ref r(m.mk_eq(e2, e1), m);
|
||||
if (!m_egraph.find(r))
|
||||
r = m.mk_eq(e1, e2);
|
||||
|
|
|
@ -84,7 +84,7 @@ namespace euf {
|
|||
|
||||
void solver::log_antecedents(std::ostream& out, literal l, literal_vector const& r) {
|
||||
for (sat::literal l : r) {
|
||||
expr* n = m_var2expr[l.var()];
|
||||
expr* n = m_bool_var2expr[l.var()];
|
||||
out << ~l << ": ";
|
||||
if (!l.sign()) out << "! ";
|
||||
out << mk_bounded_pp(n, m) << "\n";
|
||||
|
@ -93,7 +93,7 @@ namespace euf {
|
|||
if (l != sat::null_literal) {
|
||||
out << l << ": ";
|
||||
if (l.sign()) out << "! ";
|
||||
expr* n = m_var2expr[l.var()];
|
||||
expr* n = m_bool_var2expr[l.var()];
|
||||
out << mk_bounded_pp(n, m) << "\n";
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,7 +64,7 @@ namespace euf {
|
|||
m_relevant_expr_ids.resize(max_id + 1, false);
|
||||
auto const& core = m_dual_solver->core();
|
||||
for (auto lit : core) {
|
||||
expr* e = m_var2expr.get(lit.var(), nullptr);
|
||||
expr* e = m_bool_var2expr.get(lit.var(), nullptr);
|
||||
if (e)
|
||||
todo.push_back(e);
|
||||
}
|
||||
|
|
|
@ -26,6 +26,7 @@ Author:
|
|||
#include "sat/smt/arith_solver.h"
|
||||
#include "sat/smt/q_solver.h"
|
||||
#include "sat/smt/fpa_solver.h"
|
||||
#include "sat/smt/dt_solver.h"
|
||||
|
||||
namespace euf {
|
||||
|
||||
|
@ -60,9 +61,9 @@ namespace euf {
|
|||
* retrieve extension that is associated with Boolean variable.
|
||||
*/
|
||||
th_solver* solver::bool_var2solver(sat::bool_var v) {
|
||||
if (v >= m_var2expr.size())
|
||||
if (v >= m_bool_var2expr.size())
|
||||
return nullptr;
|
||||
expr* e = m_var2expr[v];
|
||||
expr* e = m_bool_var2expr[v];
|
||||
if (!e)
|
||||
return nullptr;
|
||||
return expr2solver(e);
|
||||
|
@ -81,10 +82,8 @@ namespace euf {
|
|||
auto* ext = m_id2solver.get(fid, nullptr);
|
||||
if (ext)
|
||||
return ext;
|
||||
ext = alloc(q::solver, *this);
|
||||
ext->set_solver(m_solver);
|
||||
ext->push_scopes(s().num_scopes());
|
||||
add_solver(fid, ext);
|
||||
ext = alloc(q::solver, *this, fid);
|
||||
add_solver(ext);
|
||||
return ext;
|
||||
}
|
||||
|
||||
|
@ -101,34 +100,37 @@ namespace euf {
|
|||
array_util au(m);
|
||||
fpa_util fpa(m);
|
||||
arith_util arith(m);
|
||||
if (pb.get_family_id() == fid)
|
||||
datatype_util dt(m);
|
||||
if (pb.get_family_id() == fid)
|
||||
ext = alloc(sat::ba_solver, *this, fid);
|
||||
else if (bvu.get_family_id() == fid)
|
||||
else if (bvu.get_family_id() == fid)
|
||||
ext = alloc(bv::solver, *this, fid);
|
||||
else if (au.get_family_id() == fid)
|
||||
else if (au.get_family_id() == fid)
|
||||
ext = alloc(array::solver, *this, fid);
|
||||
else if (fpa.get_family_id() == fid)
|
||||
else if (fpa.get_family_id() == fid)
|
||||
ext = alloc(fpa::solver, *this);
|
||||
else if (arith.get_family_id() == fid)
|
||||
ext = alloc(arith::solver, *this, fid);
|
||||
else if (dt.get_family_id() == fid)
|
||||
ext = alloc(dt::solver, *this, fid);
|
||||
|
||||
if (ext) {
|
||||
if (use_drat())
|
||||
s().get_drat().add_theory(fid, ext->name());
|
||||
ext->set_solver(m_solver);
|
||||
ext->push_scopes(s().num_scopes());
|
||||
add_solver(fid, ext);
|
||||
if (ext->use_diseqs())
|
||||
m_egraph.set_th_propagates_diseqs(fid);
|
||||
}
|
||||
if (ext)
|
||||
add_solver(ext);
|
||||
else if (f)
|
||||
unhandled_function(f);
|
||||
return ext;
|
||||
}
|
||||
|
||||
void solver::add_solver(family_id fid, th_solver* th) {
|
||||
