mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
merging with the lp fork
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
cf695ab876
commit
b08f094620
|
@ -1,4 +1,4 @@
|
|||
# Z3's CMake build system
|
||||
# Z3's CMake build system
|
||||
|
||||
[CMake](https://cmake.org/) is a "meta build system" that reads a description
|
||||
of the project written in the ``CMakeLists.txt`` files and emits a build
|
||||
|
|
|
@ -80,7 +80,6 @@ void run_solver(lp_params & params, char const * mps_file_name) {
|
|||
solver->settings().set_message_ostream(&std::cout);
|
||||
solver->settings().report_frequency = params.rep_freq();
|
||||
solver->settings().print_statistics = params.print_stats();
|
||||
solver->settings().presolve_with_double_solver_for_lar = params.presolve_with_dbl();
|
||||
solver->find_maximal_solution();
|
||||
|
||||
*(solver->settings().get_message_ostream()) << "status is " << lp_status_to_string(solver->get_status()) << std::endl;
|
||||
|
|
|
@ -148,8 +148,6 @@ namespace smt {
|
|||
arith_eq_adapter m_arith_eq_adapter;
|
||||
|
||||
vector<rational> m_columns;
|
||||
int m_print_counter = 0;
|
||||
|
||||
// temporary values kept during internalization
|
||||
struct internalize_state {
|
||||
expr_ref_vector m_terms;
|
||||
|
@ -287,7 +285,6 @@ namespace smt {
|
|||
m_theory_var2var_index.reset();
|
||||
m_solver->settings().set_resource_limit(m_resource_limit);
|
||||
m_solver->settings().simplex_strategy() = static_cast<lean::simplex_strategy_enum>(lp.simplex_strategy());
|
||||
m_solver->settings().presolve_with_double_solver_for_lar = lp.presolve_with_dbl();
|
||||
reset_variable_values();
|
||||
m_solver->settings().bound_propagation() = BP_NONE != propagation_mode();
|
||||
m_solver->set_propagate_bounds_on_pivoted_rows_mode(lp.bprop_on_pivoted_rows());
|
||||
|
@ -1985,7 +1982,6 @@ namespace smt {
|
|||
typedef pair_hash<obj_hash<rational>, bool_hash> value_sort_pair_hash;
|
||||
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
|
||||
value2var m_fixed_var_table;
|
||||
const lean::constraint_index null_index = static_cast<lean::constraint_index>(-1);
|
||||
|
||||
void propagate_eqs(lean::var_index vi, lean::constraint_index ci, lean::lconstraint_kind k, lp::bound& b) {
|
||||
if (propagate_eqs()) {
|
||||
|
@ -2029,10 +2025,10 @@ namespace smt {
|
|||
lean::var_index ti = m_solver->adjust_term_index(vi);
|
||||
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
|
||||
if (vec.size() <= ti) {
|
||||
vec.resize(ti + 1, constraint_bound(null_index, rational()));
|
||||
vec.resize(ti + 1, constraint_bound(UINT_MAX, rational()));
|
||||
}
|
||||
constraint_bound& b = vec[ti];
|
||||
if (b.first == null_index || (is_lower? b.second < v : b.second > v)) {
|
||||
if (b.first == UINT_MAX || (is_lower? b.second < v : b.second > v)) {
|
||||
ctx().push_trail(vector_value_trail<context, constraint_bound>(vec, ti));
|
||||
b.first = ci;
|
||||
b.second = v;
|
||||
|
@ -2052,7 +2048,7 @@ namespace smt {
|
|||
rational val;
|
||||
TRACE("arith", tout << vi << " " << v << "\n";);
|
||||
if (v != null_theory_var && a.is_numeral(get_owner(v), val) && bound == val) {
|
||||
ci = null_constraint_index;
|
||||
ci = UINT_MAX;
|
||||
return bound == val;
|
||||
}
|
||||
|
||||
|
@ -2060,7 +2056,7 @@ namespace smt {
|
|||
if (vec.size() > ti) {
|
||||
constraint_bound& b = vec[ti];
|
||||
ci = b.first;
|
||||
return ci != null_index && bound == b.second;
|
||||
return ci != UINT_MAX && bound == b.second;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
|
@ -2144,22 +2140,10 @@ namespace smt {
|
|||
if (m_solver->A_r().row_count() > m_stats.m_max_rows)
|
||||
m_stats.m_max_rows = m_solver->A_r().row_count();
|
||||
TRACE("arith_verbose", display(tout););
|
||||
bool print = false && m_print_counter++ % 1000 == 0;
|
||||
stopwatch sw;
|
||||
if (print) {
|
||||
sw.start();
|
||||
}
|
||||
lean::lp_status status = m_solver->find_feasible_solution();
|
||||
if (print) {
|
||||
sw.stop();
|
||||
}
|
||||
m_stats.m_num_iterations = m_solver->settings().st().m_total_iterations;
|
||||
m_stats.m_num_factorizations = m_solver->settings().st().m_num_factorizations;
|
||||
m_stats.m_need_to_solve_inf = m_solver->settings().st().m_need_to_solve_inf;
|
||||
if (print) {
|
||||
IF_VERBOSE(0, verbose_stream() << status << " " << sw.get_seconds() << " " << m_stats.m_num_iterations << " " << m_print_counter << "\n";);
|
||||
}
|
||||
//m_stats.m_num_iterations_with_no_progress += m_solver->settings().st().m_iters_with_no_cost_growing;
|
||||
|
||||
switch (status) {
|
||||
case lean::lp_status::INFEASIBLE:
|
||||
|
@ -2182,10 +2166,11 @@ namespace smt {
|
|||
literal_vector m_core;
|
||||
svector<enode_pair> m_eqs;
|
||||
vector<parameter> m_params;
|
||||
lean::constraint_index const null_constraint_index = UINT_MAX;
|
||||
|
||||
// lean::constraint_index const null_constraint_index = UINT_MAX; // not sure what a correct fix is
|
||||
|
||||
void set_evidence(lean::constraint_index idx) {
|
||||
if (idx == null_constraint_index) {
|
||||
if (idx == UINT_MAX) {
|
||||
return;
|
||||
}
|
||||
switch (m_constraint_sources[idx]) {
|
||||
|
|
|
@ -1077,7 +1077,7 @@ bool get_double_from_args_parser(const char * option, argument_parser & args_par
|
|||
|
||||
void update_settings(argument_parser & args_parser, lp_settings& settings) {
|
||||
unsigned n;
|
||||
settings.m_simplex_strategy = simplex_strategy_enum::no_tableau;
|
||||
settings.m_simplex_strategy = simplex_strategy_enum::lu;
|
||||
if (get_int_from_args_parser("--rep_frq", args_parser, n))
|
||||
settings.report_frequency = n;
|
||||
else
|
||||
|
|
|
@ -56,10 +56,11 @@ namespace lean {
|
|||
struct formula_constraint {
|
||||
lconstraint_kind m_kind;
|
||||
std::vector<std::pair<mpq, std::string>> m_coeffs;
|
||||
mpq m_right_side = numeric_traits<mpq>::zero();
|
||||
mpq m_right_side;
|
||||
void add_pair(mpq c, std::string name) {
|
||||
m_coeffs.push_back(make_pair(c, name));
|
||||
}
|
||||
formula_constraint() : m_right_side(numeric_traits<mpq>::zero()) {}
|
||||
};
|
||||
|
||||
lisp_elem m_formula_lisp_elem;
|
||||
|
@ -69,9 +70,11 @@ namespace lean {
|
|||
std::string m_file_name;
|
||||
std::ifstream m_file_stream;
|
||||
std::string m_line;
|
||||
bool m_is_OK = true;
|
||||
unsigned m_line_number = 0;
|
||||
smt_reader(std::string file_name):
|
||||
bool m_is_OK;
|
||||
unsigned m_line_number;
|
||||
smt_reader(std::string file_name):
|
||||
m_is_OK(true),
|
||||
m_line_number(0),
|
||||
m_file_name(file_name), m_file_stream(file_name) {
|
||||
}
|
||||
|
||||
|
|
|
@ -16,8 +16,7 @@ class binary_heap_priority_queue {
|
|||
// indexing for A starts from 1
|
||||
vector<unsigned> m_heap; // keeps the elements of the queue
|
||||
vector<int> m_heap_inverse; // o = m_heap[m_heap_inverse[o]]
|
||||
unsigned m_heap_size = 0;
|
||||
|
||||
unsigned m_heap_size;
|
||||
// is is the child place in heap
|
||||
void swap_with_parent(unsigned i);
|
||||
void put_at(unsigned i, unsigned h);
|
||||
|
@ -29,7 +28,7 @@ public:
|
|||
public:
|
||||
void remove(unsigned o);
|
||||
unsigned size() const { return m_heap_size; }
|
||||
