- increase build version to 4.12.1. This prepares updated release for MacOs-11 build on x86
- move literal propagation mode in euf-egraph to a callback and traversal of equivalence class. Track antecedent by newest equality instead of root. This makes equality propagation to literals have similar behavior as in legacy solver and appears to result in a speedup (10% fewer conflicts on QF_UF/QG-classification/qg5/iso_icl478.smt2 in preliminary testing)
- fix interaction of pre-processing and assumptions. Pre-processing has to freeze assumption literals so they don't get eliminated. This is similar to dependencies that are already frozen.
other updates:
- change signature of advance_qhead to simplify call sites
- have model reconstruction replay work on a tail of dependent_expr state, while adding formulas to the tail.
perf fix for propagation behavior for equalities in the new core.
The old behavior was not to allow congruence closure on equalities.
The new behavior is to just not allow merging tf with equalities unless they appear somewhere in a foreign context (not under a Boolean operator)
The change re-surfaces merge_tf and enable_cgc distinction from the old core.
They can both be turned on or off.
merge_enabled renamed to cgc_enabled
The change is highly likely to introduce regressions in the new core.
Change propagation of literals from congruence:
- track antecedent enode. There are four ways to propagate
literals from the egraph.
- the literal is an equality and the two arguments are congruent
- the antecedent is merged with node n and the antecedent has a Boolean variable assignment.
- the antecedent is true or false, they are merged.
- the merge_tf flag is toggled to true but the node n has not been merged with true/false
gc-ing definitions leads to unsoundness when they are not replayed.
Instead of attempting to replay definitions theory internalization is irredundant by default.
This is also the old solver behavior where TH_LEMMA is essentially never used, but is valid for top-level theory lemmas.
move self-checking functionality to inside sat/smt so it can be used on-line and not just off-line.
when self-validation fails, use vs, not clause, to check. It allows self-validation without checking and maintaining RUP validation.
new options sat.smt.proof.check_rup, sat.smt.proof.check for online validation.
z3 sat.smt.proof.check=true sat.euf=true /v:1 sat.smt.proof.check_rup=true /st file.smt2 sat.smt.proof=p.smt2
EUF proofs are checked modulo union-find.
Equalities are added to to union-find if they are assumptions or if they can be derived using congruence closure. The congruence closure assumptions are added as proof-hints.
Note that this proof format does not track equality inferences, symmetry and transitivity. Instead they are handled by assuming a union-find based checker.
#6319 - fix incompleteness in propagation of default to all array terms in the equivalence class.
Fix bug with q_mbi where domain restrictions are not using values because the current model does not evaluate certain bound variables to values. Set model completion when adding these bound variables to the model to ensure their values are not missed.
Add better propagation of diagnostics when tactics and the new solver return unknown. The reason for unknown can now be traced to what theory was culprit (currently no additional information)
literals that are replayed need to be registered with respective theories, otherwise, they will not propagate with the theories (the enode have to be attached with relevant theory variables).
This commit overhauls the proof format (in development) for the new core.
NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.
It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):
- assume - for input clauses
- learn - when a clause is learned (or redundant clause is added)
- del - when a clause is deleted.
The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.
Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.
Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```
Run z3 on a file with above content.
Then run z3 on f.proof
```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
this update addresses some perf regressions introduced when handling axioms for bv2int and a memory smash regression when decoupling bv-ackerman from in-processing. It adds a filter based on bv_eq_axioms for disabling ackerman reductions on disequalities.