void solver::add_solver(th_solver* th) {
|
||||
family_id fid = th->get_id();
|
||||
if (use_drat())
|
||||
s().get_drat().add_theory(fid, th->name());
|
||||
th->set_solver(m_solver);
|
||||
th->push_scopes(s().num_scopes());
|
||||
m_solvers.push_back(th);
|
||||
m_id2solver.setx(fid, th, nullptr);
|
||||
if (th->use_diseqs())
|
||||
m_egraph.set_th_propagates_diseqs(fid);
|
||||
}
|
||||
|
||||
void solver::unhandled_function(func_decl* f) {
|
||||
|
@ -146,7 +148,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
bool solver::is_external(bool_var v) {
|
||||
if (nullptr != m_var2expr.get(v, nullptr))
|
||||
if (nullptr != m_bool_var2expr.get(v, nullptr))
|
||||
return true;
|
||||
for (auto* s : m_solvers)
|
||||
if (s->is_external(v))
|
||||
|
@ -154,10 +156,18 @@ namespace euf {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool solver::propagate(literal l, ext_constraint_idx idx) {
|
||||
bool solver::propagated(literal l, ext_constraint_idx idx) {
|
||||
auto* ext = sat::constraint_base::to_extension(idx);
|
||||
SASSERT(ext != this);
|
||||
return ext->propagate(l, idx);
|
||||
return ext->propagated(l, idx);
|
||||
}
|
||||
|
||||
void solver::set_conflict(ext_constraint_idx idx) {
|
||||
s().set_conflict(sat::justification::mk_ext_justification(s().scope_lvl(), idx));
|
||||
}
|
||||
|
||||
void solver::propagate(literal lit, ext_justification_idx idx) {
|
||||
s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), idx));
|
||||
}
|
||||
|
||||
void solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector& r, bool probing) {
|
||||
|
@ -192,6 +202,23 @@ namespace euf {
|
|||
log_antecedents(l, r);
|
||||
}
|
||||
|
||||
void solver::get_antecedents(literal l, th_propagation& jst, literal_vector& r, bool probing) {
|
||||
for (auto lit : euf::th_propagation::lits(jst))
|
||||
r.push_back(lit);
|
||||
for (auto eq : euf::th_propagation::eqs(jst))
|
||||
add_antecedent(eq.first, eq.second);
|
||||
|
||||
if (!probing && use_drat()) {
|
||||
literal_vector lits;
|
||||
for (auto lit : euf::th_propagation::lits(jst))
|
||||
lits.push_back(~lit);
|
||||
lits.push_back(l);
|
||||
get_drat().add(lits, sat::status::th(m_is_redundant, jst.ext().get_id()));
|
||||
for (auto eq : euf::th_propagation::eqs(jst))
|
||||
IF_VERBOSE(0, verbose_stream() << "drat-log with equalities is TBD " << eq.first->get_expr_id() << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
void solver::add_antecedent(enode* a, enode* b) {
|
||||
m_egraph.explain_eq<size_t>(m_explain, a, b);
|
||||
}
|
||||
|
@ -217,7 +244,7 @@ namespace euf {
|
|||
m_egraph.explain<size_t>(m_explain);
|
||||
break;
|
||||
case constraint::kind_t::eq:
|
||||
e = m_var2expr[l.var()];
|
||||
e = m_bool_var2expr[l.var()];
|
||||
n = m_egraph.find(e);
|
||||
SASSERT(n);
|
||||
SASSERT(n->is_equality());
|
||||
|
@ -225,7 +252,7 @@ namespace euf {
|
|||
m_egraph.explain_eq<size_t>(m_explain, n->get_arg(0), n->get_arg(1));
|
||||
break;
|
||||
case constraint::kind_t::lit:
|
||||
e = m_var2expr[l.var()];
|
||||
e = m_bool_var2expr[l.var()];
|
||||
n = m_egraph.find(e);
|
||||
SASSERT(n);
|
||||
SASSERT(m.is_bool(n->get_expr()));
|
||||
|
@ -238,7 +265,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
void solver::asserted(literal l) {
|
||||
expr* e = m_var2expr.get(l.var(), nullptr);
|
||||
expr* e = m_bool_var2expr.get(l.var(), nullptr);
|
||||
if (!e) {
|
||||
TRACE("euf", tout << "asserted: " << l << "@" << s().scope_lvl() << "\n";);