binary_heap_priority_queue(): m_heap(1) {} // the empty constructror
|
||||
binary_heap_priority_queue(): m_heap(1), m_heap_size(0) {} // the empty constructror
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
binary_heap_priority_queue(unsigned n);
|
||||
|
|
|
@ -83,7 +83,8 @@ template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
|
|||
template <typename T> binary_heap_priority_queue<T>::binary_heap_priority_queue(unsigned n) :
|
||||
m_priorities(n),
|
||||
m_heap(n + 1), // because the indexing for A starts from 1
|
||||
m_heap_inverse(n, -1)
|
||||
m_heap_inverse(n, -1),
|
||||
m_heap_size(0)
|
||||
{ }
|
||||
|
||||
|
||||
|
|
|
@ -20,8 +20,8 @@ template <typename T>
|
|||
class binary_heap_upair_queue {
|
||||
binary_heap_priority_queue<T> m_q;
|
||||
std::unordered_map<upair, unsigned> m_pairs_to_index;
|
||||
vector<upair> m_pairs; // inverse to index
|
||||
vector<unsigned> m_available_spots;
|
||||
svector<upair> m_pairs; // inverse to index
|
||||
svector<unsigned> m_available_spots;
|
||||
public:
|
||||
binary_heap_upair_queue(unsigned size);
|
||||
|
||||
|
|
|
@ -19,9 +19,9 @@ class bound_analyzer_on_row {
|
|||
|
||||
linear_combination_iterator<mpq> & m_it;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u = -1; // index of an unlimited from above monoid
|
||||
int m_column_of_u; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l = -1; // index of an unlimited from below monoid
|
||||
int m_column_of_l; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
bound_propagator & m_bp;
|
||||
public :
|
||||
|
@ -36,7 +36,9 @@ public :
|
|||
m_it(it),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_rs(rs),
|
||||
m_bp(bp)
|
||||
m_bp(bp),
|
||||
m_column_of_u(-1),
|
||||
m_column_of_l(-1)
|
||||
{}
|
||||
|
||||
|
||||
|
|
|
@ -15,16 +15,16 @@ inline bool is_valid(unsigned j) { return static_cast<int>(j) >= 0;}
|
|||
template <typename T>
|
||||
class column_info {
|
||||
std::string m_name;
|
||||
bool m_low_bound_is_set = false;
|
||||
bool m_low_bound_is_strict = false;
|
||||
bool m_upper_bound_is_set = false;
|
||||
bool m_upper_bound_is_strict = false;
|
||||
bool m_low_bound_is_set;
|
||||
bool m_low_bound_is_strict;
|
||||
bool m_upper_bound_is_set;
|
||||
bool m_upper_bound_is_strict;
|
||||
T m_low_bound;
|
||||
T m_upper_bound;
|
||||
T m_cost = numeric_traits<T>::zero();
|
||||
T m_cost;
|
||||
T m_fixed_value;
|
||||
bool m_is_fixed = false;
|
||||
unsigned m_column_index = static_cast<unsigned>(-1);
|
||||
bool m_is_fixed;
|
||||
unsigned m_column_index;
|
||||
public:
|
||||
bool operator==(const column_info & c) const {
|
||||
return m_name == c.m_name &&
|
||||
|
@ -44,9 +44,24 @@ public:
|
|||
m_column_index = j;
|
||||
}
|
||||
// the default constructor
|
||||
column_info() {}
|
||||
|
||||
column_info(unsigned column_index) : m_column_index(column_index) {
|
||||
column_info():
|
||||
m_low_bound_is_set(false),
|
||||
m_low_bound_is_strict(false),
|
||||
m_upper_bound_is_set (false),
|
||||
m_upper_bound_is_strict (false),
|
||||
m_is_fixed(false),
|
||||
m_cost(numeric_traits<T>::zero()),
|
||||
m_column_index(static_cast<unsigned>(-1))
|
||||
{}
|
||||
|
||||
column_info(unsigned column_index) :
|
||||
m_low_bound_is_set(false),
|
||||
m_low_bound_is_strict(false),
|
||||
m_upper_bound_is_set (false),
|
||||
m_upper_bound_is_strict (false),
|
||||
m_is_fixed(false),
|
||||
m_cost(numeric_traits<T>::zero()),
|
||||
m_column_index(column_index) {
|
||||
}
|
||||
|
||||
column_info(const column_info & ci) {
|
||||
|
|
44
src/util/lp/conversion_helper.h
Normal file
44
src/util/lp/conversion_helper.h
Normal file
|
@ -0,0 +1,44 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
namespace lean {
|
||||
template <typename V>
|
||||
struct conversion_helper {
|
||||
static V get_low_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_low_bound(), ci.low_bound_is_strict()? 1 : 0);
|
||||
}
|
||||
|
||||
static V get_upper_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_upper_bound(), ci.upper_bound_is_strict()? -1 : 0);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct conversion_helper <double> {
|
||||
static double conversion_helper <double>::get_upper_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.upper_bound_is_strict())
|
||||
return ci.get_upper_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.low_bound_is_set())
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
}
|
||||
|
||||
static double get_low_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.low_bound_is_strict())
|
||||
return ci.get_low_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.upper_bound_is_set())
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
|
@ -16,7 +16,6 @@ template <typename T, typename X> class lp_core_solver_base; // forward definiti
|
|||
template <typename T, typename X>
|
||||
class core_solver_pretty_printer {
|
||||
std::ostream & m_out;
|
||||
template<typename A> using vector = vector<A>;
|
||||
typedef std::string string;
|
||||
lp_core_solver_base<T, X> & m_core_solver;
|
||||
vector<unsigned> m_column_widths;
|
||||
|
@ -34,15 +33,15 @@ class core_solver_pretty_printer {
|
|||
std::string m_cost_title;
|
||||
std::string m_basis_heading_title;
|
||||
std::string m_x_title;
|
||||
std::string m_low_bounds_title = "low";
|
||||
std::string m_upp_bounds_title = "upp";
|
||||
std::string m_exact_norm_title = "exact cn";
|
||||
std::string m_approx_norm_title = "approx cn";
|
||||
std::string m_low_bounds_title;
|
||||
std::string m_upp_bounds_title;
|
||||
std::string m_exact_norm_title;
|
||||
std::string m_approx_norm_title;
|
||||
|
||||
|
||||
unsigned ncols() { return m_core_solver.m_A.column_count(); }
|
||||
unsigned nrows() { return m_core_solver.m_A.row_count(); }
|
||||
unsigned m_artificial_start = std::numeric_limits<unsigned>::max();
|
||||
unsigned m_artificial_start;
|
||||
indexed_vector<T> m_w_buff;
|
||||
indexed_vector<T> m_ed_buff;
|
||||
vector<T> m_exact_column_norms;
|
||||
|
|
|
@ -23,6 +23,12 @@ core_solver_pretty_printer<T, X>::core_solver_pretty_printer(lp_core_solver_base
|
|||
m_rs(ncols(), zero_of_type<X>()),
|
||||
m_w_buff(core_solver.m_w),
|
||||
m_ed_buff(core_solver.m_ed) {
|
||||
m_low_bounds_title = "low";
|
||||
m_upp_bounds_title = "upp";
|
||||
m_exact_norm_title = "exact cn";
|
||||
m_approx_norm_title = "approx cn";
|
||||
m_artificial_start = std::numeric_limits<unsigned>::max();
|
||||
|
||||
m_column_widths.resize(core_solver.m_A.column_count(), 0),
|
||||
init_m_A_and_signs();
|
||||
init_costs();
|
||||
|
|
573
src/util/lp/init_lar_solver.h
Normal file
573
src/util/lp/init_lar_solver.h
Normal file
|
@ -0,0 +1,573 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
// here we are inside lean::lar_solver class
|
||||
|
||||
bool strategy_is_undecided() const {
|
||||
return m_settings.simplex_strategy() == simplex_strategy_enum::undecided;
|
||||
}
|
||||
|
||||
var_index add_var(unsigned ext_j) {
|
||||
var_index i;
|
||||
lean_assert (ext_j < m_terms_start_index);
|
||||
|
||||
if (ext_j >= m_terms_start_index)
|
||||
throw 0; // todo : what is the right way to exit?
|
||||
|
||||
if (try_get_val(m_ext_vars_to_columns, ext_j, i)) {
|
||||
return i;
|
||||
}
|
||||
lean_assert(m_vars_to_ul_pairs.size() == A_r().column_count());
|
||||
i = A_r().column_count();
|
||||
m_vars_to_ul_pairs.push_back (ul_pair(static_cast<unsigned>(-1)));
|
||||
add_non_basic_var_to_core_fields(ext_j);
|
||||
lean_assert(sizes_are_correct());
|
||||
return i;
|
||||
}
|
||||
|
||||
void register_new_ext_var_index(unsigned ext_v) {
|
||||
lean_assert(!contains(m_ext_vars_to_columns, ext_v));
|
||||
unsigned j = m_ext_vars_to_columns.size();
|
||||
m_ext_vars_to_columns[ext_v] = j;
|
||||
lean_assert(m_columns_to_ext_vars_or_term_indices.size() == j);
|
||||
m_columns_to_ext_vars_or_term_indices.push_back(ext_v);
|
||||
}
|
||||
|
||||
void add_non_basic_var_to_core_fields(unsigned ext_j) {
|
||||
register_new_ext_var_index(ext_j);
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(false);
|
||||
if (use_lu())
|
||||
add_new_var_to_core_fields_for_doubles(false);
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_doubles(bool register_in_basis) {
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_mpq(bool register_in_basis) {
|
||||
unsigned j = A_r().column_count();
|
||||
A_r().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_r_x.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_inf_set.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_costs.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_d.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_r().add_row();
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
|
||||
m_mpq_lar_core_solver.m_r_basis.push_back(j);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_r_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
var_index add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
return m_terms_start_index + m_terms.size() - 1;
|
||||
}
|
||||
|
||||
// terms
|
||||
var_index add_term(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
if (strategy_is_undecided())
|
||||
return add_term_undecided(coeffs, m_v);
|
||||
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
unsigned adjusted_term_index = m_terms.size() - 1;
|
||||
var_index ret = m_terms_start_index + adjusted_term_index;
|
||||
if (use_tableau() && !coeffs.empty()) {
|
||||
add_row_for_term(m_orig_terms.back(), ret);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
}
|
||||
lean_assert(m_ext_vars_to_columns.size() == A_r().column_count());
|
||||
return ret;
|
||||
}
|
||||
|
||||
void add_row_for_term(const lar_term * term, unsigned term_ext_index) {
|
||||
lean_assert(sizes_are_correct());
|
||||
add_row_from_term_no_constraint(term, term_ext_index);
|
||||
lean_assert(sizes_are_correct());
|
||||
}
|
||||
|
||||
void add_row_from_term_no_constraint(const lar_term * term, unsigned term_ext_index) {
|
||||
register_new_ext_var_index(term_ext_index);
|
||||
// j will be a new variable
|
||||
unsigned j = A_r().column_count();
|
||||
ul_pair ul(j);
|
||||
m_vars_to_ul_pairs.push_back(ul);
|
||||
add_basic_var_to_core_fields();
|
||||
if (use_tableau()) {
|
||||
auto it = iterator_on_term_with_basis_var(*term, j);
|
||||
A_r().fill_last_row_with_pivoting(it,
|
||||
m_mpq_lar_core_solver.m_r_solver.m_basis_heading);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_b.resize(A_r().column_count(), zero_of_type<mpq>());
|
||||
} else {
|
||||
fill_last_row_of_A_r(A_r(), term);
|
||||
}
|
||||
m_mpq_lar_core_solver.m_r_x[j] = get_basic_var_value_from_row_directly(A_r().row_count() - 1);
|
||||
if (use_lu())
|
||||
fill_last_row_of_A_d(A_d(), term);
|
||||
}
|
||||
|
||||
void add_basic_var_to_core_fields() {
|
||||
bool use_lu = m_mpq_lar_core_solver.need_to_presolve_with_double_solver();
|
||||
lean_assert(!use_lu || A_r().column_count() == A_d().column_count());
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
m_rows_with_changed_bounds.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(true);
|
||||
if (use_lu)
|
||||
add_new_var_to_core_fields_for_doubles(true);
|
||||
}
|
||||
|
||||
constraint_index add_var_bound(var_index j, lconstraint_kind kind, const mpq & right_side) {
|
||||
constraint_index ci = m_constraints.size();
|
||||
if (!is_term(j)) { // j is a var
|
||||
auto vc = new lar_var_constraint(j, kind, right_side);
|
||||
m_constraints.push_back(vc);
|
||||
update_column_type_and_bound(j, kind, right_side, ci);
|
||||
} else {
|
||||
add_var_bound_on_constraint_for_term(j, kind, right_side, ci);
|
||||
}
|
||||
lean_assert(sizes_are_correct());
|
||||
return ci;
|
||||
}
|
||||
|
||||
void update_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_index) {
|
||||
switch(m_mpq_lar_core_solver.m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
update_free_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::boxed:
|
||||
update_boxed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
update_low_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
update_upper_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::fixed:
|
||||
update_fixed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
default:
|
||||
lean_assert(false); // cannot be here
|
||||
}
|
||||
}
|
||||
|
||||
void add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(is_term(j));
|
||||
unsigned adjusted_term_index = adjust_term_index(j);
|
||||
unsigned term_j;
|
||||
if (try_get_val(m_ext_vars_to_columns, j, term_j)) {
|
||||
mpq rs = right_side - m_orig_terms[adjusted_term_index]->m_v;
|
||||
m_constraints.push_back(new lar_term_constraint(m_orig_terms[adjusted_term_index], kind, right_side));
|
||||
update_column_type_and_bound(term_j, kind, rs, ci);
|
||||
}
|
||||
else {
|
||||
add_constraint_from_term_and_create_new_column_row(j, m_orig_terms[adjusted_term_index], kind, right_side);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term,
|
||||
lconstraint_kind kind, const mpq & right_side) {
|
||||
|
||||
add_row_from_term_no_constraint(term, term_j);
|
||||
unsigned j = A_r().column_count() - 1;
|
||||
update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size());
|
||||
m_constraints.push_back(new lar_term_constraint(term, kind, right_side));
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
}
|
||||
|
||||
void decide_on_strategy_and_adjust_initial_state() {
|
||||
lean_assert(strategy_is_undecided());
|
||||
if (m_vars_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::lu;
|
||||
} else {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::tableau_rows; // todo: when to switch to tableau_costs?