|
||||
return;
|
||||
|
@ -421,7 +448,7 @@ namespace euf {
|
|||
m_egraph.pop(n);
|
||||
scope const & s = m_scopes[m_scopes.size() - n];
|
||||
for (unsigned i = m_var_trail.size(); i-- > s.m_var_lim; )
|
||||
m_var2expr[m_var_trail[i]] = nullptr;
|
||||
m_bool_var2expr[m_var_trail[i]] = nullptr;
|
||||
m_var_trail.shrink(s.m_var_lim);
|
||||
m_scopes.shrink(m_scopes.size() - n);
|
||||
SASSERT(m_egraph.num_scopes() == m_scopes.size());
|
||||
|
@ -534,7 +561,7 @@ namespace euf {
|
|||
m_egraph.display(out);
|
||||
out << "bool-vars\n";
|
||||
for (unsigned v : m_var_trail) {
|
||||
expr* e = m_var2expr[v];
|
||||
expr* e = m_bool_var2expr[v];
|
||||
out << v << ": " << e->get_id() << " " << m_solver->value(v) << " " << mk_bounded_pp(e, m, 1) << "\n";
|
||||
}
|
||||
for (auto* e : m_solvers)
|
||||
|
@ -584,6 +611,17 @@ namespace euf {
|
|||
st.update("euf ackerman", m_stats.m_ackerman);
|
||||
}
|
||||
|
||||
enode* solver::copy(solver& dst_ctx, enode* src_n) {
|
||||
if (!src_n)
|
||||
return nullptr;
|
||||
ast_translation tr(m, dst_ctx.get_manager(), false);
|
||||
expr* e1 = src_n->get_expr();
|
||||
expr* e2 = tr(e1);
|
||||
euf::enode* n2 = dst_ctx.get_enode(e2);
|
||||
SASSERT(n2);
|
||||
return n2;
|
||||
}
|
||||
|
||||
sat::extension* solver::copy(sat::solver* s) {
|
||||
auto* r = alloc(solver, *m_to_m, *m_to_si);
|
||||
r->m_config = m_config;
|
||||
|
@ -596,10 +634,12 @@ namespace euf {
|
|||
};
|
||||
r->m_egraph.copy_from(m_egraph, copy_justification);
|
||||
r->set_solver(s);
|
||||
for (unsigned i = 0; i < m_id2solver.size(); ++i) {
|
||||
auto* e = m_id2solver[i];
|
||||
if (e)
|
||||
r->add_solver(i, e->clone(s, *r));
|
||||
for (auto* s_orig : m_id2solver) {
|
||||
if (s_orig) {
|
||||
auto* s_clone = s_orig->clone(*r);
|
||||
r->add_solver(s_clone);
|
||||
s_clone->set_solver(s);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
@ -653,8 +693,8 @@ namespace euf {
|
|||
unsigned solver::max_var(unsigned w) const {
|
||||
for (auto* e : m_solvers)
|
||||
w = e->max_var(w);
|
||||
for (unsigned sz = m_var2expr.size(); sz-- > 0; ) {
|
||||
expr* n = m_var2expr[sz];
|
||||
for (unsigned sz = m_bool_var2expr.size(); sz-- > 0; ) {
|
||||
expr* n = m_bool_var2expr[sz];
|
||||
if (n && m.is_bool(n)) {
|
||||
w = std::max(w, sz);
|
||||
break;
|
||||
|
|
|
@ -94,7 +94,7 @@ namespace euf {
|
|||
scoped_ptr<sat::dual_solver> m_dual_solver;
|
||||
user::solver* m_user_propagator{ nullptr };
|
||||
|
||||
ptr_vector<expr> m_var2expr;
|
||||
ptr_vector<expr> m_bool_var2expr;
|
||||
ptr_vector<size_t> m_explain;
|
||||
unsigned m_num_scopes{ 0 };
|
||||
unsigned_vector m_var_trail;
|
||||
|
@ -132,8 +132,7 @@ namespace euf {
|
|||
th_solver* quantifier2solver();
|
||||
th_solver* expr2solver(expr* e);
|
||||
th_solver* bool_var2solver(sat::bool_var v);
|
||||
th_solver* fid2solver(family_id fid) const { return m_id2solver.get(fid, nullptr); }
|
||||
void add_solver(family_id fid, th_solver* th);
|
||||
void add_solver(th_solver* th);
|
||||
void init_ackerman();
|
||||
|
||||
// model building
|
||||
|
@ -214,10 +213,13 @@ namespace euf {
|
|||
ast_manager& get_manager() { return m; }
|
||||
enode* get_enode(expr* e) const { return m_egraph.find(e); }
|
||||
sat::literal expr2literal(expr* e) const { return enode2literal(get_enode(e)); }
|
||||
sat::literal enode2literal(enode* e) const { return sat::literal(e->bool_var(), false); }