|
||||
}
|
||||
adjust_initial_state();
|
||||
}
|
||||
|
||||
void adjust_initial_state() {
|
||||
switch (m_settings.simplex_strategy()) {
|
||||
case simplex_strategy_enum::lu:
|
||||
adjust_initial_state_for_lu();
|
||||
break;
|
||||
case simplex_strategy_enum::tableau_rows:
|
||||
adjust_initial_state_for_tableau_rows();
|
||||
break;
|
||||
case simplex_strategy_enum::tableau_costs:
|
||||
lean_assert(false); // not implemented
|
||||
}
|
||||
}
|
||||
|
||||
void adjust_initial_state_for_lu() {
|
||||
copy_from_mpq_matrix(A_d());
|
||||
unsigned n = A_d().column_count();
|
||||
m_mpq_lar_core_solver.m_d_x.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_heading = m_mpq_lar_core_solver.m_r_heading;
|
||||
m_mpq_lar_core_solver.m_d_basis = m_mpq_lar_core_solver.m_r_basis;
|
||||
|
||||
/*
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}*/
|
||||
}
|
||||
|
||||
void adjust_initial_state_for_tableau_rows() {
|
||||
for (unsigned j = 0; j < m_terms.size(); j++) {
|
||||
if (contains(m_ext_vars_to_columns, j + m_terms_start_index))
|
||||
continue;
|
||||
add_row_from_term_no_constraint(m_terms[j], j + m_terms_start_index);
|
||||
}
|
||||
}
|
||||
|
||||
// this fills the last row of A_d and sets the basis column: -1 in the last column of the row
|
||||
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls) {
|
||||
lean_assert(A.row_count() > 0);
|
||||
lean_assert(A.column_count() > 0);
|
||||
unsigned last_row = A.row_count() - 1;
|
||||
lean_assert(A.m_rows[last_row].empty());
|
||||
|
||||
for (auto & t : ls->m_coeffs) {
|
||||
lean_assert(!is_zero(t.second));
|
||||
var_index j = t.first;
|
||||
A.set(last_row, j, - t.second.get_double());
|
||||
}
|
||||
|
||||
unsigned basis_j = A.column_count() - 1;
|
||||
A.set(last_row, basis_j, - 1 );
|
||||
}
|
||||
|
||||
void update_free_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_ind) {
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::upper_bound;
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
}
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::low_bound;
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
}
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case EQ:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
void update_upper_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds()[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::boxed;
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_boxed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
lean_assert(false);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
if (m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j])
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else if ( low == m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
void update_low_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero()));
|
||||
auto v = numeric_pair<mpq>(right_side, mpq(0));
|
||||
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
if (v <= m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
case LE:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
{
|
||||
if (v >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index =j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GE:
|
||||
{
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
|
@ -11,7 +11,7 @@ template <typename T, typename X>
|
|||
struct iterator_on_column:linear_combination_iterator<T> {
|
||||
const vector<column_cell>& m_column; // the offset in term coeffs
|
||||
const static_matrix<T, X> & m_A;
|
||||
int m_i = -1; // the initial offset in the column
|
||||
int m_i; // the initial offset in the column
|
||||
unsigned size() const { return m_column.size(); }
|
||||
iterator_on_column(const vector<column_cell>& column, const static_matrix<T,X> & A) // the offset in term coeffs
|
||||
:
|
||||
|
|
|
@ -8,8 +8,11 @@ namespace lean {
|
|||
template <typename T>
|
||||
struct iterator_on_indexed_vector:linear_combination_iterator<T> {
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_offset = 0;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) : m_v(v){}
|
||||
unsigned m_offset;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) :
|
||||
m_v(v),
|
||||
m_offset(0)
|
||||
{}
|
||||
unsigned size() const { return m_v.m_index.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
|
|
|
@ -7,12 +7,14 @@
|
|||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_pivot_row:linear_combination_iterator<T> {
|
||||
bool m_basis_returned = false;
|
||||
bool m_basis_returned;
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_basis_j;
|
||||
iterator_on_indexed_vector<T> m_it;
|
||||
unsigned size() const { return m_it.size(); }
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) : m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) :
|
||||
m_basis_returned(false),
|
||||
m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
|
|
|
@ -8,8 +8,8 @@ namespace lean {
|
|||
template <typename T>
|
||||
struct iterator_on_row:linear_combination_iterator<T> {
|
||||
const vector<row_cell<T>> & m_row;
|
||||
unsigned m_i= 0; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row)
|
||||
unsigned m_i; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row), m_i(0)
|
||||
{}
|
||||
unsigned size() const { return m_row.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
|
|
|
@ -9,11 +9,12 @@
|
|||
namespace lean {
|
||||
struct iterator_on_term_with_basis_var:linear_combination_iterator<mpq> {
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_i; // the offset in term coeffs
|
||||
bool m_term_j_returned = false;
|
||||
bool m_term_j_returned;
|
||||
const lar_term & m_term;
|
||||
unsigned m_term_j;
|
||||
unsigned size() const {return static_cast<unsigned>(m_term.m_coeffs.size() + 1);}
|
||||
iterator_on_term_with_basis_var(const lar_term & t, unsigned term_j) :
|
||||
m_term_j_returned(false),
|
||||
m_i(t.m_coeffs.begin()),
|
||||
m_term(t),
|
||||
m_term_j(term_j) {}
|
||||
|
|
|
@ -25,7 +25,7 @@ class lar_core_solver {
|
|||
// to grow and is set to -1 otherwise
|
||||
int m_sign_of_entering_delta;
|
||||
vector<std::pair<mpq, unsigned>> m_infeasible_linear_combination;
|
||||
int m_infeasible_sum_sign = 0; // todo: get rid of this field
|
||||
int m_infeasible_sum_sign; // todo: get rid of this field
|
||||
vector<numeric_pair<mpq>> m_right_sides_dummy;
|
||||
vector<mpq> m_costs_dummy;
|
||||
vector<double> m_d_right_sides_dummy;
|
||||
|
|
|
@ -14,7 +14,8 @@ namespace lean {
|
|||
lar_core_solver::lar_core_solver(
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names
|
||||
):
|
||||
):
|
||||
m_infeasible_sum_sign(0),
|
||||
m_r_solver(m_r_A,
|
||||
m_right_sides_dummy,
|
||||
m_r_x,
|
||||
|
|
|
@ -35,7 +35,7 @@ namespace lean {
|
|||
class lar_solver : public column_namer {
|
||||
//////////////////// fields //////////////////////////
|
||||
lp_settings m_settings;
|
||||
stacked_value<lp_status> m_status = OPTIMAL;
|
||||
stacked_value<lp_status> m_status;
|
||||
stacked_value<simplex_strategy_enum> m_simplex_strategy;
|
||||
std::unordered_map<unsigned, var_index> m_ext_vars_to_columns;
|
||||
vector<unsigned> m_columns_to_ext_vars_or_term_indices;
|
||||
|
@ -46,13 +46,13 @@ class lar_solver : public column_namer {
|
|||
int_set m_columns_with_changed_bound;
|
||||
int_set m_rows_with_changed_bounds;
|
||||
int_set m_basic_columns_with_changed_cost;
|
||||
stacked_value<int> m_infeasible_column_index = -1; // such can be found at the initialization step
|
||||
stacked_value<int> m_infeasible_column_index; // such can be found at the initialization step
|
||||
stacked_value<unsigned> m_term_count;
|
||||
vector<lar_term*> m_terms;
|
||||
vector<lar_term*> m_orig_terms;
|
||||
const var_index m_terms_start_index = 1000000;
|
||||
const var_index m_terms_start_index;
|
||||
indexed_vector<mpq> m_column_buffer;
|
||||
std::function<column_type (unsigned)> m_column_type_function = [this] (unsigned j) {return m_mpq_lar_core_solver.m_column_types()[j];};
|
||||
std::function<column_type (unsigned)> m_column_type_function;
|
||||
public:
|
||||
lar_core_solver m_mpq_lar_core_solver;
|
||||
unsigned constraint_count() const {
|
||||
|
@ -83,7 +83,12 @@ public:
|
|||
lar_solver() : m_mpq_lar_core_solver(
|
||||
m_settings,
|
||||
*this
|
||||
) {}
|
||||
),
|
||||
m_status(OPTIMAL),
|
||||
m_infeasible_column_index(-1),
|
||||
m_terms_start_index(1000000),
|
||||
m_column_type_function ([this] (unsigned j) {return m_mpq_lar_core_solver.m_column_types()[j];})
|
||||
{}
|
||||
|
||||
void set_propagate_bounds_on_pivoted_rows_mode(bool v) {
|
||||
m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows = v? (& m_rows_with_changed_bounds) : nullptr;
|
||||
|
|
|
@ -16,7 +16,7 @@ struct linear_combination_iterator {
|
|||
template <typename T>
|
||||
struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
||||
vector<std::pair<T, unsigned>> & m_vector;
|
||||
int m_offset = 0;
|
||||
int m_offset;
|
||||
bool next(T & a, unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
|
@ -40,7 +40,10 @@ struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
|||
linear_combination_iterator<T> * clone() {
|
||||
return new linear_combination_iterator_on_vector(m_vector);
|
||||
}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec): m_vector(vec) {}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec):
|
||||
m_vector(vec),
|
||||
m_offset(0)
|
||||
{}
|
||||
unsigned size() const { return m_vector.size(); }
|
||||
};
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ namespace lean {
|
|||
|
||||
template <typename T, typename X> // X represents the type of the x variable and the bounds
|
||||
class lp_core_solver_base {
|
||||
unsigned m_total_iterations = 0;
|
||||
unsigned m_total_iterations;
|
||||
unsigned inc_total_iterations() { ++m_settings.st().m_total_iterations; return m_total_iterations++; }
|
||||
private:
|
||||
lp_status m_status;
|
||||
|
@ -25,7 +25,7 @@ public:
|
|||
bool current_x_is_feasible() const { return m_inf_set.size() == 0; }
|
||||
bool current_x_is_infeasible() const { return m_inf_set.size() != 0; }
|
||||
int_set m_inf_set;
|
||||
bool m_using_infeas_costs = false;
|
||||
bool m_using_infeas_costs;
|
||||
|
||||
|
||||
vector<unsigned> m_columns_nz; // m_columns_nz[i] keeps an approximate value of non zeroes the i-th column
|
||||
|
@ -42,23 +42,23 @@ public:
|
|||
lp_settings & m_settings;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
// a device that is able to solve Bx=c, xB=d, and change the basis
|
||||
lu<T, X> * m_factorization = nullptr;
|
||||
lu<T, X> * m_factorization;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
indexed_vector<T> m_ed; // the solution of B*m_ed = a
|
||||
unsigned m_iters_with_no_cost_growing = 0;
|
||||
unsigned m_iters_with_no_cost_growing;
|
||||
const vector<column_type> & m_column_types;
|
||||
const vector<X> & m_low_bounds;
|
||||
const vector<X> & m_upper_bounds;
|
||||
vector<T> m_column_norms; // the approximate squares of column norms that help choosing a profitable column
|
||||
vector<X> m_copy_of_xB;
|
||||
unsigned m_basis_sort_counter = 0;
|
||||
unsigned m_basis_sort_counter;
|
||||
vector<T> m_steepest_edge_coefficients;
|
||||
vector<unsigned> m_trace_of_basis_change_vector; // the even positions are entering, the odd positions are leaving
|
||||
bool m_tracing_basis_changes = false;
|
||||
int_set* m_pivoted_rows = nullptr;
|
||||
bool m_look_for_feasible_solution_only = false;
|
||||
bool m_tracing_basis_changes;
|
||||
int_set* m_pivoted_rows;
|
||||
bool m_look_for_feasible_solution_only;
|
||||
void start_tracing_basis_changes() {
|
||||
m_trace_of_basis_change_vector.resize(0);
|
||||
m_tracing_basis_changes = true;
|
||||
|
|
|
@ -45,7 +45,14 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
m_upper_bounds(upper_bound_values),
|
||||
m_column_norms(m_n()),
|
||||
m_copy_of_xB(m_m()),
|
||||
m_steepest_edge_coefficients(A.column_count()) {
|
||||
m_steepest_edge_coefficients(A.column_count()),
|
||||
m_total_iterations(0),
|
||||
m_using_infeas_costs(false),
|
||||
m_iters_with_no_cost_growing(0),
|
||||
m_basis_sort_counter(0),
|
||||
m_tracing_basis_changes(false),
|
||||
m_pivoted_rows(nullptr),
|
||||
m_look_for_feasible_solution_only(false) {
|
||||
lean_assert(bounds_for_boxed_are_set_correctly());
|
||||
init();
|
||||
init_basis_heading_and_non_basic_columns_vector();
|
||||
|
|
|
@ -11,7 +11,7 @@ namespace lean {
|
|||
|
||||
template <typename T, typename X>
|
||||
class lp_dual_simplex: public lp_solver<T, X> {
|
||||
lp_dual_core_solver<T, X> * m_core_solver = nullptr;
|
||||
lp_dual_core_solver<T, X> * m_core_solver;
|
||||
vector<T> m_b_copy;
|
||||
vector<T> m_low_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
|
||||
vector<column_type> m_column_types_of_core_solver;
|
||||
|
@ -24,6 +24,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
lp_dual_simplex() : m_core_solver(nullptr) {}
|
||||
|
||||
|
||||
void decide_on_status_after_stage1();
|
||||
|
|
|
@ -38,13 +38,13 @@ public:
|
|||
vector<breakpoint<X>> m_breakpoints;
|
||||
binary_heap_priority_queue<X> m_breakpoint_indices_queue;
|
||||
indexed_vector<T> m_beta; // see Swietanowski working vector beta for column norms
|
||||
T m_epsilon_of_reduced_cost = T(1)/T(10000000);
|
||||
T m_epsilon_of_reduced_cost;
|
||||
vector<T> m_costs_backup;
|
||||
T m_converted_harris_eps;
|
||||
unsigned m_inf_row_index_for_tableau;
|
||||
bool m_bland_mode_tableau;
|
||||
int_set m_left_basis_tableau;
|
||||
unsigned m_bland_mode_threshold = 1000;
|
||||
unsigned m_bland_mode_threshold;
|
||||
unsigned m_left_basis_repeated;
|
||||
vector<unsigned> m_leaving_candidates;
|
||||
// T m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
|
@ -905,6 +905,8 @@ public:
|
|||
column_type_array,
|
||||
low_bound_values,
|
||||
upper_bound_values),
|
||||
m_epsilon_of_reduced_cost(T(1)/T(10000000)),
|
||||
m_bland_mode_threshold(1000),
|
||||
m_beta(A.row_count()) {
|
||||
|
||||
if (!(numeric_traits<T>::precise())) {
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
class lp_primal_simplex: public lp_solver<T, X> {
|
||||
lp_primal_core_solver<T, X> * m_core_solver = nullptr;
|
||||
lp_primal_core_solver<T, X> * m_core_solver;
|
||||
vector<X> m_low_bounds;
|
||||
private:
|
||||
unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); }
|
||||
|
@ -28,7 +28,7 @@ private:
|
|||
|
||||
void set_scaled_costs();
|
||||
public:
|
||||
lp_primal_simplex() {}
|
||||
lp_primal_simplex(): m_core_solver(nullptr) {}
|
||||
|
||||
column_info<T> * get_or_create_column_info(unsigned column);
|
||||
|
||||
|
|
|
@ -106,49 +106,49 @@ private:
|
|||
default_lp_resource_limit m_default_resource_limit;
|
||||
lp_resource_limit* m_resource_limit;
|
||||
// used for debug output
|
||||
std::ostream* m_debug_out = &std::cout;
|
||||
std::ostream* m_debug_out;
|
||||
// used for messages, for example, the computation progress messages
|
||||
std::ostream* m_message_out = &std::cout;
|
||||
std::ostream* m_message_out;
|
||||
|
||||
stats m_stats;
|
||||
|
||||
public:
|
||||
unsigned reps_in_scaler = 20;
|
||||
unsigned reps_in_scaler;
|
||||
// when the absolute value of an element is less than pivot_epsilon
|
||||
// in pivoting, we treat it as a zero
|
||||
double pivot_epsilon = 0.00000001;
|
||||
double pivot_epsilon;
|
||||
// see Chatal, page 115
|
||||
double positive_price_epsilon = 1e-7;
|
||||
double positive_price_epsilon;
|
||||
// a quatation "if some choice of the entering vairable leads to an eta matrix