|
||||
sat::literal enode2literal(enode* n) const { return sat::literal(n->bool_var(), false); }
|
||||
lbool value(enode* n) const { return s().value(enode2literal(n)); }
|
||||
smt_params const& get_config() const { return m_config; }
|
||||
region& get_region() { return m_trail.get_region(); }
|
||||
egraph& get_egraph() { return m_egraph; }
|
||||
th_solver* fid2solver(family_id fid) const { return m_id2solver.get(fid, nullptr); }
|
||||
|
||||
template <typename C>
|
||||
void push(C const& c) { m_trail.push(c); }
|
||||
template <typename V>
|
||||
|
@ -238,13 +240,22 @@ namespace euf {
|
|||
double get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const override;
|
||||
bool is_extended_binary(ext_justification_idx idx, literal_vector& r) override;
|
||||
bool is_external(bool_var v) override;
|
||||
bool propagate(literal l, ext_constraint_idx idx) override;
|
||||
bool propagated(literal l, ext_constraint_idx idx) override;
|
||||
bool unit_propagate() override;
|
||||
bool propagate(enode* a, enode* b, ext_justification_idx);
|
||||
|
||||
void propagate(literal lit, ext_justification_idx idx);
|
||||
bool propagate(enode* a, enode* b, ext_justification_idx idx);
|
||||
void set_conflict(ext_justification_idx idx);
|
||||
|
||||
void propagate(literal lit, th_propagation* p) { propagate(lit, p->to_index()); }
|
||||
bool propagate(enode* a, enode* b, th_propagation* p) { return propagate(a, b, p->to_index()); }
|
||||
void set_conflict(th_propagation* p) { set_conflict(p->to_index()); }
|
||||
|
||||
bool set_root(literal l, literal r) override;
|
||||
void flush_roots() override;
|
||||
|
||||
void get_antecedents(literal l, ext_justification_idx idx, literal_vector& r, bool probing) override;
|
||||
void get_antecedents(literal l, th_propagation& jst, literal_vector& r, bool probing);
|
||||
void add_antecedent(enode* a, enode* b);
|
||||
void asserted(literal l) override;
|
||||
sat::check_result check() override;
|
||||
|
@ -260,8 +271,10 @@ namespace euf {
|
|||
std::ostream& display(std::ostream& out) const override;
|
||||
std::ostream& display_justification(std::ostream& out, ext_justification_idx idx) const override;
|
||||
std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override;
|
||||
euf::egraph::b_pp bpp(enode* n) { return m_egraph.bpp(n); }
|
||||
void collect_statistics(statistics& st) const override;
|
||||
extension* copy(sat::solver* s) override;
|
||||
enode* copy(solver& dst_ctx, enode* src_n);
|
||||
void find_mutexes(literal_vector& lits, vector<literal_vector>& mutexes) override;
|
||||
void gc() override;
|
||||
void pop_reinit() override;
|
||||
|
@ -288,7 +301,7 @@ namespace euf {
|
|||
expr_ref mk_eq(expr* e1, expr* e2);
|
||||
expr_ref mk_eq(euf::enode* n1, euf::enode* n2) { return mk_eq(n1->get_expr(), n2->get_expr()); }
|
||||
euf::enode* mk_enode(expr* e, unsigned n, enode* const* args) { return m_egraph.mk(e, n, args); }
|
||||
expr* bool_var2expr(sat::bool_var v) { return m_var2expr.get(v, nullptr); }
|
||||
expr* bool_var2expr(sat::bool_var v) { return m_bool_var2expr.get(v, nullptr); }
|
||||
sat::literal attach_lit(sat::literal lit, expr* e);
|
||||
void unhandled_function(func_decl* f);
|
||||
th_rewriter& get_rewriter() { return m_rewriter; }
|
||||
|
|
|
@ -42,8 +42,7 @@ namespace fpa {
|
|||
}
|
||||
|
||||
|
||||
expr_ref solver::convert(expr* e)
|
||||
{
|
||||
expr_ref solver::convert(expr* e) {
|
||||