|
||||
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
|
||||
double entering_diag_epsilon = 1e-8;
|
||||
int c_partial_pivoting = 10; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search = 4;
|
||||
bool using_partial_pivoting = true;
|
||||
double entering_diag_epsilon;
|
||||
int c_partial_pivoting; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search;
|
||||
bool using_partial_pivoting;
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
double refactor_tolerance = 1e-4;
|
||||
double pivot_tolerance = 1e-6;
|
||||
double zero_tolerance = 1e-12;
|
||||
double drop_tolerance = 1e-14;
|
||||
double tolerance_for_artificials = 1e-4;
|
||||
double can_be_taken_to_basis_tolerance = 0.00001;
|
||||
double refactor_tolerance;
|
||||
double pivot_tolerance;
|
||||
double zero_tolerance;
|
||||
double drop_tolerance;
|
||||
double tolerance_for_artificials;
|
||||
double can_be_taken_to_basis_tolerance;
|
||||
|
||||
unsigned percent_of_entering_to_check = 5; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling = true;
|
||||
double scaling_maximum = 1;
|
||||
double scaling_minimum = 0.5;
|
||||
double harris_feasibility_tolerance = 1e-7; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris = 10e-5;
|
||||
unsigned max_number_of_iterations_with_no_improvements = 2000000;
|
||||
unsigned max_total_number_of_iterations = 20000000;
|
||||
double time_limit = std::numeric_limits<double>::max(); // the maximum time limit of the total run time in seconds
|
||||
unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling;
|
||||
double scaling_maximum;
|
||||
double scaling_minimum;
|
||||
double harris_feasibility_tolerance; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris;
|
||||
unsigned max_number_of_iterations_with_no_improvements;
|
||||
unsigned max_total_number_of_iterations;
|
||||
double time_limit; // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
double dual_feasibility_tolerance = 1e-7; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance = 1e-7; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance = 1e-9; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
|
||||
bool m_bound_propagation = true;
|
||||
bool m_bound_propagation;
|
||||
|
||||
bool bound_progation() const {
|
||||
return m_bound_propagation;
|
||||
|
@ -158,7 +158,53 @@ public:
|
|||
return m_bound_propagation;
|
||||
}
|
||||
|
||||
lp_settings() : m_default_resource_limit(*this), m_resource_limit(&m_default_resource_limit) {}
|
||||
lp_settings() : m_default_resource_limit(*this),
|
||||
m_resource_limit(&m_default_resource_limit),
|
||||
m_debug_out( &std::cout),
|
||||
m_message_out(&std::cout),
|
||||
reps_in_scaler(20),
|
||||
pivot_epsilon(0.00000001),
|
||||
positive_price_epsilon(1e-7),
|
||||
entering_diag_epsilon ( 1e-8),
|
||||
c_partial_pivoting ( 10), // this is the constant c from page 410
|
||||
depth_of_rook_search ( 4),
|
||||
using_partial_pivoting ( true),
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
refactor_tolerance ( 1e-4),
|
||||
pivot_tolerance ( 1e-6),
|
||||
zero_tolerance ( 1e-12),
|
||||
drop_tolerance ( 1e-14),
|
||||
tolerance_for_artificials ( 1e-4),
|
||||
can_be_taken_to_basis_tolerance ( 0.00001),
|
||||
|
||||
percent_of_entering_to_check ( 5),// we try to find a profitable column in a percentage of the columns
|
||||
use_scaling ( true),
|
||||
scaling_maximum ( 1),
|
||||
scaling_minimum ( 0.5),
|
||||
harris_feasibility_tolerance ( 1e-7), // page 179 of Istvan Maros
|
||||
ignore_epsilon_of_harris ( 10e-5),
|
||||
max_number_of_iterations_with_no_improvements ( 2000000),
|
||||
max_total_number_of_iterations ( 20000000),
|
||||
time_limit ( std::numeric_limits<double>::max()), // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
dual_feasibility_tolerance ( 1e-7), // // page 71 of the PhD thesis of Achim Koberstein
|
||||
primal_feasibility_tolerance ( 1e-7), // page 71 of the PhD thesis of Achim Koberstein
|
||||
relative_primal_feasibility_tolerance ( 1e-9), // page 71 of the PhD thesis of Achim Koberstein
|
||||
m_bound_propagation ( true),
|
||||
presolve_with_double_solver_for_lar(true),
|
||||
m_simplex_strategy(simplex_strategy_enum::tableau_rows),
|
||||
report_frequency(1000),
|
||||
print_statistics(false),
|
||||
column_norms_update_frequency(12000),
|
||||
scale_with_ratio(true),
|
||||
density_threshold(0.7),
|
||||
use_breakpoints_in_feasibility_search(false),
|
||||
random_seed(1),
|
||||
max_row_length_for_bound_propagation(300),
|
||||
backup_costs(true),
|
||||
column_number_threshold_for_using_lu_in_lar_solver(4000)
|
||||
{}
|
||||
|
||||
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
|
||||
bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); }
|
||||
|
@ -227,8 +273,8 @@ public:
|
|||
return is_eps_small_general<T>(t, tolerance_for_artificials);
|
||||
}
|
||||
// the method of lar solver to use
|
||||
bool presolve_with_double_solver_for_lar = true;
|
||||
simplex_strategy_enum m_simplex_strategy = simplex_strategy_enum::tableau_rows;
|
||||
bool presolve_with_double_solver_for_lar;
|
||||
simplex_strategy_enum m_simplex_strategy;
|
||||
simplex_strategy_enum simplex_strategy() const {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
@ -250,20 +296,20 @@ public:
|
|||
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
|
||||
}
|
||||
|
||||
int report_frequency = 1000;
|
||||
bool print_statistics = false;
|
||||
unsigned column_norms_update_frequency = 12000;
|
||||
bool scale_with_ratio = true;
|
||||
double density_threshold = 0.7; // need to tune it up, todo
|
||||
int report_frequency;
|
||||
bool print_statistics;
|
||||
unsigned column_norms_update_frequency;
|
||||
bool scale_with_ratio;
|
||||
double density_threshold; // need to tune it up, todo
|
||||
#ifdef LEAN_DEBUG
|
||||
static unsigned ddd; // used for debugging
|
||||
#endif
|
||||
bool use_breakpoints_in_feasibility_search = false;
|
||||
unsigned random_seed = 1;
|
||||
bool use_breakpoints_in_feasibility_search;
|
||||
unsigned random_seed;
|
||||
static unsigned long random_next;
|
||||
unsigned max_row_length_for_bound_propagation = 300;
|
||||
bool backup_costs = true;
|
||||
unsigned column_number_threshold_for_using_lu_in_lar_solver = 4000;
|
||||
unsigned max_row_length_for_bound_propagation;
|
||||
bool backup_costs;
|
||||
unsigned column_number_threshold_for_using_lu_in_lar_solver;
|
||||
}; // end of lp_settings class
|
||||
|
||||
|
||||
|
|
|
@ -39,10 +39,10 @@ protected:
|
|||
T get_column_cost_value(unsigned j, column_info<T> * ci) const;
|
||||
public:
|
||||
unsigned m_total_iterations;
|
||||
static_matrix<T, X>* m_A = nullptr; // this is the matrix of constraints
|
||||
static_matrix<T, X>* m_A; // this is the matrix of constraints
|
||||
vector<T> m_b; // the right side vector
|
||||
unsigned m_first_stage_iterations = 0;
|
||||
unsigned m_second_stage_iterations = 0;
|
||||
unsigned m_first_stage_iterations;
|
||||
unsigned m_second_stage_iterations;
|
||||
std::unordered_map<unsigned, lp_constraint<T, X>> m_constraints;
|
||||
std::unordered_map<var_index, column_info<T>*> m_map_from_var_index_to_column_info;
|
||||
std::unordered_map<unsigned, std::unordered_map<unsigned, T> > m_A_values;
|
||||
|
@ -52,8 +52,8 @@ public:
|
|||
std::unordered_map<unsigned, unsigned> m_core_solver_columns_to_external_columns;
|
||||
vector<T> m_column_scale;
|
||||
std::unordered_map<unsigned, std::string> m_name_map;
|
||||
unsigned m_artificials = 0;
|
||||
unsigned m_slacks = 0;
|
||||
unsigned m_artificials;
|
||||
unsigned m_slacks;
|
||||
vector<column_type> m_column_types;
|
||||
vector<T> m_costs;
|
||||
vector<T> m_x;
|
||||
|
@ -63,10 +63,17 @@ public:
|
|||
vector<int> m_heading;
|
||||
|
||||
|
||||
lp_status m_status = lp_status::UNKNOWN;
|
||||
lp_status m_status;
|
||||
|
||||
lp_settings m_settings;
|
||||
lp_solver() {}
|
||||
lp_solver():
|
||||
m_A(nullptr), // this is the matrix of constraints
|
||||
m_first_stage_iterations (0),
|
||||
m_second_stage_iterations (0),
|
||||
m_artificials (0),
|
||||
m_slacks (0),
|
||||
m_status(lp_status::UNKNOWN)
|
||||
{}
|
||||
|
||||
unsigned row_count() const { return this->m_A->row_count(); }
|
||||
|
||||
|
@ -232,14 +239,6 @@ protected:
|
|||
out << "extended A[" << this->m_A->row_count() << "," << this->m_A->column_count() << "]" << std::endl;
|
||||
}
|
||||
|
||||
struct row_tighten_stats {
|
||||
unsigned n_of_new_bounds = 0;
|
||||
unsigned n_of_fixed = 0;
|
||||
bool is_obsolete = false;
|
||||
};
|
||||
|
||||
|
||||
|
||||
public:
|
||||
lp_settings & settings() { return m_settings;}
|
||||
void print_model(std::ostream & s) const {
|
||||
|
|
|
@ -110,7 +110,7 @@ enum class LU_status { OK, Degenerated};
|
|||
// Using Suhl-Suhl method described in the dissertation of Achim Koberstein, Chapter 5
|
||||
template <typename T, typename X>
|
||||
class lu {
|
||||
LU_status m_status = LU_status::OK;
|
||||
LU_status m_status;
|
||||
public:
|
||||
// the fields
|
||||
unsigned m_dim;
|
||||
|
@ -123,12 +123,12 @@ public:
|
|||
|
||||
vector<tail_matrix<T, X> *> m_tail;
|
||||
lp_settings & m_settings;
|
||||
bool m_failure = false;
|
||||
bool m_failure;
|
||||
indexed_vector<T> m_row_eta_work_vector;
|
||||
indexed_vector<T> m_w_for_extension;
|
||||
indexed_vector<T> m_y_copy;
|
||||
indexed_vector<unsigned> m_ii; //to optimize the work with the m_index fields
|
||||
unsigned m_refactor_counter = 0;
|
||||
unsigned m_refactor_counter;
|
||||
// constructor
|
||||
// if A is an m by n matrix then basis has length m and values in [0,n); the values are all different
|
||||
// they represent the set of m columns
|
||||
|
|
|
@ -118,7 +118,10 @@ lu<T, X>::lu(static_matrix<T, X> const & A,
|
|||
m_r_wave(m_dim),
|
||||
m_U(A, basis), // create the square matrix that eventually will be factorized
|
||||
m_settings(settings),
|
||||
m_row_eta_work_vector(A.row_count()){
|
||||
m_row_eta_work_vector(A.row_count()),
|
||||
m_status(LU_status::OK),
|
||||
m_failure(false),
|
||||
m_refactor_counter(0) {
|
||||
lean_assert(!(numeric_traits<T>::precise() && settings.use_tableau()));
|
||||
#ifdef LEAN_DEBUG
|
||||
debug_test_of_basis(A, basis);
|
||||
|
|
|
@ -93,22 +93,28 @@ template <typename T, typename X>
|
|||
class mps_reader {
|
||||
enum row_type { Cost, Less_or_equal, Greater_or_equal, Equal };
|
||||
struct bound {
|
||||
bool m_low_is_set = true;
|
||||
bool m_low_is_set;
|
||||
T m_low;
|
||||
bool m_upper_is_set = false;
|
||||
bool m_upper_is_set;
|
||||
T m_upper;
|
||||
bool m_value_is_fixed = false;
|
||||
bool m_value_is_fixed;
|
||||
T m_fixed_value;
|
||||
bool m_free = false;
|
||||
bool m_free;
|
||||
// constructor
|
||||
bound() : m_low(numeric_traits<T>::zero()) {} // it seems all mps files I have seen have the default low value 0 on a variable
|
||||
bound() : m_low(numeric_traits<T>::zero()),
|
||||
m_low_is_set(true),
|
||||
m_upper_is_set(false),
|
||||
m_value_is_fixed(false),
|
||||
m_free(false) {} // it seems all mps files I have seen have the default low value 0 on a variable
|
||||
};
|
||||
|
||||
struct column {
|
||||
std::string m_name;
|
||||
bound * m_bound = nullptr;
|
||||
bound * m_bound;
|
||||
unsigned m_index;
|
||||
column(std::string name, unsigned index): m_name(name), m_index(index) {
|
||||
column(std::string name, unsigned index): m_name(name),
|
||||
m_bound(nullptr),
|
||||
m_index(index) {
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -116,15 +122,18 @@ class mps_reader {
|
|||
row_type m_type;
|
||||
std::string m_name;
|
||||
std::unordered_map<std::string, T> m_row_columns;
|
||||
T m_right_side = numeric_traits<T>::zero();
|
||||
T m_right_side;
|
||||
unsigned m_index;
|
||||
T m_range = numeric_traits<T>::zero();
|
||||
row(row_type type, std::string name, unsigned index) : m_type(type), m_name(name), m_index(index) {
|
||||
T m_range;
|
||||
row(row_type type, std::string name, unsigned index) : m_type(type), m_name(name), m_index(index),
|
||||
m_right_side(zero_of_type<T>()),
|
||||
m_range(zero_of_type<T>())
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
std::string m_file_name;
|
||||
bool m_is_OK = true;
|
||||
bool m_is_OK;
|
||||
std::unordered_map<std::string, row *> m_rows;
|
||||
std::unordered_map<std::string, column *> m_columns;
|
||||
std::unordered_map<std::string, unsigned> m_names_to_var_index;
|
||||
|
@ -133,9 +142,9 @@ class mps_reader {
|
|||
std::string m_cost_row_name;
|
||||
std::ifstream m_file_stream;
|
||||
// needed to adjust the index row
|
||||
unsigned m_cost_line_count = 0;
|
||||
unsigned m_line_number = 0;
|
||||
std::ostream * m_message_stream = & std::cout;
|
||||
unsigned m_cost_line_count;
|
||||
unsigned m_line_number;
|
||||
std::ostream * m_message_stream;
|
||||
|
||||
void set_m_ok_to_false() {
|
||||
*m_message_stream << "setting m_is_OK to false" << std::endl;
|
||||
|
@ -737,8 +746,11 @@ public:
|
|||
}
|
||||
|
||||
mps_reader(std::string file_name):
|
||||
m_file_name(file_name), m_file_stream(file_name) {
|
||||
}
|
||||
m_is_OK(true),
|
||||
m_file_name(file_name), m_file_stream(file_name),
|
||||
m_cost_line_count(0),
|
||||
m_line_number(0),
|
||||
m_message_stream(& std::cout) {}
|
||||
void read() {
|
||||
if (!m_file_stream.is_open()){
|
||||
set_m_ok_to_false();
|
||||
|
|
|
@ -101,16 +101,14 @@ struct numeric_pair {
|
|||
|
||||
numeric_pair(T xp, T yp) : x(xp), y(yp) {}
|
||||
|
||||
|
||||
template <typename X>
|
||||
numeric_pair(const X & n) : x(n), y(0) {
|
||||
}
|
||||
|
||||
template <typename X>
|
||||
numeric_pair(const numeric_pair<X> & n) : x(n.x), y(n.y) {}
|
||||
numeric_pair(const numeric_pair<T> & n) : x(n.x), y(n.y) {}
|
||||
|
||||
template <typename X, typename Y>
|
||||
numeric_pair(X xp, Y yp) : numeric_pair(convert_struct<T, X>::convert(xp), convert_struct<T, Y>::convert(yp)) {}
|
||||
numeric_pair(X xp, Y yp) : x(convert_struct<T, X>::convert(xp)), y(convert_struct<T, Y>::convert(yp)) {}
|
||||
|
||||
bool operator<(const numeric_pair& a) const {
|
||||
return x < a.x || (x == a.x && y < a.y);
|
||||
|
|
|
@ -132,42 +132,4 @@ class permutation_matrix : public tail_matrix<T, X> {
|
|||
|
||||
}; // end of the permutation class
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
class permutation_generator {
|
||||
unsigned m_n;
|
||||
permutation_generator* m_lower;
|
||||
bool m_done = false;
|
||||
permutation_matrix<T, X> m_current;
|
||||
unsigned m_last;
|
||||
public:
|
||||
permutation_generator(unsigned n);
|
||||
permutation_generator(const permutation_generator & o);
|
||||
bool move_next();
|
||||
|
||||
~permutation_generator() {
|
||||
if (m_lower != nullptr) {
|
||||
delete m_lower;
|
||||
}
|
||||
}
|
||||
|
||||
permutation_matrix<T, X> *current() {
|
||||
return &m_current;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename X>
|
||||
inline unsigned number_of_inversions(permutation_matrix<T, X> & p);
|
||||
|
||||
template <typename T, typename X>
|
||||
int sign(permutation_matrix<T, X> & p) {
|
||||
return is_even(number_of_inversions(p))? 1: -1;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T det_val_on_perm(permutation_matrix<T, X>* u, const matrix<T, X>& m);
|
||||
|
||||
template <typename T, typename X>
|
||||
T determinant(const matrix<T, X>& m);
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -320,100 +320,4 @@ template <typename T, typename X> bool permutation_matrix<T, X>::is_identity() c
|
|||
}
|
||||
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