expr_ref res(m);
|
||||
expr* ccnv;
|
||||
TRACE("t_fpa", tout << "converting " << mk_ismt2_pp(e, m) << std::endl;);
|
||||
|
@ -105,6 +104,8 @@ namespace fpa {
|
|||
}
|
||||
|
||||
bool solver::visit(expr* e) {
|
||||
if (visited(e))
|
||||
return true;
|
||||
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
|
||||
ctx.internalize(e, m_is_redundant);
|
||||
return true;
|
||||
|
@ -161,12 +162,12 @@ namespace fpa {
|
|||
SASSERT(m_fpa_util.is_float(n->get_expr()) || m_fpa_util.is_rm(n->get_expr()));
|
||||
SASSERT(n->get_decl()->get_range() == s);
|
||||
|
||||
expr* owner = n->get_expr();
|
||||
|
||||
if (is_attached_to_var(n))
|
||||
return;
|
||||
attach_new_th_var(n);
|
||||
|
||||
expr* owner = n->get_expr();
|
||||
|
||||
if (m_fpa_util.is_rm(s) && !m_fpa_util.is_bv2rm(owner)) {
|
||||
// For every RM term, we need to make sure that it's
|
||||
// associated bit-vector is within the valid range.
|
||||
|
|
|
@ -71,7 +71,7 @@ namespace fpa {
|
|||
void get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) override { UNREACHABLE(); }
|
||||
sat::check_result check() override { return sat::check_result::CR_DONE; }
|
||||
|
||||
euf::th_solver* clone(sat::solver*, euf::solver& ctx) override { return alloc(solver, ctx); }
|
||||
euf::th_solver* clone(euf::solver& ctx) override { return alloc(solver, ctx); }
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -94,7 +94,8 @@ namespace q {
|
|||
init_solver();
|
||||
::solver::scoped_push _sp(*m_solver);
|
||||
expr_ref_vector vars(m);
|
||||
expr_ref body = specialize(q, vars);
|
||||
quantifier* q_flat = qs.flatten(q);
|
||||
expr_ref body = specialize(q_flat, vars);
|
||||
m_solver->assert_expr(body);
|
||||
lbool r = m_solver->check_sat(0, nullptr);
|
||||
if (r == l_undef)
|
||||
|
@ -105,17 +106,17 @@ namespace q {
|
|||
m_solver->get_model(mdl0);
|
||||
expr_ref proj(m);
|
||||
auto add_projection = [&](model& mdl, bool inv) {
|
||||
proj = project(mdl, q, vars, inv);
|
||||
proj = project(mdl, q_flat, vars, inv);
|
||||
if (!proj)
|
||||
return;
|
||||
if (is_forall(q))
|
||||
qs.add_clause(~ctx.expr2literal(q), ctx.b_internalize(proj));
|
||||
else
|
||||
qs.add_clause(ctx.expr2literal(q), ~ctx.b_internalize(proj));
|
||||
qs.add_clause(ctx.expr2literal(q), ~ctx.b_internalize(proj));
|
||||
};
|
||||
bool added = false;
|
||||
#if 0
|
||||
m_model_finder.restrict_instantiations(*m_solver, *mdl0, q, vars);
|
||||
m_model_finder.restrict_instantiations(*m_solver, *mdl0, q_flat, vars);
|
||||
for (unsigned i = 0; i < m_max_cex && l_true == m_solver->check_sat(0, nullptr); ++i) {
|
||||
m_solver->get_model(mdl1);
|
||||
add_projection(*mdl1, true);
|
||||
|
|
|
@ -24,8 +24,8 @@ Author:
|
|||
|
||||
namespace q {
|
||||
|
||||
solver::solver(euf::solver& ctx):
|
||||
th_euf_solver(ctx, symbol("quant"), ctx.get_manager().get_family_id(symbol("quant"))),
|
||||
solver::solver(euf::solver& ctx, family_id fid) :
|
||||
th_euf_solver(ctx, ctx.get_manager().get_family_name(fid), fid),
|
||||
m_mbqi(ctx, *this)
|
||||
{}
|
||||
|
||||
|
@ -61,8 +61,9 @@ namespace q {
|
|||
st.update("quantifier asserts", m_stats.m_num_quantifier_asserts);
|
||||
}
|
||||
|
||||
euf::th_solver* solver::clone(sat::solver* s, euf::solver& ctx) {
|
||||
return alloc(solver, ctx);
|
||||
euf::th_solver* solver::clone(euf::solver& ctx) {
|
||||
family_id fid = ctx.get_manager().mk_family_id(symbol("quant"));
|
||||
return alloc(solver, ctx, fid);
|
||||
}
|
||||
|
||||
bool solver::unit_propagate() {
|
||||
|
|
|
@ -53,7 +53,7 @@ namespace q {
|
|||
|
||||
public:
|
||||
|
||||
solver(euf::solver& ctx);
|
||||
solver(euf::solver& ctx, family_id fid);
|
||||
~solver() override {}
|
||||
bool is_external(sat::bool_var v) override { return false; }
|
||||
void get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) override {}
|
||||
|
@ -64,7 +64,7 @@ namespace q {
|
|||
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override { UNREACHABLE(); return out; }
|
||||
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override { UNREACHABLE(); return out; }
|
||||
void collect_statistics(statistics& st) const override;
|
||||
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
bool unit_propagate() override;
|
||||
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override;
|
||||
void internalize(expr* e, bool redundant) override { UNREACHABLE(); }
|
||||
|
|
|
@ -201,30 +201,61 @@ namespace euf {
|
|||
}
|
||||
|
||||
sat::literal th_euf_solver::eq_internalize(expr* a, expr* b) {
|
||||
return b_internalize(ctx.mk_eq(a, b));
|
||||
expr_ref eq(ctx.mk_eq(a, b), m);
|
||||
return b_internalize(eq);
|
||||
}
|
||||
|
||||
unsigned th_propagation::get_obj_size(unsigned num_lits, unsigned num_eqs) {
|
||||
return sizeof(th_propagation) + sizeof(sat::literal) * num_lits + sizeof(enode_pair) * num_eqs;
|
||||
}
|
||||
|
||||
th_propagation::th_propagation(sat::literal_vector const& lits, enode_pair_vector const& eqs) {
|
||||
m_num_literals = lits.size();
|
||||
m_num_eqs = eqs.size();
|
||||
th_propagation::th_propagation(unsigned n_lits, sat::literal const* lits, unsigned n_eqs, enode_pair const* eqs) {
|
||||
m_num_literals = n_lits;
|
||||
m_num_eqs = n_eqs;
|
||||
m_literals = reinterpret_cast<literal*>(reinterpret_cast<char*>(this) + sizeof(th_propagation));
|
||||
unsigned i = 0;
|
||||
for (sat::literal lit : lits)
|
||||
m_literals[i++] = lit;
|
||||
m_eqs = reinterpret_cast<enode_pair*>(reinterpret_cast<char*>(this) + sizeof(th_propagation) + sizeof(literal) * m_num_literals);
|
||||
i = 0;
|
||||
for (auto eq : eqs)
|
||||
m_eqs[i++] = eq;
|
||||
for (unsigned i = 0; i < n_lits; ++i)
|
||||
m_literals[i] = lits[i];
|
||||
m_eqs = reinterpret_cast<enode_pair*>(reinterpret_cast<char*>(this) + sizeof(th_propagation) + sizeof(literal) * n_lits);
|
||||
for (unsigned i = 0; i < n_eqs; ++i)
|
||||
m_eqs[i] = eqs[i];
|
||||
}
|
||||
|
||||
th_propagation* th_propagation::mk(th_euf_solver& th, sat::literal_vector const& lits, enode_pair_vector const& eqs) {
|
||||
region& r = th.ctx.get_region();
|
||||
void* mem = r.allocate(get_obj_size(lits.size(), eqs.size()));
|
||||
sat::constraint_base::initialize(mem, &th);
|
||||
return new (sat::constraint_base::ptr2mem(mem)) th_propagation(lits, eqs);
|
||||
return mk(th, lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr());
|
||||
}
|
||||
|
||||
th_propagation* th_propagation::mk(th_euf_solver& th, unsigned n_lits, sat::literal const* lits, unsigned n_eqs, enode_pair const* eqs) {
|
||||
region& r = th.ctx.get_region();
|
||||
void* mem = r.allocate(get_obj_size(n_lits, n_eqs));
|
||||
sat::constraint_base::initialize(mem, &th);
|
||||
return new (sat::constraint_base::ptr2mem(mem)) th_propagation(n_lits, lits, n_eqs, eqs);
|
||||
}
|
||||
|
||||
th_propagation* th_propagation::mk(th_euf_solver& th, enode_pair_vector const& eqs) {
|
||||
return mk(th, 0, nullptr, eqs.size(), eqs.c_ptr());
|
||||
}
|
||||
|
||||
th_propagation* th_propagation::mk(th_euf_solver& th, sat::literal lit) {
|
||||
return mk(th, 1, &lit, 0, nullptr);
|
||||
}
|
||||
|
||||
th_propagation* th_propagation::mk(th_euf_solver& th, sat::literal lit, euf::enode* x, euf::enode* y) {
|
||||
enode_pair eq(x, y);
|
||||
return mk(th, 1, &lit, 1, &eq);
|
||||
}
|
||||
|
||||
th_propagation* th_propagation::mk(th_euf_solver& th, euf::enode* x, euf::enode* y) {
|
||||
enode_pair eq(x, y);
|
||||
return mk(th, 0, nullptr, 1, &eq);
|
||||
}
|
||||
|
||||
std::ostream& th_propagation::display(std::ostream& out) const {
|
||||
for (auto lit : euf::th_propagation::lits(*this))
|
||||
out << lit << " ";
|
||||
for (auto eq : euf::th_propagation::eqs(*this))
|
||||
out << eq.first->get_expr_id() << " == " << eq.second->get_expr_id() << " ";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -101,7 +101,7 @@ namespace euf {
|
|||
public:
|
||||
th_solver(ast_manager& m, symbol const& name, euf::theory_id id) : extension(name, id), m(m) {}
|
||||
|
||||
virtual th_solver* clone(sat::solver* s, euf::solver& ctx) = 0;
|
||||
virtual th_solver* clone(euf::solver& ctx) = 0;
|
||||
|
||||
virtual void new_eq_eh(euf::th_eq const& eq) {}
|
||||
|
||||
|
@ -150,7 +150,7 @@ namespace euf {
|
|||
sat::literal eq_internalize(expr* a, expr* b);
|
||||
|
||||
euf::enode* e_internalize(expr* e) { internalize(e, m_is_redundant); return expr2enode(e); }
|
||||
euf::enode* mk_enode(expr* e, bool suppress_args);
|
||||
euf::enode* mk_enode(expr* e, bool suppress_args = false);
|
||||
expr_ref mk_eq(expr* e1, expr* e2);
|
||||
expr_ref mk_var_eq(theory_var v1, theory_var v2) { return mk_eq(var2expr(v1), var2expr(v2)); }
|
||||
|
||||
|
@ -187,14 +187,19 @@ namespace euf {
|
|||
|
||||
|
||||
class th_propagation {
|
||||
unsigned m_num_literals;
|
||||
unsigned m_num_eqs;
|
||||
sat::literal* m_literals;
|
||||
enode_pair* m_eqs;
|
||||
unsigned m_num_literals;
|
||||
unsigned m_num_eqs;
|
||||
sat::literal* m_literals;
|
||||
enode_pair* m_eqs;
|
||||
static unsigned get_obj_size(unsigned num_lits, unsigned num_eqs);
|
||||
th_propagation(sat::literal_vector const& lits, enode_pair_vector const& eqs);
|
||||
th_propagation(unsigned n_lits, sat::literal const* lits, unsigned n_eqs, enode_pair const* eqs);
|
||||
public:
|
||||
static th_propagation* mk(th_euf_solver& th, sat::literal_vector const& lits, enode_pair_vector const& eqs);
|
||||
static th_propagation* mk(th_euf_solver& th, unsigned n_lits, sat::literal const* lits, unsigned n_eqs, enode_pair const* eqs);
|
||||
static th_propagation* mk(th_euf_solver& th, enode_pair_vector const& eqs);
|
||||
static th_propagation* mk(th_euf_solver& th, sat::literal lit);
|
||||
static th_propagation* mk(th_euf_solver& th, sat::literal lit, euf::enode* x, euf::enode* y);
|
||||
static th_propagation* mk(th_euf_solver& th, euf::enode* x, euf::enode* y);
|
||||
|
||||
sat::ext_constraint_idx to_index() const {
|
||||
return sat::constraint_base::mem2base(this);
|
||||
|
@ -203,18 +208,24 @@ namespace euf {
|
|||
return *reinterpret_cast<th_propagation*>(sat::constraint_base::from_index(idx)->mem());
|
||||
}
|
||||
|
||||
sat::extension& ext() const {
|
||||
return *sat::constraint_base::to_extension(to_index());
|
||||
}
|
||||
|
||||
std::ostream& display(std::ostream& out) const;
|
||||
|
||||
class lits {
|
||||
th_propagation& th;
|
||||
th_propagation const& th;
|
||||
public:
|
||||
lits(th_propagation& th) : th(th) {}
|
||||
lits(th_propagation const& th) : th(th) {}
|
||||
sat::literal const* begin() const { return th.m_literals; }
|
||||
sat::literal const* end() const { return th.m_literals + th.m_num_literals; }
|
||||
};
|
||||
|
||||
class eqs {
|
||||
th_propagation& th;
|
||||
th_propagation const& th;
|
||||
public:
|
||||
eqs(th_propagation& th) : th(th) {}
|
||||
eqs(th_propagation const& th) : th(th) {}
|
||||
enode_pair const* begin() const { return th.m_eqs; }
|
||||
enode_pair const* end() const { return th.m_eqs + th.m_num_eqs; }
|
||||
};
|
||||
|
|
|
@ -146,12 +146,10 @@ namespace user {
|
|||
return display_justification(out, idx);
|
||||
}
|
||||
|
||||
euf::th_solver* solver::clone(sat::solver* dst_s, euf::solver& dst_ctx) {
|
||||
euf::th_solver* solver::clone(euf::solver& dst_ctx) {
|
||||
auto* result = alloc(solver, dst_ctx);
|
||||
result->set_solver(dst_s);
|
||||
ast_translation tr(m, dst_ctx.get_manager(), false);
|
||||
for (unsigned i = 0; i < get_num_vars(); ++i)
|
||||
result->add_expr(tr(var2expr(i)));
|
||||
for (unsigned i = 0; i < get_num_vars(); ++i)
|
||||
result->add_expr(ctx.copy(dst_ctx, var2enode(i))->get_expr());
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
@ -124,7 +124,7 @@ namespace user {
|
|||
std::ostream& display(std::ostream& out) const override;
|
||||
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
|
||||
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
|
||||
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
|
||||
euf::th_solver* clone(euf::solver& ctx) override;
|
||||
|
||||
};
|
||||
};
|
||||
|
|
|
@ -4,7 +4,7 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
|
||||
--*/
|
||||
|
||||
#include "qe/qe_arith.h"
|
||||
#include "qe/mbp/mbp_arith.h"
|
||||
#include "qe/qe.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "parsers/smt2/smt2parser.h"
|
||||
|
@ -80,7 +80,7 @@ static void test(app* var, expr_ref& fml) {
|
|||
if (result != l_true) return;
|
||||
ctx.get_model(md);
|
||||
}
|
||||
VERIFY(qe::arith_project(*md, var, lits));
|
||||
VERIFY(mbp::arith_project(*md, var, lits));
|
||||
pr = mk_and(lits);
|
||||
|
||||
std::cout << "original: " << mk_pp(fml, m) << "\n";
|
||||
|
@ -265,7 +265,7 @@ static void test2(char const *ex) {
|
|||
fml2 = m.mk_exists(bound.size(), sorts.c_ptr(), names.c_ptr(), fml2);
|
||||
qe::expr_quant_elim qe(m, params);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
VERIFY(qe::arith_project(*md, vars[i].get(), lits));
|
||||
VERIFY(mbp::arith_project(*md, vars[i].get(), lits));
|
||||
}
|
||||
pr1 = mk_and(lits);
|
||||
qe(m.mk_true(), fml2, pr2);
|
||||
|
@ -382,7 +382,7 @@ static void add_random_ineq(
|
|||
}
|
||||
|
||||
static void test_maximize(opt::model_based_opt& mbo, ast_manager& m, unsigned num_vars, expr_ref_vector const& fmls, app* t) {
|
||||
qe::arith_project_plugin plugin(m);
|
||||
mbp::arith_project_plugin plugin(m);
|
||||
model mdl(m);
|
||||
arith_util a(m);
|
||||
for (unsigned i = 0; i < num_vars; ++i) {
|
||||
|
@ -442,7 +442,7 @@ static void check_random_ineqs() {
|
|||
static void test_project() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
qe::arith_project_plugin plugin(m);
|
||||
mbp::arith_project_plugin plugin(m);
|
||||
arith_util a(m);
|
||||
app_ref_vector vars(m);
|
||||
expr_ref_vector lits(m), ds(m);
|
||||
|
|
Loading…
Reference in a new issue