permutation_generator<T, X>::permutation_generator(unsigned n): m_n(n), m_current(n) {
|
||||
lean_assert(n > 0);
|
||||
if (n > 1) {
|
||||
m_lower = new permutation_generator(n - 1);
|
||||
} else {
|
||||
m_lower = nullptr;
|
||||
}
|
||||
|
||||
m_last = 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
permutation_generator<T, X>::permutation_generator(const permutation_generator & o): m_n(o.m_n), m_done(o.m_done), m_current(o.m_current), m_last(o.m_last) {
|
||||
if (m_lower != nullptr) {
|
||||
m_lower = new permutation_generator(o.m_lower);
|
||||
} else {
|
||||
m_lower = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool
|
||||
permutation_generator<T, X>::move_next() {
|
||||
if (m_done) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_lower == nullptr) {
|
||||
if (m_last == 0) {
|
||||
m_last++;
|
||||
return true;
|
||||
} else {
|
||||
m_done = true;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (m_last < m_n && m_last > 0) {
|
||||
m_current[m_last - 1] = m_current[m_last];
|
||||
m_current[m_last] = m_n - 1;
|
||||
m_last++;
|
||||
return true;
|
||||
} else {
|
||||
if (m_lower -> move_next()) {
|
||||
auto lower_curr = m_lower -> current();
|
||||
for ( unsigned i = 1; i < m_n; i++ ){
|
||||
m_current[i] = (*lower_curr)[i - 1];
|
||||
}
|
||||
m_current[0] = m_n - 1;
|
||||
m_last = 1;
|
||||
return true;
|
||||
} else {
|
||||
m_done = true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
inline unsigned number_of_inversions(permutation_matrix<T, X> & p) {
|
||||
unsigned ret = 0;
|
||||
unsigned n = p.size();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
for (unsigned j = i + 1; j < n; j++) {
|
||||
if (p[i] > p[j]) {
|
||||
ret++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T det_val_on_perm(permutation_matrix<T, X>* u, const matrix<T, X>& m) {
|
||||
unsigned n = m.row_count();
|
||||
T ret = numeric_traits<T>::one();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
unsigned j = (*u)[i];
|
||||
ret *= m(i, j);
|
||||
}
|
||||
return ret * sign(*u);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T determinant(const matrix<T, X>& m) {
|
||||
lean_assert(m.column_count() == m.row_count());
|
||||
unsigned n = m.row_count();
|
||||
permutation_generator<T, X> allp(n);
|
||||
T ret = numeric_traits<T>::zero();
|
||||
while (allp.move_next()){
|
||||
ret += det_val_on_perm(allp.current(), m);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -46,11 +46,6 @@ template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq>
|
|||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_left_to_T(vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_right_to_T(vector<lean::mpq >&);
|
||||
template void lean::permutation_matrix<double, double>::multiply_by_permutation_from_right(lean::permutation_matrix<double, double>&);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template bool lean::permutation_generator<double, double>::move_next();
|
||||
template lean::permutation_generator<double, double>::permutation_generator(unsigned int);
|
||||
#endif
|
||||
template lean::permutation_matrix<double, double>::permutation_matrix(unsigned int);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_left_to_X(vector<double> &);
|
||||
template void lean::permutation_matrix< lean::mpq, lean::mpq>::apply_reverse_from_left_to_X(vector<lean::mpq> &);
|
||||
|
|
|
@ -16,12 +16,15 @@ namespace lean {
|
|||
template <typename T> struct numeric_pair; // forward definition
|
||||
class lar_core_solver; // forward definition
|
||||
class random_updater {
|
||||
unsigned range = 100000;
|
||||
unsigned range ;
|
||||
struct interval {
|
||||
bool upper_bound_is_set = false;
|
||||
bool upper_bound_is_set;
|
||||
numeric_pair<mpq> upper_bound;
|
||||
bool low_bound_is_set = false;
|
||||
bool low_bound_is_set;
|
||||
numeric_pair<mpq> low_bound;
|
||||
interval() : upper_bound_is_set(false),
|
||||
low_bound_is_set(false) {}
|
||||
|
||||
void set_low_bound(const numeric_pair<mpq> & v) {
|
||||
if (low_bound_is_set) {
|
||||
low_bound = std::max(v, low_bound);
|
||||
|
|
|
@ -12,7 +12,9 @@ namespace lean {
|
|||
|
||||
random_updater::random_updater(
|
||||
lar_core_solver & lar_core_solver,
|
||||
const vector<unsigned> & column_indices) : m_core_solver(lar_core_solver) {
|
||||
const vector<unsigned> & column_indices) :
|
||||
m_core_solver(lar_core_solver),
|
||||
range(100000) {
|
||||
for (unsigned j : column_indices)
|
||||
add_column_to_sets(j);
|
||||
}
|
||||
|
|
|
@ -30,10 +30,10 @@ class sparse_matrix
|
|||
#endif
|
||||
{
|
||||
struct col_header {
|
||||
unsigned m_shortened_markovitz = 0;
|
||||
unsigned m_shortened_markovitz;
|
||||
vector<indexed_value<T>> m_values; // the actual column values
|
||||
|
||||
col_header() {}
|
||||
col_header(): m_shortened_markovitz(0) {}
|
||||
|
||||
void shorten_markovich_by_one() {
|
||||
m_shortened_markovitz++;
|
||||
|
@ -44,7 +44,7 @@ class sparse_matrix
|
|||
}
|
||||
};
|
||||
|
||||
unsigned m_n_of_active_elems = 0;
|
||||
unsigned m_n_of_active_elems;
|
||||
binary_heap_upair_queue<unsigned> m_pivot_queue;
|
||||
public:
|
||||
vector<vector<indexed_value<T>>> m_rows;
|
||||
|
|
|
@ -40,7 +40,8 @@ sparse_matrix<T, X>::sparse_matrix(static_matrix<T, X> const &A, vector<unsigned
|
|||
m_row_permutation(A.row_count()),
|
||||
m_column_permutation(A.row_count()),
|
||||
m_work_pivot_vector(A.row_count(), -1),
|
||||
m_processed(A.row_count()) {
|
||||
m_processed(A.row_count()),
|
||||
m_n_of_active_elems(0) {
|
||||
init_row_headers();
|
||||
init_column_headers();
|
||||
copy_B(A, basis);
|
||||
|
|
|
@ -20,7 +20,7 @@ public:
|
|||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
T operator[] (unsigned i) const {
|
||||
for (auto t : m_data) {
|
||||
for (auto &t : m_data) {
|
||||
if (t.first == i) return t.second;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
|
|
|
@ -42,7 +42,7 @@ public:
|
|||
unsigned m_index_start;
|
||||
unsigned m_dim;
|
||||
vector<T> m_v;
|
||||
sparse_matrix<T, X> * m_parent = nullptr;
|
||||
sparse_matrix<T, X> * m_parent;
|
||||
permutation_matrix<T, X> m_row_permutation;
|
||||
indexed_vector<T> m_work_vector;
|
||||
public:
|
||||
|
|
|
@ -32,14 +32,14 @@ inline bool compare(const std::pair<mpq, var_index> & a, const std::pair<mpq, va
|
|||
}
|
||||
|
||||
class ul_pair {
|
||||
constraint_index m_low_bound_witness = static_cast<constraint_index>(-1);
|
||||
constraint_index m_upper_bound_witness = static_cast<constraint_index>(-1);
|
||||
constraint_index m_low_bound_witness;
|
||||
constraint_index m_upper_bound_witness;
|
||||
public:
|
||||
constraint_index& low_bound_witness() {return m_low_bound_witness;}
|
||||
constraint_index low_bound_witness() const {return m_low_bound_witness;}
|
||||
constraint_index& upper_bound_witness() { return m_upper_bound_witness;}
|
||||
constraint_index upper_bound_witness() const {return m_upper_bound_witness;}
|
||||
row_index m_i = static_cast<row_index>(-1);
|
||||
row_index m_i;
|
||||
bool operator!=(const ul_pair & p) const {
|
||||
return !(*this == p);
|
||||
}
|
||||
|
@ -50,8 +50,15 @@ public:
|
|||
m_i == p.m_i;
|
||||
}
|
||||
// empty constructor
|
||||
ul_pair(){}
|
||||
ul_pair(row_index ri) : m_i(ri) {}
|
||||
ul_pair() :
|
||||
m_low_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_upper_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_i(static_cast<row_index>(-1))
|
||||
{}
|
||||
ul_pair(row_index ri) :
|
||||
m_low_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_upper_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_i(ri) {}
|
||||
ul_pair(const ul_pair & o): m_low_bound_witness(o.m_low_bound_witness), m_upper_bound_witness(o.m_upper_bound_witness), m_i(o.m_i) {}
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue