mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
3233 lines
110 KiB
C++
3233 lines
110 KiB
C++
/*
|
|
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
|
|
Author: Lev Nachmanson
|
|
*/
|
|
#include <limits>
|
|
#if _LINUX_
|
|
#include <dirent.h>
|
|
#endif
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <set>
|
|
#include <iostream>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <stdlib.h>
|
|
#include <utility>
|
|
#include "util/lp/lp_utils.h"
|
|
#include "util/lp/lp_primal_simplex.h"
|
|
#include "util/lp/mps_reader.h"
|
|
#include "smt_reader.h"
|
|
#include "util/lp/binary_heap_priority_queue.h"
|
|
#include "argument_parser.h"
|
|
#include "test_file_reader.h"
|
|
#include "util/lp/indexed_value.h"
|
|
#include "util/lp/lar_solver.h"
|
|
#include "util/lp/numeric_pair.h"
|
|
#include "util/lp/binary_heap_upair_queue.h"
|
|
#include "util/lp/stacked_value.h"
|
|
#include "util/lp/stacked_unordered_set.h"
|
|
#include "util/lp/int_set.h"
|
|
#include "util/stopwatch.h"
|
|
namespace lean {
|
|
unsigned seed = 1;
|
|
|
|
struct simple_column_namer:public column_namer
|
|
{
|
|
std::string get_column_name(unsigned j) const override {
|
|
return std::string("x") + T_to_string(j);
|
|
}
|
|
};
|
|
|
|
|
|
template <typename T, typename X>
|
|
void test_matrix(sparse_matrix<T, X> & a) {
|
|
auto m = a.dimension();
|
|
|
|
// copy a to b in the reversed order
|
|
sparse_matrix<T, X> b(m);
|
|
std::cout << "copy b to a"<< std::endl;
|
|
for (int row = m - 1; row >= 0; row--)
|
|
for (int col = m - 1; col >= 0; col --) {
|
|
b(row, col) = (T const&) a(row, col);
|
|
}
|
|
|
|
|
|
std::cout << "zeroing b in the reverse order"<< std::endl;
|
|
for (int row = m - 1; row >= 0; row--)
|
|
for (int col = m - 1; col >= 0; col --)
|
|
b.set(row, col, T(0));
|
|
|
|
|
|
|
|
for (unsigned row = 0; row < m; row ++)
|
|
for (unsigned col = 0; col < m; col ++)
|
|
a.set(row, col, T(0));
|
|
|
|
|
|
unsigned i = my_random() % m;
|
|
unsigned j = my_random() % m;
|
|
|
|
auto t = T(1);
|
|
|
|
a.set(i, j, t);
|
|
|
|
lean_assert(a.get(i, j) == t);
|
|
|
|
unsigned j1;
|
|
if (j < m - 1) {
|
|
j1 = m - 1;
|
|
a.set(i, j1, T(2));
|
|
}
|
|
}
|
|
|
|
void tst1() {
|
|
std::cout << "testing the minimial matrix with 1 row and 1 column" << std::endl;
|
|
sparse_matrix<double, double> m0(1);
|
|
m0.set(0, 0, 1);
|
|
// print_matrix(m0);
|
|
m0.set(0, 0, 0);
|
|
// print_matrix(m0);
|
|
test_matrix(m0);
|
|
|
|
unsigned rows = 2;
|
|
sparse_matrix<double, double> m(rows);
|
|
std::cout << "setting m(0,1)=" << std::endl;
|
|
|
|
m.set(0, 1, 11);
|
|
m.set(0, 0, 12);
|
|
|
|
// print_matrix<double>(m);
|
|
|
|
test_matrix(m);
|
|
|
|
sparse_matrix<double, double> m1(2);
|
|
m1.set(0, 0, 2);
|
|
m1.set(1, 0, 3);
|
|
// print_matrix(m1);
|
|
std::cout << " zeroing matrix 2 by 2" << std::endl;
|
|
m1.set(0, 0, 0);
|
|
m1.set(1, 0, 0);
|
|
// print_matrix(m1);
|
|
|
|
test_matrix(m1);
|
|
|
|
|
|
std::cout << "printing zero matrix 3 by 1" << std::endl;
|
|
sparse_matrix<double, double> m2(3);
|
|
// print_matrix(m2);
|
|
|
|
m2.set(0, 0, 1);
|
|
m2.set(2, 0, 2);
|
|
std::cout << "printing matrix 3 by 1 with a gap" << std::endl;
|
|
// print_matrix(m2);
|
|
|
|
test_matrix(m2);
|
|
|
|
sparse_matrix<double, double> m10by9(10);
|
|
m10by9.set(0, 1, 1);
|
|
|
|
m10by9(0, 1) = 4;
|
|
|
|
double test = m10by9(0, 1);
|
|
|
|
std::cout << "got " << test << std::endl;
|
|
|
|
|
|
m10by9.set(0, 8, 8);
|
|
m10by9.set(3, 4, 7);
|
|
m10by9.set(3, 2, 5);
|
|
m10by9.set(3, 8, 99);
|
|
m10by9.set(3, 2, 6);
|
|
m10by9.set(1, 8, 9);
|
|
m10by9.set(4, 0, 40);
|
|
m10by9.set(0, 0, 10);
|
|
|
|
std::cout << "printing matrix 10 by 9" << std::endl;
|
|
// print_matrix(m10by9);
|
|
|
|
|
|
test_matrix(m10by9);
|
|
std::cout <<"zeroing m10by9\n";
|
|
#ifdef LEAN_DEBUG
|
|
for (unsigned int i = 0; i < m10by9.dimension(); i++)
|
|
for (unsigned int j = 0; j < m10by9.column_count(); j++)
|
|
m10by9.set(i, j, 0);
|
|
#endif
|
|
// print_matrix(m10by9);
|
|
}
|
|
|
|
vector<int> allocate_basis_heading(unsigned count) { // the rest of initilization will be handled by lu_QR
|
|
vector<int> basis_heading(count, -1);
|
|
return basis_heading;
|
|
}
|
|
|
|
|
|
void init_basic_part_of_basis_heading(vector<unsigned> & basis, vector<int> & basis_heading) {
|
|
lean_assert(basis_heading.size() >= basis.size());
|
|
unsigned m = basis.size();
|
|
for (unsigned i = 0; i < m; i++) {
|
|
unsigned column = basis[i];
|
|
basis_heading[column] = i;
|
|
}
|
|
}
|
|
|
|
void init_non_basic_part_of_basis_heading(vector<int> & basis_heading, vector<unsigned> & non_basic_columns) {
|
|
non_basic_columns.clear();
|
|
for (int j = basis_heading.size(); j--;){
|
|
if (basis_heading[j] < 0) {
|
|
non_basic_columns.push_back(j);
|
|
// the index of column j in m_nbasis is (- basis_heading[j] - 1)
|
|
basis_heading[j] = - static_cast<int>(non_basic_columns.size());
|
|
}
|
|
}
|
|
}
|
|
void init_basis_heading_and_non_basic_columns_vector(vector<unsigned> & basis,
|
|
vector<int> & basis_heading,
|
|
vector<unsigned> & non_basic_columns) {
|
|
init_basic_part_of_basis_heading(basis, basis_heading);
|
|
init_non_basic_part_of_basis_heading(basis_heading, non_basic_columns);
|
|
}
|
|
|
|
void change_basis(unsigned entering, unsigned leaving, vector<unsigned>& basis, vector<unsigned>& nbasis, vector<int> & basis_heading) {
|
|
int place_in_basis = basis_heading[leaving];
|
|
int place_in_non_basis = - basis_heading[entering] - 1;
|
|
basis_heading[entering] = place_in_basis;
|
|
basis_heading[leaving] = -place_in_non_basis - 1;
|
|
basis[place_in_basis] = entering;
|
|
nbasis[place_in_non_basis] = leaving;
|
|
}
|
|
|
|
|
|
#ifdef LEAN_DEBUG
|
|
void test_small_lu(lp_settings & settings) {
|
|
std::cout << " test_small_lu" << std::endl;
|
|
static_matrix<double, double> m(3, 6);
|
|
vector<unsigned> basis(3);
|
|
basis[0] = 0;
|
|
basis[1] = 1;
|
|
basis[2] = 3;
|
|
|
|
m(0, 0) = 1; m(0, 2)= 3.9; m(2, 3) = 11; m(0, 5) = -3;
|
|
m(1, 1) = 4; m(1, 4) = 7;
|
|
m(2, 0) = 1.8; m(2, 2) = 5; m(2, 4) = 2; m(2, 5) = 8;
|
|
|
|
#ifdef LEAN_DEBUG
|
|
print_matrix(m, std::cout);
|
|
#endif
|
|
vector<int> heading = allocate_basis_heading(m.column_count());
|
|
vector<unsigned> non_basic_columns;
|
|
init_basis_heading_and_non_basic_columns_vector(basis, heading, non_basic_columns);
|
|
lu<double, double> l(m, basis, settings);
|
|
lean_assert(l.is_correct(basis));
|
|
indexed_vector<double> w(m.row_count());
|
|
std::cout << "entering 2, leaving 0" << std::endl;
|
|
l.prepare_entering(2, w); // to init vector w
|
|
l.replace_column(0, w, heading[0]);
|
|
change_basis(2, 0, basis, non_basic_columns, heading);
|
|
// #ifdef LEAN_DEBUG
|
|
// std::cout << "we were factoring " << std::endl;
|
|
// print_matrix(get_B(l));
|
|
// #endif
|
|
lean_assert(l.is_correct(basis));
|
|
std::cout << "entering 4, leaving 3" << std::endl;
|
|
l.prepare_entering(4, w); // to init vector w
|
|
l.replace_column(0, w, heading[3]);
|
|
change_basis(4, 3, basis, non_basic_columns, heading);
|
|
std::cout << "we were factoring " << std::endl;
|
|
#ifdef LEAN_DEBUG
|
|
{
|
|
auto bl = get_B(l, basis);
|
|
print_matrix(&bl, std::cout);
|
|
}
|
|
#endif
|
|
lean_assert(l.is_correct(basis));
|
|
|
|
std::cout << "entering 5, leaving 1" << std::endl;
|
|
l.prepare_entering(5, w); // to init vector w
|
|
l.replace_column(0, w, heading[1]);
|
|
change_basis(5, 1, basis, non_basic_columns, heading);
|
|
std::cout << "we were factoring " << std::endl;
|
|
#ifdef LEAN_DEBUG
|
|
{
|
|
auto bl = get_B(l, basis);
|
|
print_matrix(&bl, std::cout);
|
|
}
|
|
#endif
|
|
lean_assert(l.is_correct(basis));
|
|
std::cout << "entering 3, leaving 2" << std::endl;
|
|
l.prepare_entering(3, w); // to init vector w
|
|
l.replace_column(0, w, heading[2]);
|
|
change_basis(3, 2, basis, non_basic_columns, heading);
|
|
std::cout << "we were factoring " << std::endl;
|
|
#ifdef LEAN_DEBUG
|
|
{
|
|
auto bl = get_B(l, basis);
|
|
print_matrix(&bl, std::cout);
|
|
}
|
|
#endif
|
|
lean_assert(l.is_correct(basis));
|
|
|
|
m.add_row();
|
|
m.add_column();
|
|
m.add_row();
|
|
m.add_column();
|
|
for (unsigned i = 0; i < m.column_count(); i++) {
|
|
m(3, i) = i;
|
|
m(4, i) = i * i; // to make the rows linearly independent
|
|
}
|
|
unsigned j = m.column_count() ;
|
|
basis.push_back(j-2);
|
|
heading.push_back(basis.size() - 1);
|
|
basis.push_back(j-1);
|
|
heading.push_back(basis.size() - 1);
|
|
|
|
auto columns_to_replace = l.get_set_of_columns_to_replace_for_add_last_rows(heading);
|
|
l.add_last_rows_to_B(heading, columns_to_replace);
|
|
std::cout << "here" << std::endl;
|
|
lean_assert(l.is_correct(basis));
|
|
}
|
|
|
|
#endif
|
|
|
|
void fill_long_row(sparse_matrix<double, double> &m, int i) {
|
|
int n = m.dimension();
|
|
for (int j = 0; j < n; j ++) {
|
|
m (i, (j + i) % n) = j * j;
|
|
}
|
|
}
|
|
|
|
void fill_long_row(static_matrix<double, double> &m, int i) {
|
|
int n = m.column_count();
|
|
for (int j = 0; j < n; j ++) {
|
|
m (i, (j + i) % n) = j * j;
|
|
}
|
|
}
|
|
|
|
|
|
void fill_long_row_exp(sparse_matrix<double, double> &m, int i) {
|
|
int n = m.dimension();
|
|
|
|
for (int j = 0; j < n; j ++) {
|
|
m(i, j) = my_random() % 20;
|
|
}
|
|
}
|
|
|
|
void fill_long_row_exp(static_matrix<double, double> &m, int i) {
|
|
int n = m.column_count();
|
|
|
|
for (int j = 0; j < n; j ++) {
|
|
m(i, j) = my_random() % 20;
|
|
}
|
|
}
|
|
|
|
void fill_larger_sparse_matrix_exp(sparse_matrix<double, double> & m){
|
|
for ( unsigned i = 0; i < m.dimension(); i++ )
|
|
fill_long_row_exp(m, i);
|
|
}
|
|
|
|
void fill_larger_sparse_matrix_exp(static_matrix<double, double> & m){
|
|
for ( unsigned i = 0; i < m.row_count(); i++ )
|
|
fill_long_row_exp(m, i);
|
|
}
|
|
|
|
|
|
void fill_larger_sparse_matrix(sparse_matrix<double, double> & m){
|
|
for ( unsigned i = 0; i < m.dimension(); i++ )
|
|
fill_long_row(m, i);
|
|
}
|
|
|
|
void fill_larger_sparse_matrix(static_matrix<double, double> & m){
|
|
for ( unsigned i = 0; i < m.row_count(); i++ )
|
|
fill_long_row(m, i);
|
|
}
|
|
|
|
|
|
int perm_id = 0;
|
|
|
|
#ifdef LEAN_DEBUG
|
|
void test_larger_lu_exp(lp_settings & settings) {
|
|
std::cout << " test_larger_lu_exp" << std::endl;
|
|
static_matrix<double, double> m(6, 12);
|
|
vector<unsigned> basis(6);
|
|
basis[0] = 1;
|
|
basis[1] = 3;
|
|
basis[2] = 0;
|
|
basis[3] = 4;
|
|
basis[4] = 5;
|
|
basis[5] = 6;
|
|
|
|
|
|
fill_larger_sparse_matrix_exp(m);
|
|
// print_matrix(m);
|
|
vector<int> heading = allocate_basis_heading(m.column_count());
|
|
vector<unsigned> non_basic_columns;
|
|
init_basis_heading_and_non_basic_columns_vector(basis, heading, non_basic_columns);
|
|
lu<double, double> l(m, basis, settings);
|
|
|
|
dense_matrix<double, double> left_side = l.get_left_side(basis);
|
|
dense_matrix<double, double> right_side = l.get_right_side();
|
|
lean_assert(left_side == right_side);
|
|
int leaving = 3;
|
|
int entering = 8;
|
|
for (unsigned i = 0; i < m.row_count(); i++) {
|
|
std::cout << static_cast<double>(m(i, entering)) << std::endl;
|
|
}
|
|
|
|
indexed_vector<double> w(m.row_count());
|
|
|
|
l.prepare_entering(entering, w);
|
|
l.replace_column(0, w, heading[leaving]);
|
|
change_basis(entering, leaving, basis, non_basic_columns, heading);
|
|
lean_assert(l.is_correct(basis));
|
|
|
|
l.prepare_entering(11, w); // to init vector w
|
|
l.replace_column(0, w, heading[0]);
|
|
change_basis(11, 0, basis, non_basic_columns, heading);
|
|
lean_assert(l.is_correct(basis));
|
|
}
|
|
|
|
void test_larger_lu_with_holes(lp_settings & settings) {
|
|
std::cout << " test_larger_lu_with_holes" << std::endl;
|
|
static_matrix<double, double> m(8, 9);
|
|
vector<unsigned> basis(8);
|
|
for (unsigned i = 0; i < m.row_count(); i++) {
|
|
basis[i] = i;
|
|
}
|
|
m(0, 0) = 1; m(0, 1) = 2; m(0, 2) = 3; m(0, 3) = 4; m(0, 4) = 5; m(0, 8) = 99;
|
|
/* */ m(1, 1) =- 6; m(1, 2) = 7; m(1, 3) = 8; m(1, 4) = 9;
|
|
/* */ m(2, 2) = 10;
|
|
/* */ m(3, 2) = 11; m(3, 3) = -12;
|
|
/* */ m(4, 2) = 13; m(4, 3) = 14; m(4, 4) = 15;
|
|
// the rest of the matrix is denser
|
|
m(5, 4) = 28; m(5, 5) = -18; m(5, 6) = 19; m(5, 7) = 25;
|
|
/* */ m(6, 5) = 20; m(6, 6) = -21;
|
|
/* */ m(7, 5) = 22; m(7, 6) = 23; m(7, 7) = 24; m(7, 8) = 88;
|
|
print_matrix(m, std::cout);
|
|
vector<int> heading = allocate_basis_heading(m.column_count());
|
|
vector<unsigned> non_basic_columns;
|
|
init_basis_heading_and_non_basic_columns_vector(basis, heading, non_basic_columns);
|
|
lu<double, double> l(m, basis, settings);
|
|
std::cout << "printing factorization" << std::endl;
|
|
for (int i = l.tail_size() - 1; i >=0; i--) {
|
|
auto lp = l.get_lp_matrix(i);
|
|
lp->set_number_of_columns(m.row_count());
|
|
lp->set_number_of_rows(m.row_count());
|
|
print_matrix( lp, std::cout);
|
|
}
|
|
|
|
dense_matrix<double, double> left_side = l.get_left_side(basis);
|
|
dense_matrix<double, double> right_side = l.get_right_side();
|
|
if (!(left_side == right_side)) {
|
|
std::cout << "different sides" << std::endl;
|
|
}
|
|
|
|
indexed_vector<double> w(m.row_count());
|
|
l.prepare_entering(8, w); // to init vector w
|
|
l.replace_column(0, w, heading[0]);
|
|
change_basis(8, 0, basis, non_basic_columns, heading);
|
|
lean_assert(l.is_correct(basis));
|
|
}
|
|
|
|
|
|
void test_larger_lu(lp_settings& settings) {
|
|
std::cout << " test_larger_lu" << std::endl;
|
|
static_matrix<double, double> m(6, 12);
|
|
vector<unsigned> basis(6);
|
|
basis[0] = 1;
|
|
basis[1] = 3;
|
|
basis[2] = 0;
|
|
basis[3] = 4;
|
|
basis[4] = 5;
|
|
basis[5] = 6;
|
|
|
|
|
|
fill_larger_sparse_matrix(m);
|
|
print_matrix(m, std::cout);
|
|
|
|
vector<int> heading = allocate_basis_heading(m.column_count());
|
|
vector<unsigned> non_basic_columns;
|
|
init_basis_heading_and_non_basic_columns_vector(basis, heading, non_basic_columns);
|
|
auto l = lu<double, double> (m, basis, settings);
|
|
// std::cout << "printing factorization" << std::endl;
|
|
// for (int i = lu.tail_size() - 1; i >=0; i--) {
|
|
// auto lp = lu.get_lp_matrix(i);
|
|
// lp->set_number_of_columns(m.row_count());
|
|
// lp->set_number_of_rows(m.row_count());
|
|
// print_matrix(* lp);
|
|
// }
|
|
|
|
dense_matrix<double, double> left_side = l.get_left_side(basis);
|
|
dense_matrix<double, double> right_side = l.get_right_side();
|
|
if (!(left_side == right_side)) {
|
|
std::cout << "left side" << std::endl;
|
|
print_matrix(&left_side, std::cout);
|
|
std::cout << "right side" << std::endl;
|
|
print_matrix(&right_side, std::cout);
|
|
|
|
std::cout << "different sides" << std::endl;
|
|
std::cout << "initial factorization is incorrect" << std::endl;
|
|
exit(1);
|
|
}
|
|
indexed_vector<double> w(m.row_count());
|
|
l.prepare_entering(9, w); // to init vector w
|
|
l.replace_column(0, w, heading[0]);
|
|
change_basis(9, 0, basis, non_basic_columns, heading);
|
|
lean_assert(l.is_correct(basis));
|
|
}
|
|
|
|
|
|
void test_lu(lp_settings & settings) {
|
|
test_small_lu(settings);
|
|
test_larger_lu(settings);
|
|
test_larger_lu_with_holes(settings);
|
|
test_larger_lu_exp(settings);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void init_b(vector<double> & b, sparse_matrix<double, double> & m, vector<double>& x) {
|
|
for (unsigned i = 0; i < m.dimension(); i++) {
|
|
b.push_back(m.dot_product_with_row(i, x));
|
|
}
|
|
}
|
|
|
|
void init_b(vector<double> & b, static_matrix<double, double> & m, vector<double> & x) {
|
|
for (unsigned i = 0; i < m.row_count(); i++) {
|
|
b.push_back(m.dot_product_with_row(i, x));
|
|
}
|
|
}
|
|
|
|
|
|
void test_lp_0() {
|
|
std::cout << " test_lp_0 " << std::endl;
|
|
static_matrix<double, double> m_(3, 7);
|
|
m_(0, 0) = 3; m_(0, 1) = 2; m_(0, 2) = 1; m_(0, 3) = 2; m_(0, 4) = 1;
|
|
m_(1, 0) = 1; m_(1, 1) = 1; m_(1, 2) = 1; m_(1, 3) = 1; m_(1, 5) = 1;
|
|
m_(2, 0) = 4; m_(2, 1) = 3; m_(2, 2) = 3; m_(2, 3) = 4; m_(2, 6) = 1;
|
|
vector<double> x_star(7);
|
|
x_star[0] = 225; x_star[1] = 117; x_star[2] = 420;
|
|
x_star[3] = x_star[4] = x_star[5] = x_star[6] = 0;
|
|
vector<double> b;
|
|
init_b(b, m_, x_star);
|
|
vector<unsigned> basis(3);
|
|
basis[0] = 0; basis[1] = 1; basis[2] = 2;
|
|
vector<double> costs(7);
|
|
costs[0] = 19;
|
|
costs[1] = 13;
|
|
costs[2] = 12;
|
|
costs[3] = 17;
|
|
costs[4] = 0;
|
|
costs[5] = 0;
|
|
costs[6] = 0;
|
|
|
|
vector<column_type> column_types(7, column_type::low_bound);
|
|
vector<double> upper_bound_values;
|
|
lp_settings settings;
|
|
simple_column_namer cn;
|
|
vector<unsigned> nbasis;
|
|
vector<int> heading;
|
|
|
|
lp_primal_core_solver<double, double> lpsolver(m_, b, x_star, basis, nbasis, heading, costs, column_types, upper_bound_values, settings, cn);
|
|
|
|
lpsolver.solve();
|
|
}
|
|
|
|
void test_lp_1() {
|
|
std::cout << " test_lp_1 " << std::endl;
|
|
static_matrix<double, double> m(4, 7);
|
|
m(0, 0) = 1; m(0, 1) = 3; m(0, 2) = 1; m(0, 3) = 1;
|
|
m(1, 0) = -1; m(1, 2) = 3; m(1, 4) = 1;
|
|
m(2, 0) = 2; m(2, 1) = -1; m(2, 2) = 2; m(2, 5) = 1;
|
|
m(3, 0) = 2; m(3, 1) = 3; m(3, 2) = -1; m(3, 6) = 1;
|
|
#ifdef LEAN_DEBUG
|
|
print_matrix(m, std::cout);
|
|
#endif
|
|
vector<double> x_star(7);
|
|
x_star[0] = 0; x_star[1] = 0; x_star[2] = 0;
|
|
x_star[3] = 3; x_star[4] = 2; x_star[5] = 4; x_star[6] = 2;
|
|
|
|
vector<unsigned> basis(4);
|
|
basis[0] = 3; basis[1] = 4; basis[2] = 5; basis[3] = 6;
|
|
|
|
vector<double> b;
|
|
b.push_back(3);
|
|
b.push_back(2);
|
|
b.push_back(4);
|
|
b.push_back(2);
|
|
|
|
vector<double> costs(7);
|
|
costs[0] = 5;
|
|
costs[1] = 5;
|
|
costs[2] = 3;
|
|
costs[3] = 0;
|
|
costs[4] = 0;
|
|
costs[5] = 0;
|
|
costs[6] = 0;
|
|
|
|
|
|
|
|
vector<column_type> column_types(7, column_type::low_bound);
|
|
vector<double> upper_bound_values;
|
|
|
|
std::cout << "calling lp\n";
|
|
lp_settings settings;
|
|
simple_column_namer cn;
|
|
|
|
vector<unsigned> nbasis;
|
|
vector<int> heading;
|
|
|
|
lp_primal_core_solver<double, double> lpsolver(m, b,
|
|
x_star,
|
|
basis,
|
|
nbasis, heading,
|
|
costs,
|
|
column_types, upper_bound_values, settings, cn);
|
|
|
|
lpsolver.solve();
|
|
}
|
|
|
|
|
|
void test_lp_primal_core_solver() {
|
|
test_lp_0();
|
|
test_lp_1();
|
|
}
|
|
|
|
|
|
#ifdef LEAN_DEBUG
|
|
template <typename T, typename X>
|
|
void test_swap_rows_with_permutation(sparse_matrix<T, X>& m){
|
|
std::cout << "testing swaps" << std::endl;
|
|
unsigned dim = m.row_count();
|
|
dense_matrix<double, double> original(&m);
|
|
permutation_matrix<double, double> q(dim);
|
|
print_matrix(m, std::cout);
|
|
lean_assert(original == q * m);
|
|
for (int i = 0; i < 100; i++) {
|
|
unsigned row1 = my_random() % dim;
|
|
unsigned row2 = my_random() % dim;
|
|
if (row1 == row2) continue;
|
|
std::cout << "swap " << row1 << " " << row2 << std::endl;
|
|
m.swap_rows(row1, row2);
|
|
q.transpose_from_left(row1, row2);
|
|
lean_assert(original == q * m);
|
|
print_matrix(m, std::cout);
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
#endif
|
|
template <typename T, typename X>
|
|
void fill_matrix(sparse_matrix<T, X>& m); // forward definition
|
|
#ifdef LEAN_DEBUG
|
|
template <typename T, typename X>
|
|
void test_swap_cols_with_permutation(sparse_matrix<T, X>& m){
|
|
std::cout << "testing swaps" << std::endl;
|
|
unsigned dim = m.row_count();
|
|
dense_matrix<double, double> original(&m);
|
|
permutation_matrix<double, double> q(dim);
|
|
print_matrix(m, std::cout);
|
|
lean_assert(original == q * m);
|
|
for (int i = 0; i < 100; i++) {
|
|
unsigned row1 = my_random() % dim;
|
|
unsigned row2 = my_random() % dim;
|
|
if (row1 == row2) continue;
|
|
std::cout << "swap " << row1 << " " << row2 << std::endl;
|
|
m.swap_rows(row1, row2);
|
|
q.transpose_from_right(row1, row2);
|
|
lean_assert(original == q * m);
|
|
print_matrix(m, std::cout);
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T, typename X>
|
|
void test_swap_rows(sparse_matrix<T, X>& m, unsigned i0, unsigned i1){
|
|
std::cout << "test_swap_rows(" << i0 << "," << i1 << ")" << std::endl;
|
|
sparse_matrix<T, X> mcopy(m.dimension());
|
|
for (unsigned i = 0; i < m.dimension(); i++)
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
mcopy(i, j)= m(i, j);
|
|
}
|
|
std::cout << "swapping rows "<< i0 << "," << i1 << std::endl;
|
|
m.swap_rows(i0, i1);
|
|
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
lean_assert(mcopy(i0, j) == m(i1, j));
|
|
lean_assert(mcopy(i1, j) == m(i0, j));
|
|
}
|
|
}
|
|
template <typename T, typename X>
|
|
void test_swap_columns(sparse_matrix<T, X>& m, unsigned i0, unsigned i1){
|
|
std::cout << "test_swap_columns(" << i0 << "," << i1 << ")" << std::endl;
|
|
sparse_matrix<T, X> mcopy(m.dimension());
|
|
for (unsigned i = 0; i < m.dimension(); i++)
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
mcopy(i, j)= m(i, j);
|
|
}
|
|
m.swap_columns(i0, i1);
|
|
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
lean_assert(mcopy(j, i0) == m(j, i1));
|
|
lean_assert(mcopy(j, i1) == m(j, i0));
|
|
}
|
|
|
|
for (unsigned i = 0; i < m.dimension(); i++) {
|
|
if (i == i0 || i == i1)
|
|
continue;
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
lean_assert(mcopy(j, i)== m(j, i));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
template <typename T, typename X>
|
|
void fill_matrix(sparse_matrix<T, X>& m){
|
|
int v = 0;
|
|
for (int i = m.dimension() - 1; i >= 0; i--) {
|
|
for (int j = m.dimension() - 1; j >=0; j--){
|
|
m(i, j) = v++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void test_pivot_like_swaps_and_pivot(){
|
|
sparse_matrix<double, double> m(10);
|
|
fill_matrix(m);
|
|
// print_matrix(m);
|
|
// pivot at 2,7
|
|
m.swap_columns(0, 7);
|
|
// print_matrix(m);
|
|
m.swap_rows(2, 0);
|
|
// print_matrix(m);
|
|
for (unsigned i = 1; i < m.dimension(); i++) {
|
|
m(i, 0) = 0;
|
|
}
|
|
// print_matrix(m);
|
|
|
|
// say pivot at 3,4
|
|
m.swap_columns(1, 4);
|
|
// print_matrix(m);
|
|
m.swap_rows(1, 3);
|
|
// print_matrix(m);
|
|
|
|
vector<double> row;
|
|
double alpha = 2.33;
|
|
unsigned pivot_row = 1;
|
|
unsigned target_row = 2;
|
|
unsigned pivot_row_0 = 3;
|
|
double beta = 3.1;
|
|
m(target_row, 3) = 0;
|
|
m(target_row, 5) = 0;
|
|
m(pivot_row, 6) = 0;
|
|
#ifdef LEAN_DEBUG
|
|
print_matrix(m, std::cout);
|
|
#endif
|
|
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
row.push_back(m(target_row, j) + alpha * m(pivot_row, j) + beta * m(pivot_row_0, j));
|
|
}
|
|
|
|
for (auto & t : row) {
|
|
std::cout << t << ",";
|
|
}
|
|
std::cout << std::endl;
|
|
lp_settings settings;
|
|
m.pivot_row_to_row(pivot_row, alpha, target_row, settings);
|
|
m.pivot_row_to_row(pivot_row_0, beta, target_row, settings);
|
|
// print_matrix(m);
|
|
for (unsigned j = 0; j < m.dimension(); j++) {
|
|
lean_assert(abs(row[j] - m(target_row, j)) < 0.00000001);
|
|
}
|
|
}
|
|
|
|
#ifdef LEAN_DEBUG
|
|
void test_swap_rows() {
|
|
sparse_matrix<double, double> m(10);
|
|
fill_matrix(m);
|
|
// print_matrix(m);
|
|
test_swap_rows(m, 3, 5);
|
|
|
|
test_swap_rows(m, 1, 3);
|
|
|
|
|
|
test_swap_rows(m, 1, 3);
|
|
|
|
test_swap_rows(m, 1, 7);
|
|
|
|
test_swap_rows(m, 3, 7);
|
|
|
|
test_swap_rows(m, 0, 7);
|
|
|
|
m(0, 4) = 1;
|
|
// print_matrix(m);
|
|
test_swap_rows(m, 0, 7);
|
|
|
|
// go over some corner cases
|
|
sparse_matrix<double, double> m0(2);
|
|
test_swap_rows(m0, 0, 1);
|
|
m0(0, 0) = 3;
|
|
test_swap_rows(m0, 0, 1);
|
|
m0(1, 0) = 3;
|
|
test_swap_rows(m0, 0, 1);
|
|
|
|
|
|
sparse_matrix<double, double> m1(10);
|
|
test_swap_rows(m1, 0, 1);
|
|
m1(0, 0) = 3;
|
|
test_swap_rows(m1, 0, 1);
|
|
m1(1, 0) = 3;
|
|
m1(0, 3) = 5;
|
|
m1(1, 3) = 4;
|
|
m1(1, 8) = 8;
|
|
m1(1, 9) = 8;
|
|
|
|
test_swap_rows(m1, 0, 1);
|
|
|
|
sparse_matrix<double, double> m2(3);
|
|
test_swap_rows(m2, 0, 1);
|
|
m2(0, 0) = 3;
|
|
test_swap_rows(m2, 0, 1);
|
|
m2(2, 0) = 3;
|
|
test_swap_rows(m2, 0, 2);
|
|
}
|
|
|
|
void fill_uniformly(sparse_matrix<double, double> & m, unsigned dim) {
|
|
int v = 0;
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
m(i, j) = v++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void fill_uniformly(dense_matrix<double, double> & m, unsigned dim) {
|
|
int v = 0;
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
m.set_elem(i, j, v++);
|
|
}
|
|
}
|
|
}
|
|
|
|
void sparse_matrix_with_permutaions_test() {
|
|
unsigned dim = 4;
|
|
sparse_matrix<double, double> m(dim);
|
|
fill_uniformly(m, dim);
|
|
dense_matrix<double, double> dm(dim, dim);
|
|
fill_uniformly(dm, dim);
|
|
dense_matrix<double, double> dm0(dim, dim);
|
|
fill_uniformly(dm0, dim);
|
|
permutation_matrix<double, double> q0(dim);
|
|
q0[0] = 1;
|
|
q0[1] = 0;
|
|
q0[2] = 3;
|
|
q0[3] = 2;
|
|
permutation_matrix<double, double> q1(dim);
|
|
q1[0] = 1;
|
|
q1[1] = 2;
|
|
q1[2] = 3;
|
|
q1[3] = 0;
|
|
permutation_matrix<double, double> p0(dim);
|
|
p0[0] = 1;
|
|
p0[1] = 0;
|
|
p0[2] = 3;
|
|
p0[3] = 2;
|
|
permutation_matrix<double, double> p1(dim);
|
|
p1[0] = 1;
|
|
p1[1] = 2;
|
|
p1[2] = 3;
|
|
p1[3] = 0;
|
|
|
|
m.multiply_from_left(q0);
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
lean_assert(m(i, j) == dm0.get_elem(q0[i], j));
|
|
}
|
|
}
|
|
|
|
auto q0_dm = q0 * dm;
|
|
lean_assert(m == q0_dm);
|
|
|
|
m.multiply_from_left(q1);
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
lean_assert(m(i, j) == dm0.get_elem(q0[q1[i]], j));
|
|
}
|
|
}
|
|
|
|
|
|
auto q1_q0_dm = q1 * q0_dm;
|
|
|
|
lean_assert(m == q1_q0_dm);
|
|
|
|
m.multiply_from_right(p0);
|
|
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
lean_assert(m(i, j) == dm0.get_elem(q0[q1[i]], p0[j]));
|
|
}
|
|
}
|
|
|
|
auto q1_q0_dm_p0 = q1_q0_dm * p0;
|
|
|
|
lean_assert(m == q1_q0_dm_p0);
|
|
|
|
m.multiply_from_right(p1);
|
|
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
lean_assert(m(i, j) == dm0.get_elem(q0[q1[i]], p1[p0[j]]));
|
|
}
|
|
}
|
|
|
|
auto q1_q0_dm_p0_p1 = q1_q0_dm_p0 * p1;
|
|
lean_assert(m == q1_q0_dm_p0_p1);
|
|
|
|
m.multiply_from_right(p1);
|
|
for (unsigned i = 0; i < dim; i++) {
|
|
for (unsigned j = 0; j < dim; j++) {
|
|
lean_assert(m(i, j) == dm0.get_elem(q0[q1[i]], p1[p1[p0[j]]]));
|
|
}
|
|
}
|
|
auto q1_q0_dm_p0_p1_p1 = q1_q0_dm_p0_p1 * p1;
|
|
|
|
lean_assert(m == q1_q0_dm_p0_p1_p1);
|
|
}
|
|
|
|
void test_swap_columns() {
|
|
sparse_matrix<double, double> m(10);
|
|
fill_matrix(m);
|
|
// print_matrix(m);
|
|
|
|
test_swap_columns(m, 3, 5);
|
|
|
|
test_swap_columns(m, 1, 3);
|
|
|
|
test_swap_columns(m, 1, 3);
|
|
|
|
// print_matrix(m);
|
|
test_swap_columns(m, 1, 7);
|
|
|
|
test_swap_columns(m, 3, 7);
|
|
|
|
test_swap_columns(m, 0, 7);
|
|
|
|
test_swap_columns(m, 0, 7);
|
|
|
|
// go over some corner cases
|
|
sparse_matrix<double, double> m0(2);
|
|
test_swap_columns(m0, 0, 1);
|
|
m0(0, 0) = 3;
|
|
test_swap_columns(m0, 0, 1);
|
|
m0(0, 1) = 3;
|
|
test_swap_columns(m0, 0, 1);
|
|
|
|
|
|
sparse_matrix<double, double> m1(10);
|
|
test_swap_columns(m1, 0, 1);
|
|
m1(0, 0) = 3;
|
|
test_swap_columns(m1, 0, 1);
|
|
m1(0, 1) = 3;
|
|
m1(3, 0) = 5;
|
|
m1(3, 1) = 4;
|
|
m1(8, 1) = 8;
|
|
m1(9, 1) = 8;
|
|
|
|
test_swap_columns(m1, 0, 1);
|
|
|
|
sparse_matrix<double, double> m2(3);
|
|
test_swap_columns(m2, 0, 1);
|
|
m2(0, 0) = 3;
|
|
test_swap_columns(m2, 0, 1);
|
|
m2(0, 2) = 3;
|
|
test_swap_columns(m2, 0, 2);
|
|
}
|
|
|
|
|
|
|
|
void test_swap_operations() {
|
|
test_swap_rows();
|
|
test_swap_columns();
|
|
}
|
|
|
|
void test_dense_matrix() {
|
|
dense_matrix<double, double> d(3, 2);
|
|
d.set_elem(0, 0, 1);
|
|
d.set_elem(1, 1, 2);
|
|
d.set_elem(2, 0, 3);
|
|
// print_matrix(d);
|
|
|
|
dense_matrix<double, double> unit(2, 2);
|
|
d.set_elem(0, 0, 1);
|
|
d.set_elem(1, 1, 1);
|
|
|
|
dense_matrix<double, double> c = d * unit;
|
|
|
|
// print_matrix(d);
|
|
|
|
dense_matrix<double, double> perm(3, 3);
|
|
perm.set_elem(0, 1, 1);
|
|
perm.set_elem(1, 0, 1);
|
|
perm.set_elem(2, 2, 1);
|
|
auto c1 = perm * d;
|
|
// print_matrix(c1);
|
|
|
|
|
|
dense_matrix<double, double> p2(2, 2);
|
|
p2.set_elem(0, 1, 1);
|
|
p2.set_elem(1, 0, 1);
|
|
auto c2 = d * p2;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
vector<permutation_matrix<double, double>> vector_of_permutaions() {
|
|
vector<permutation_matrix<double, double>> ret;
|
|
{
|
|
permutation_matrix<double, double> p0(5);
|
|
p0[0] = 1; p0[1] = 2; p0[2] = 3; p0[3] = 4;
|
|
p0[4] = 0;
|
|
ret.push_back(p0);
|
|
}
|
|
{
|
|
permutation_matrix<double, double> p0(5);
|
|
p0[0] = 2; p0[1] = 0; p0[2] = 1; p0[3] = 4;
|
|
p0[4] = 3;
|
|
ret.push_back(p0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void test_apply_reverse_from_right_to_perm(permutation_matrix<double, double> & l) {
|
|
permutation_matrix<double, double> p(5);
|
|
p[0] = 4; p[1] = 2; p[2] = 0; p[3] = 3;
|
|
p[4] = 1;
|
|
|
|
permutation_matrix<double, double> pclone(5);
|
|
pclone[0] = 4; pclone[1] = 2; pclone[2] = 0; pclone[3] = 3;
|
|
pclone[4] = 1;
|
|
|
|
p.multiply_by_reverse_from_right(l);
|
|
#ifdef LEAN_DEBUG
|
|
auto rev = l.get_inverse();
|
|
auto rs = pclone * rev;
|
|
lean_assert(p == rs)
|
|
#endif
|
|
}
|
|
|
|
void test_apply_reverse_from_right() {
|
|
auto vec = vector_of_permutaions();
|
|
for (unsigned i = 0; i < vec.size(); i++) {
|
|
test_apply_reverse_from_right_to_perm(vec[i]);
|
|
}
|
|
}
|
|
|
|
void test_permutations() {
|
|
std::cout << "test permutations" << std::endl;
|
|
test_apply_reverse_from_right();
|
|
vector<double> v; v.resize(5, 0);
|
|
v[1] = 1;
|
|
v[3] = 3;
|
|
permutation_matrix<double, double> p(5);
|
|
p[0] = 4; p[1] = 2; p[2] = 0; p[3] = 3;
|
|
p[4] = 1;
|
|
|
|
indexed_vector<double> vi(5);
|
|
vi.set_value(1, 1);
|
|
vi.set_value(3, 3);
|
|
|
|
p.apply_reverse_from_right_to_T(v);
|
|
p.apply_reverse_from_right_to_T(vi);
|
|
lean_assert(vectors_are_equal(v, vi.m_data));
|
|
lean_assert(vi.is_OK());
|
|
}
|
|
|
|
void lp_solver_test() {
|
|
// lp_revised_solver<double> lp_revised;
|
|
// lp_revised.get_minimal_solution();
|
|
}
|
|
|
|
bool get_int_from_args_parser(const char * option, argument_parser & args_parser, unsigned & n) {
|
|
std::string s = args_parser.get_option_value(option);
|
|
if (s.size() > 0) {
|
|
n = atoi(s.c_str());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool get_double_from_args_parser(const char * option, argument_parser & args_parser, double & n) {
|
|
std::string s = args_parser.get_option_value(option);
|
|
if (s.size() > 0) {
|
|
n = atof(s.c_str());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void update_settings(argument_parser & args_parser, lp_settings& settings) {
|
|
unsigned n;
|
|
settings.m_simplex_strategy = simplex_strategy_enum::lu;
|
|
if (get_int_from_args_parser("--rep_frq", args_parser, n))
|
|
settings.report_frequency = n;
|
|
else
|
|
settings.report_frequency = args_parser.option_is_used("--mpq")? 80: 1000;
|
|
|
|
settings.print_statistics = true;
|
|
|
|
if (get_int_from_args_parser("--percent_for_enter", args_parser, n))
|
|
settings.percent_of_entering_to_check = n;
|
|
if (get_int_from_args_parser("--partial_pivot", args_parser, n)) {
|
|
std::cout << "setting partial pivot constant to " << n << std::endl;
|
|
settings.c_partial_pivoting = n;
|
|
}
|
|
if (get_int_from_args_parser("--density", args_parser, n)) {
|
|
double density = static_cast<double>(n) / 100.0;
|
|
std::cout << "setting density to " << density << std::endl;
|
|
settings.density_threshold = density;
|
|
}
|
|
if (get_int_from_args_parser("--maxng", args_parser, n))
|
|
settings.max_number_of_iterations_with_no_improvements = n;
|
|
double d;
|
|
if (get_double_from_args_parser("--harris_toler", args_parser, d)) {
|
|
std::cout << "setting harris_feasibility_tolerance to " << d << std::endl;
|
|
settings.harris_feasibility_tolerance = d;
|
|
}
|
|
if (get_int_from_args_parser("--random_seed", args_parser, n)) {
|
|
settings.random_seed = n;
|
|
}
|
|
if (get_int_from_args_parser("--simplex_strategy", args_parser, n)) {
|
|
settings.simplex_strategy() = static_cast<simplex_strategy_enum>(n);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename X>
|
|
void setup_solver(unsigned max_iterations, unsigned time_limit, bool look_for_min, argument_parser & args_parser, lp_solver<T, X> * solver) {
|
|
if (max_iterations > 0)
|
|
solver->set_max_iterations_per_stage(max_iterations);
|
|
|
|
if (time_limit > 0)
|
|
solver->set_time_limit(time_limit);
|
|
|
|
if (look_for_min)
|
|
solver->flip_costs();
|
|
|
|
update_settings(args_parser, solver->settings());
|
|
}
|
|
|
|
bool values_are_one_percent_close(double a, double b);
|
|
|
|
void print_x(mps_reader<double, double> & reader, lp_solver<double, double> * solver) {
|
|
for (auto name : reader.column_names()) {
|
|
std::cout << name << "=" << solver->get_column_value_by_name(name) << ' ';
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
void compare_solutions(mps_reader<double, double> & reader, lp_solver<double, double> * solver, lp_solver<double, double> * solver0) {
|
|
for (auto name : reader.column_names()) {
|
|
double a = solver->get_column_value_by_name(name);
|
|
double b = solver0->get_column_value_by_name(name);
|
|
if (!values_are_one_percent_close(a, b)) {
|
|
std::cout << "different values for " << name << ":" << a << " and " << b << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void solve_mps_double(std::string file_name, bool look_for_min, unsigned max_iterations, unsigned time_limit, bool dual, bool compare_with_primal, argument_parser & args_parser) {
|
|
mps_reader<double, double> reader(file_name);
|
|
reader.read();
|
|
if (!reader.is_ok()) {
|
|
std::cout << "cannot process " << file_name << std::endl;
|
|
return;
|
|
}
|
|
|
|
lp_solver<double, double> * solver = reader.create_solver(dual);
|
|
setup_solver(max_iterations, time_limit, look_for_min, args_parser, solver);
|
|
int begin = get_millisecond_count();
|
|
if (dual) {
|
|
std::cout << "solving for dual" << std::endl;
|
|
}
|
|
solver->find_maximal_solution();
|
|
int span = get_millisecond_span(begin);
|
|
std::cout << "Status: " << lp_status_to_string(solver->get_status()) << std::endl;
|
|
if (solver->get_status() == lp_status::OPTIMAL) {
|
|
if (reader.column_names().size() < 20) {
|
|
print_x(reader, solver);
|
|
}
|
|
double cost = solver->get_current_cost();
|
|
if (look_for_min) {
|
|
cost = -cost;
|
|
}
|
|
std::cout << "cost = " << cost << std::endl;
|
|
}
|
|
std::cout << "processed in " << span / 1000.0 << " seconds, running for " << solver->m_total_iterations << " iterations" << " one iter for " << (double)span/solver->m_total_iterations << " ms" << std::endl;
|
|
if (compare_with_primal) {
|
|
auto * primal_solver = reader.create_solver(false);
|
|
setup_solver(max_iterations, time_limit, look_for_min, args_parser, primal_solver);
|
|
primal_solver->find_maximal_solution();
|
|
if (solver->get_status() != primal_solver->get_status()) {
|
|
std::cout << "statuses are different: dual " << lp_status_to_string(solver->get_status()) << " primal = " << lp_status_to_string(primal_solver->get_status()) << std::endl;
|
|
} else {
|
|
if (solver->get_status() == lp_status::OPTIMAL) {
|
|
double cost = solver->get_current_cost();
|
|
if (look_for_min) {
|
|
cost = -cost;
|
|
}
|
|
double primal_cost = primal_solver->get_current_cost();
|
|
if (look_for_min) {
|
|
primal_cost = -primal_cost;
|
|
}
|
|
std::cout << "primal cost = " << primal_cost << std::endl;
|
|
if (!values_are_one_percent_close(cost, primal_cost)) {
|
|
compare_solutions(reader, primal_solver, solver);
|
|
print_x(reader, primal_solver);
|
|
std::cout << "dual cost is " << cost << ", but primal cost is " << primal_cost << std::endl;
|
|
lean_assert(false);
|
|
}
|
|
}
|
|
}
|
|
delete primal_solver;
|
|
}
|
|
delete solver;
|
|
}
|
|
|
|
void solve_mps_rational(std::string file_name, bool look_for_min, unsigned max_iterations, unsigned time_limit, bool dual, argument_parser & args_parser) {
|
|
mps_reader<lean::mpq, lean::mpq> reader(file_name);
|
|
reader.read();
|
|
if (reader.is_ok()) {
|
|
auto * solver = reader.create_solver(dual);
|
|
setup_solver(max_iterations, time_limit, look_for_min, args_parser, solver);
|
|
int begin = get_millisecond_count();
|
|
solver->find_maximal_solution();
|
|
std::cout << "Status: " << lp_status_to_string(solver->get_status()) << std::endl;
|
|
|
|
if (solver->get_status() == lp_status::OPTIMAL) {
|
|
// for (auto name: reader.column_names()) {
|
|
// std::cout << name << "=" << solver->get_column_value_by_name(name) << ' ';
|
|
// }
|
|
lean::mpq cost = solver->get_current_cost();
|
|
if (look_for_min) {
|
|
cost = -cost;
|
|
}
|
|
std::cout << "cost = " << cost.get_double() << std::endl;
|
|
}
|
|
std::cout << "processed in " << get_millisecond_span(begin) / 1000.0 << " seconds, running for " << solver->m_total_iterations << " iterations" << std::endl;
|
|
delete solver;
|
|
} else {
|
|
std::cout << "cannot process " << file_name << std::endl;
|
|
}
|
|
}
|
|
void get_time_limit_and_max_iters_from_parser(argument_parser & args_parser, unsigned & time_limit, unsigned & max_iters); // forward definition
|
|
|
|
void solve_mps(std::string file_name, bool look_for_min, unsigned max_iterations, unsigned time_limit, bool solve_for_rational, bool dual, bool compare_with_primal, argument_parser & args_parser) {
|
|
if (!solve_for_rational) {
|
|
std::cout << "solving " << file_name << std::endl;
|
|
solve_mps_double(file_name, look_for_min, max_iterations, time_limit, dual, compare_with_primal, args_parser);
|
|
}
|
|
else {
|
|
std::cout << "solving " << file_name << " in rationals " << std::endl;
|
|
solve_mps_rational(file_name, look_for_min, max_iterations, time_limit, dual, args_parser);
|
|
}
|
|
}
|
|
|
|
void solve_mps(std::string file_name, argument_parser & args_parser) {
|
|
bool look_for_min = args_parser.option_is_used("--min");
|
|
unsigned max_iterations, time_limit;
|
|
bool solve_for_rational = args_parser.option_is_used("--mpq");
|
|
bool dual = args_parser.option_is_used("--dual");
|
|
bool compare_with_primal = args_parser.option_is_used("--compare_with_primal");
|
|
get_time_limit_and_max_iters_from_parser(args_parser, time_limit, max_iterations);
|
|
solve_mps(file_name, look_for_min, max_iterations, time_limit, solve_for_rational, dual, compare_with_primal, args_parser);
|
|
}
|
|
|
|
void solve_mps_in_rational(std::string file_name, bool dual, argument_parser & /*args_parser*/) {
|
|
std::cout << "solving " << file_name << std::endl;
|
|
|
|
mps_reader<lean::mpq, lean::mpq> reader(file_name);
|
|
reader.read();
|
|
if (reader.is_ok()) {
|
|
auto * solver = reader.create_solver(dual);
|
|
solver->find_maximal_solution();
|
|
std::cout << "status is " << lp_status_to_string(solver->get_status()) << std::endl;
|
|
if (solver->get_status() == lp_status::OPTIMAL) {
|
|
if (reader.column_names().size() < 20) {
|
|
for (auto name : reader.column_names()) {
|
|
std::cout << name << "=" << solver->get_column_value_by_name(name).get_double() << ' ';
|
|
}
|
|
}
|
|
std::cout << std::endl << "cost = " << numeric_traits<lean::mpq>::get_double(solver->get_current_cost()) << std::endl;
|
|
}
|
|
delete solver;
|
|
} else {
|
|
std::cout << "cannot process " << file_name << std::endl;
|
|
}
|
|
}
|
|
|
|
void test_upair_queue() {
|
|
int n = 10;
|
|
binary_heap_upair_queue<int> q(2);
|
|
std::unordered_map<upair, int> m;
|
|
for (int k = 0; k < 100; k++) {
|
|
int i = my_random()%n;
|
|
int j = my_random()%n;
|
|
q.enqueue(i, j, my_random()%n);
|
|
}
|
|
|
|
q.remove(5, 5);
|
|
|
|
while (!q.is_empty()) {
|
|
unsigned i, j;
|
|
q.dequeue(i, j);
|
|
}
|
|
}
|
|
|
|
void test_binary_priority_queue() {
|
|
std::cout << "testing binary_heap_priority_queue...";
|
|
auto q = binary_heap_priority_queue<int>(10);
|
|
q.enqueue(2, 2);
|
|
q.enqueue(1, 1);
|
|
q.enqueue(9, 9);
|
|
q.enqueue(8, 8);
|
|
q.enqueue(5, 25);
|
|
q.enqueue(3, 3);
|
|
q.enqueue(4, 4);
|
|
q.enqueue(7, 30);
|
|
q.enqueue(6, 6);
|
|
q.enqueue(0, 0);
|
|
q.enqueue(5, 5);
|
|
q.enqueue(7, 7);
|
|
|
|
for (unsigned i = 0; i < 10; i++) {
|
|
unsigned de = q.dequeue();
|
|
lean_assert(i == de);
|
|
std::cout << de << std::endl;
|
|
}
|
|
q.enqueue(2, 2);
|
|
q.enqueue(1, 1);
|
|
q.enqueue(9, 9);
|
|
q.enqueue(8, 8);
|
|
q.enqueue(5, 5);
|
|
q.enqueue(3, 3);
|
|
q.enqueue(4, 4);
|
|
q.enqueue(7, 2);
|
|
q.enqueue(0, 1);
|
|
q.enqueue(6, 6);
|
|
q.enqueue(7, 7);
|
|
q.enqueue(33, 1000);
|
|
q.enqueue(20, 0);
|
|
q.dequeue();
|
|
q.remove(33);
|
|
q.enqueue(0, 0);
|
|
#ifdef LEAN_DEBUG
|
|
unsigned t = 0;
|
|
while (q.size() > 0) {
|
|
unsigned d =q.dequeue();
|
|
lean_assert(t++ == d);
|
|
std::cout << d << std::endl;
|
|
}
|
|
#endif
|
|
test_upair_queue();
|
|
std::cout << " done" << std::endl;
|
|
}
|
|
|
|
bool solution_is_feasible(std::string file_name, const std::unordered_map<std::string, double> & solution) {
|
|
mps_reader<double, double> reader(file_name);
|
|
reader.read();
|
|
if (reader.is_ok()) {
|
|
lp_primal_simplex<double, double> * solver = static_cast<lp_primal_simplex<double, double> *>(reader.create_solver(false));
|
|
return solver->solution_is_feasible(solution);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void solve_mps_with_known_solution(std::string file_name, std::unordered_map<std::string, double> * solution, lp_status status, bool dual) {
|
|
std::cout << "solving " << file_name << std::endl;
|
|
mps_reader<double, double> reader(file_name);
|
|
reader.read();
|
|
if (reader.is_ok()) {
|
|
auto * solver = reader.create_solver(dual);
|
|
solver->find_maximal_solution();
|
|
std::cout << "status is " << lp_status_to_string(solver->get_status()) << std::endl;
|
|
if (status != solver->get_status()){
|
|
std::cout << "status should be " << lp_status_to_string(status) << std::endl;
|
|
lean_assert(status == solver->get_status());
|
|
throw "status is wrong";
|
|
}
|
|
if (solver->get_status() == lp_status::OPTIMAL) {
|
|
std::cout << "cost = " << solver->get_current_cost() << std::endl;
|
|
if (solution != nullptr) {
|
|
for (auto it : *solution) {
|
|
if (fabs(it.second - solver->get_column_value_by_name(it.first)) >= 0.000001) {
|
|
std::cout << "expected:" << it.first << "=" <<
|
|
it.second <<", got " << solver->get_column_value_by_name(it.first) << std::endl;
|
|
}
|
|
lean_assert(fabs(it.second - solver->get_column_value_by_name(it.first)) < 0.000001);
|
|
}
|
|
}
|
|
if (reader.column_names().size() < 20) {
|
|
for (auto name : reader.column_names()) {
|
|
std::cout << name << "=" << solver->get_column_value_by_name(name) << ' ';
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
delete solver;
|
|
} else {
|
|
std::cout << "cannot process " << file_name << std::endl;
|
|
}
|
|
}
|
|
|
|
int get_random_rows() {
|
|
return 5 + my_random() % 2;
|
|
}
|
|
|
|
int get_random_columns() {
|
|
return 5 + my_random() % 3;
|
|
}
|
|
|
|
int get_random_int() {
|
|
return -1 + my_random() % 2; // (1.0 + RAND_MAX);
|
|
}
|
|
|
|
void add_random_row(lp_primal_simplex<double, double> * solver, int cols, int row) {
|
|
solver->add_constraint(lp_relation::Greater_or_equal, 1, row);
|
|
for (int i = 0; i < cols; i++) {
|
|
solver->set_row_column_coefficient(row, i, get_random_int());
|
|
}
|
|
}
|
|
|
|
void add_random_cost(lp_primal_simplex<double, double> * solver, int cols) {
|
|
for (int i = 0; i < cols; i++) {
|
|
solver->set_cost_for_column(i, get_random_int());
|
|
}
|
|
}
|
|
|
|
lp_primal_simplex<double, double> * generate_random_solver() {
|
|
int rows = get_random_rows();
|
|
int cols = get_random_columns();
|
|
auto * solver = new lp_primal_simplex<double, double>();
|
|
for (int i = 0; i < rows; i++) {
|
|
add_random_row(solver, cols, i);
|
|
}
|
|
add_random_cost(solver, cols);
|
|
return solver;
|
|
}
|
|
|
|
|
|
|
|
void random_test_on_i(unsigned i) {
|
|
if (i % 1000 == 0) {
|
|
std::cout << ".";
|
|
}
|
|
srand(i);
|
|
auto *solver = generate_random_solver();
|
|
solver->find_maximal_solution();
|
|
// std::cout << lp_status_to_string(solver->get_status()) << std::endl;
|
|
delete solver;
|
|
}
|
|
|
|
void random_test() {
|
|
for (unsigned i = 0; i < std::numeric_limits<unsigned>::max(); i++) {
|
|
try {
|
|
random_test_on_i(i);
|
|
}
|
|
catch (const char * error) {
|
|
std::cout << "i = " << i << ", throwing at ' " << error << "'" << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if _LINUX_
|
|
void fill_file_names(vector<std::string> &file_names, std::set<std::string> & minimums) {
|
|
char *home_dir = getenv("HOME");
|
|
if (home_dir == nullptr) {
|
|
std::cout << "cannot find home directory, don't know how to find the files";
|
|
return;
|
|
}
|
|
std::string home_dir_str(home_dir);
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l0redund.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l1.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l2.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l3.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l4.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l4fix.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/plan.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/samp2.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/murtagh.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/l0.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/AFIRO.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SC50B.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SC50A.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/KB2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SC105.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STOCFOR1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/ADLITTLE.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BLEND.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCAGR7.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SC205.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHARE2B.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/RECIPELP.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/LOTFI.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/VTP-BASE.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHARE1B.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BOEING2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BORE3D.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCORPION.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/CAPRI.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BRANDY.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCAGR25.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCTAP1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/ISRAEL.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCFXM1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BANDM.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/E226.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/AGG.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GROW7.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/ETAMACRO.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FINNIS.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCSD1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STANDATA.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STANDGUB.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BEACONFD.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STAIR.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STANDMPS.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GFRD-PNC.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCRS8.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BOEING1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/MODSZK1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/DEGEN2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FORPLAN.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/AGG2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/AGG3.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCFXM2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHELL.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PILOT4.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCSD6.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHIP04S.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SEBA.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GROW15.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FFFFF800.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BNL1.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PEROLD.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/QAP8.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCFXM3.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHIP04L.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GANGES.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCTAP2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GROW22.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHIP08S.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PILOT-WE.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/MAROS.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STOCFOR2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/25FV47.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHIP12S.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCSD8.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FIT1P.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SCTAP3.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SIERRA.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PILOTNOV.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/CZPROB.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FIT1D.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PILOT-JA.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHIP08L.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/BNL2.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/NESM.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/CYCLE.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/acc-tight5.mps");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/SHIP12L.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/DEGEN3.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GREENBEA.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/GREENBEB.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/80BAU3B.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/TRUSS.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/D2Q06C.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/WOODW.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/QAP12.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/D6CUBE.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PILOT.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/DFL001.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/WOOD1P.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FIT2P.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/PILOT87.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/STOCFOR3.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/QAP15.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/FIT2D.SIF");
|
|
file_names.push_back(home_dir_str + "/projects/lean/src/tests/util/lp/test_files/netlib/MAROS-R7.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/FIT2P.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/DFL001.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/D2Q06C.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/80BAU3B.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/GREENBEB.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/GREENBEA.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/BNL2.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/SHIP08L.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/FIT1D.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/SCTAP3.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/SCSD8.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/SCSD6.SIF");
|
|
minimums.insert("/projects/lean/src/tests/util/lp/test_files/netlib/MAROS-R7.SIF");
|
|
}
|
|
|
|
void test_out_dir(std::string out_dir) {
|
|
auto *out_dir_p = opendir(out_dir.c_str());
|
|
if (out_dir_p == nullptr) {
|
|
std::cout << "creating directory " << out_dir << std::endl;
|
|
#ifdef LEAN_WINDOWS
|
|
int res = mkdir(out_dir.c_str());
|
|
#else
|
|
int res = mkdir(out_dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
|
|
#endif
|
|
if (res) {
|
|
std::cout << "Cannot open output directory \"" << out_dir << "\"" << std::endl;
|
|
}
|
|
return;
|
|
}
|
|
closedir(out_dir_p);
|
|
}
|
|
|
|
void find_dir_and_file_name(std::string a, std::string & dir, std::string& fn) {
|
|
// todo: make it system independent
|
|
size_t last_slash_pos = a.find_last_of("/");
|
|
if (last_slash_pos >= a.size()) {
|
|
std::cout << "cannot find file name in " << a << std::endl;
|
|
throw;
|
|
}
|
|
dir = a.substr(0, last_slash_pos);
|
|
// std::cout << "dir = " << dir << std::endl;
|
|
fn = a.substr(last_slash_pos + 1);
|
|
// std::cout << "fn = " << fn << std::endl;
|
|
}
|
|
|
|
void process_test_file(std::string test_dir, std::string test_file_name, argument_parser & args_parser, std::string out_dir, unsigned max_iters, unsigned time_limit, unsigned & successes, unsigned & failures, unsigned & inconclusives);
|
|
|
|
void solve_some_mps(argument_parser & args_parser) {
|
|
unsigned max_iters, time_limit;
|
|
get_time_limit_and_max_iters_from_parser(args_parser, time_limit, max_iters);
|
|
unsigned successes = 0;
|
|
unsigned failures = 0;
|
|
unsigned inconclusives = 0;
|
|
std::set<std::string> minimums;
|
|
vector<std::string> file_names;
|
|
fill_file_names(file_names, minimums);
|
|
bool solve_for_rational = args_parser.option_is_used("--mpq");
|
|
bool dual = args_parser.option_is_used("--dual");
|
|
bool compare_with_primal = args_parser.option_is_used("--compare_with_primal");
|
|
bool compare_with_glpk = args_parser.option_is_used("--compare_with_glpk");
|
|
if (compare_with_glpk) {
|
|
std::string out_dir = args_parser.get_option_value("--out_dir");
|
|
if (out_dir.size() == 0) {
|
|
out_dir = "/tmp/test";
|
|
}
|
|
test_out_dir(out_dir);
|
|
for (auto& a : file_names) {
|
|
try {
|
|
std::string file_dir;
|
|
std::string file_name;
|
|
find_dir_and_file_name(a, file_dir, file_name);
|
|
process_test_file(file_dir, file_name, args_parser, out_dir, max_iters, time_limit, successes, failures, inconclusives);
|
|
}
|
|
catch(const char *s){
|
|
std::cout<< "exception: "<< s << std::endl;
|
|
}
|
|
}
|
|
std::cout << "comparing with glpk: successes " << successes << ", failures " << failures << ", inconclusives " << inconclusives << std::endl;
|
|
return;
|
|
}
|
|
if (!solve_for_rational) {
|
|
solve_mps(file_names[6], false, 0, time_limit, false, dual, compare_with_primal, args_parser);
|
|
solve_mps_with_known_solution(file_names[3], nullptr, INFEASIBLE, dual); // chvatal: 135(d)
|
|
std::unordered_map<std::string, double> sol;
|
|
sol["X1"] = 0;
|
|
sol["X2"] = 6;
|
|
sol["X3"] = 0;
|
|
sol["X4"] = 15;
|
|
sol["X5"] = 2;
|
|
sol["X6"] = 1;
|
|
sol["X7"] = 1;
|
|
sol["X8"] = 0;
|
|
solve_mps_with_known_solution(file_names[9], &sol, OPTIMAL, dual);
|
|
solve_mps_with_known_solution(file_names[0], &sol, OPTIMAL, dual);
|
|
sol.clear();
|
|
sol["X1"] = 25.0/14.0;
|
|
// sol["X2"] = 0;
|
|
// sol["X3"] = 0;
|
|
// sol["X4"] = 0;
|
|
// sol["X5"] = 0;
|
|
// sol["X6"] = 0;
|
|
// sol["X7"] = 9.0/14.0;
|
|
solve_mps_with_known_solution(file_names[5], &sol, OPTIMAL, dual); // chvatal: 135(e)
|
|
solve_mps_with_known_solution(file_names[4], &sol, OPTIMAL, dual); // chvatal: 135(e)
|
|
solve_mps_with_known_solution(file_names[2], nullptr, UNBOUNDED, dual); // chvatal: 135(c)
|
|
solve_mps_with_known_solution(file_names[1], nullptr, UNBOUNDED, dual); // chvatal: 135(b)
|
|
solve_mps(file_names[8], false, 0, time_limit, false, dual, compare_with_primal, args_parser);
|
|
// return;
|
|
for (auto& s : file_names) {
|
|
try {
|
|
solve_mps(s, minimums.find(s) != minimums.end(), max_iters, time_limit, false, dual, compare_with_primal, args_parser);
|
|
}
|
|
catch(const char *s){
|
|
std::cout<< "exception: "<< s << std::endl;
|
|
}
|
|
}
|
|
} else {
|
|
// unsigned i = 0;
|
|
for (auto& s : file_names) {
|
|
// if (i++ > 9) return;
|
|
try {
|
|
solve_mps_in_rational(s, dual, args_parser);
|
|
}
|
|
catch(const char *s){
|
|
std::cout<< "exception: "<< s << std::endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void solve_rational() {
|
|
lp_primal_simplex<lean::mpq, lean::mpq> solver;
|
|
solver.add_constraint(lp_relation::Equal, lean::mpq(7), 0);
|
|
solver.add_constraint(lp_relation::Equal, lean::mpq(-3), 1);
|
|
|
|
// setting the cost
|
|
int cost[] = {-3, -1, -1, 2, -1, 1, 1, -4};
|
|
std::string var_names[8] = {"x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8"};
|
|
|
|
for (unsigned i = 0; i < 8; i++) {
|
|
solver.set_cost_for_column(i, lean::mpq(cost[i]));
|
|
solver.give_symbolic_name_to_column(var_names[i], i);
|
|
}
|
|
|
|
int row0[] = {1, 0, 3, 1, -5, -2 , 4, -6};
|
|
for (unsigned i = 0; i < 8; i++) {
|
|
solver.set_row_column_coefficient(0, i, lean::mpq(row0[i]));
|
|
}
|
|
|
|
int row1[] = {0, 1, -2, -1, 4, 1, -3, 5};
|
|
for (unsigned i = 0; i < 8; i++) {
|
|
solver.set_row_column_coefficient(1, i, lean::mpq(row1[i]));
|
|
}
|
|
|
|
int bounds[] = {8, 6, 4, 15, 2, 10, 10, 3};
|
|
for (unsigned i = 0; i < 8; i++) {
|
|
solver.set_low_bound(i, lean::mpq(0));
|
|
solver.set_upper_bound(i, lean::mpq(bounds[i]));
|
|
}
|
|
|
|
std::unordered_map<std::string, lean::mpq> expected_sol;
|
|
expected_sol["x1"] = lean::mpq(0);
|
|
expected_sol["x2"] = lean::mpq(6);
|
|
expected_sol["x3"] = lean::mpq(0);
|
|
expected_sol["x4"] = lean::mpq(15);
|
|
expected_sol["x5"] = lean::mpq(2);
|
|
expected_sol["x6"] = lean::mpq(1);
|
|
expected_sol["x7"] = lean::mpq(1);
|
|
expected_sol["x8"] = lean::mpq(0);
|
|
solver.find_maximal_solution();
|
|
lean_assert(solver.get_status() == OPTIMAL);
|
|
for (auto it : expected_sol) {
|
|
lean_assert(it.second == solver.get_column_value_by_name(it.first));
|
|
}
|
|
}
|
|
|
|
|
|
std::string read_line(bool & end, std::ifstream & file) {
|
|
std::string s;
|
|
if (!getline(file, s)) {
|
|
end = true;
|
|
return std::string();
|
|
}
|
|
end = false;
|
|
return s;
|
|
}
|
|
|
|
bool contains(std::string const & s, char const * pattern) {
|
|
return s.find(pattern) != std::string::npos;
|
|
}
|
|
|
|
|
|
std::unordered_map<std::string, double> * get_solution_from_glpsol_output(std::string & file_name) {
|
|
std::ifstream file(file_name);
|
|
if (!file.is_open()){
|
|
std::cerr << "cannot open " << file_name << std::endl;
|
|
return nullptr;
|
|
}
|
|
std::string s;
|
|
bool end;
|
|
do {
|
|
s = read_line(end, file);
|
|
if (end) {
|
|
std::cerr << "unexpected file end " << file_name << std::endl;
|
|
return nullptr;
|
|
}
|
|
if (contains(s, "Column name")){
|
|
break;
|
|
}
|
|
} while (true);
|
|
|
|
read_line(end, file);
|
|
if (end) {
|
|
std::cerr << "unexpected file end " << file_name << std::endl;
|
|
return nullptr;
|
|
}
|
|
|
|
auto ret = new std::unordered_map<std::string, double>();
|
|
|
|
do {
|
|
s = read_line(end, file);
|
|
if (end) {
|
|
std::cerr << "unexpected file end " << file_name << std::endl;
|
|
return nullptr;
|
|
}
|
|
auto split = string_split(s, " \t", false);
|
|
if (split.size() == 0) {
|
|
return ret;
|
|
}
|
|
|
|
lean_assert(split.size() > 3);
|
|
(*ret)[split[1]] = atof(split[3].c_str());
|
|
} while (true);
|
|
}
|
|
|
|
|
|
|
|
void test_init_U() {
|
|
static_matrix<double, double> m(3, 7);
|
|
m(0, 0) = 10; m(0, 1) = 11; m(0, 2) = 12; m(0, 3) = 13; m(0, 4) = 14;
|
|
m(1, 0) = 20; m(1, 1) = 21; m(1, 2) = 22; m(1, 3) = 23; m(1, 5) = 24;
|
|
m(2, 0) = 30; m(2, 1) = 31; m(2, 2) = 32; m(2, 3) = 33; m(2, 6) = 34;
|
|
#ifdef LEAN_DEBUG
|
|
print_matrix(m, std::cout);
|
|
#endif
|
|
vector<unsigned> basis(3);
|
|
basis[0] = 1;
|
|
basis[1] = 2;
|
|
basis[2] = 4;
|
|
|
|
sparse_matrix<double, double> u(m, basis);
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 3; j ++) {
|
|
lean_assert(m(i, basis[j]) == u(i, j));
|
|
}
|
|
}
|
|
|
|
// print_matrix(m);
|
|
// print_matrix(u);
|
|
}
|
|
|
|
void test_replace_column() {
|
|
sparse_matrix<double, double> m(10);
|
|
fill_matrix(m);
|
|
m.swap_columns(0, 7);
|
|
m.swap_columns(6, 3);
|
|
m.swap_rows(2, 0);
|
|
for (unsigned i = 1; i < m.dimension(); i++) {
|
|
m(i, 0) = 0;
|
|
}
|
|
|
|
indexed_vector<double> w(m.dimension());
|
|
for (unsigned i = 0; i < m.dimension(); i++) {
|
|
w.set_value(i % 3, i);
|
|
}
|
|
|
|
lp_settings settings;
|
|
|
|
for (unsigned column_to_replace = 0; column_to_replace < m.dimension(); column_to_replace ++) {
|
|
m.replace_column(column_to_replace, w, settings);
|
|
for (unsigned i = 0; i < m.dimension(); i++) {
|
|
lean_assert(abs(w[i] - m(i, column_to_replace)) < 0.00000001);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void setup_args_parser(argument_parser & parser) {
|
|
parser.add_option_with_help_string("-xyz_sample", "run a small interactive scenario");
|
|
parser.add_option_with_after_string_with_help("--density", "the percentage of non-zeroes in the matrix below which it is not dense");
|
|
parser.add_option_with_after_string_with_help("--harris_toler", "harris tolerance");
|
|
parser.add_option_with_help_string("--test_swaps", "test row swaps with a permutation");
|
|
parser.add_option_with_help_string("--test_perm", "test permutaions");
|
|
parser.add_option_with_after_string_with_help("--checklu", "the file name for lu checking");
|
|
parser.add_option_with_after_string_with_help("--partial_pivot", "the partial pivot constant, a number somewhere between 10 and 100");
|
|
parser.add_option_with_after_string_with_help("--percent_for_enter", "which percent of columns check for entering column");
|
|
parser.add_option_with_help_string("--totalinf", "minimizes the total infeasibility instead of diminishin infeasibility of the rows");
|
|
parser.add_option_with_after_string_with_help("--rep_frq", "the report frequency, in how many iterations print the cost and other info ");
|
|
parser.add_option_with_help_string("--smt", "smt file format");
|
|
parser.add_option_with_after_string_with_help("--filelist", "the file containing the list of files");
|
|
parser.add_option_with_after_string_with_help("--file", "the input file name");
|
|
parser.add_option_with_after_string_with_help("--random_seed", "random seed");
|
|
parser.add_option_with_help_string("--bp", "bound propogation");
|
|
parser.add_option_with_help_string("--min", "will look for the minimum for the given file if --file is used; the default is looking for the max");
|
|
parser.add_option_with_help_string("--max", "will look for the maximum for the given file if --file is used; it is the default behavior");
|
|
parser.add_option_with_after_string_with_help("--max_iters", "maximum total iterations in a core solver stage");
|
|
parser.add_option_with_after_string_with_help("--time_limit", "time limit in seconds");
|
|
parser.add_option_with_help_string("--mpq", "solve for rational numbers");
|
|
parser.add_option_with_after_string_with_help("--simplex_strategy", "sets simplex strategy for rational number");
|
|
parser.add_option_with_help_string("--test_lu", "test the work of the factorization");
|
|
parser.add_option_with_help_string("--test_small_lu", "test the work of the factorization on a smallish matrix");
|
|
parser.add_option_with_help_string("--test_larger_lu", "test the work of the factorization");
|
|
parser.add_option_with_help_string("--test_larger_lu_with_holes", "test the work of the factorization");
|
|
parser.add_option_with_help_string("--test_lp_0", "solve a small lp");
|
|
parser.add_option_with_help_string("--solve_some_mps", "solves a list of mps problems");
|
|
parser.add_option_with_after_string_with_help("--test_file_directory", "loads files from the directory for testing");
|
|
parser.add_option_with_help_string("--compare_with_glpk", "compares the results by running glpsol");
|
|
parser.add_option_with_after_string_with_help("--out_dir", "setting the output directory for tests, if not set /tmp is used");
|
|
parser.add_option_with_help_string("--dual", "using the dual simplex solver");
|
|
parser.add_option_with_help_string("--compare_with_primal", "using the primal simplex solver for comparison");
|
|
parser.add_option_with_help_string("--lar", "test lar_solver");
|
|
parser.add_option_with_after_string_with_help("--maxng", "max iterations without progress");
|
|
parser.add_option_with_help_string("-tbq", "test binary queue");
|
|
parser.add_option_with_help_string("--randomize_lar", "test randomize funclionality");
|
|
parser.add_option_with_help_string("--smap", "test stacked_map");
|
|
parser.add_option_with_help_string("--term", "simple term test");
|
|
parser.add_option_with_help_string("--eti"," run a small evidence test for total infeasibility scenario");
|
|
parser.add_option_with_help_string("--row_inf", "forces row infeasibility search");
|
|
parser.add_option_with_help_string("-pd", "presolve with double solver");
|
|
parser.add_option_with_help_string("--test_int_set", "test int_set");
|
|
parser.add_option_with_help_string("--test_mpq", "test rationals");
|
|
parser.add_option_with_help_string("--test_mpq_np", "test rationals");
|
|
parser.add_option_with_help_string("--test_mpq_np_plus", "test rationals using plus instead of +=");
|
|
}
|
|
|
|
struct fff { int a; int b;};
|
|
|
|
void test_stacked_map_itself() {
|
|
vector<int> v(3,0);
|
|
for(auto u : v)
|
|
std::cout << u << std::endl;
|
|
|
|
std::unordered_map<int, fff> foo;
|
|
fff l;
|
|
l.a = 0;
|
|
l.b =1;
|
|
foo[1] = l;
|
|
int r = 1;
|
|
int k = foo[r].a;
|
|
std::cout << k << std::endl;
|
|
|
|
stacked_map<int, double> m;
|
|
m[0] = 3;
|
|
m[1] = 4;
|
|
m.push();
|
|
m[1] = 5;
|
|
m[2] = 2;
|
|
m.pop();
|
|
m.erase(2);
|
|
m[2] = 3;
|
|
m.erase(1);
|
|
m.push();
|
|
m[3] = 100;
|
|
m[4] = 200;
|
|
m.erase(1);
|
|
m.push();
|
|
m[5] = 300;
|
|
m[6] = 400;
|
|
m[5] = 301;
|
|
m.erase(5);
|
|
m[3] = 122;
|
|
|
|
m.pop(2);
|
|
m.pop();
|
|
}
|
|
|
|
void test_stacked_unsigned() {
|
|
std::cout << "test stacked unsigned" << std::endl;
|
|
stacked_value<unsigned> v(0);
|
|
v = 1;
|
|
v = 2;
|
|
v.push();
|
|
v = 3;
|
|
v = 4;
|
|
v.pop();
|
|
lean_assert(v == 2);
|
|
v ++;
|
|
v++;
|
|
std::cout << "before push v=" << v << std::endl;
|
|
v.push();
|
|
v++;
|
|
v.push();
|
|
v+=1;
|
|
std::cout << "v = " << v << std::endl;
|
|
v.pop(2);
|
|
lean_assert(v == 4);
|
|
const unsigned & rr = v;
|
|
std::cout << rr << std:: endl;
|
|
|
|
}
|
|
|
|
void test_stacked_value() {
|
|
test_stacked_unsigned();
|
|
}
|
|
|
|
void test_stacked_vector() {
|
|
std::cout << "test_stacked_vector" << std::endl;
|
|
stacked_vector<int> v;
|
|
v.push();
|
|
v.push_back(0);
|
|
v.push_back(1);
|
|
v.push();
|
|
v[0] = 3;
|
|
v[0] = 0;
|
|
v.push_back(2);
|
|
v.push_back(3);
|
|
v.push_back(34);
|
|
v.push();
|
|
v[1]=3;
|
|
v[2] = 3;
|
|
v.push();
|
|
v[0]= 7;
|
|
v[1] = 9;
|
|
v.pop(2);
|
|
if (v.size())
|
|
v[v.size() -1 ] = 7;
|
|
v.push();
|
|
v.push_back(33);
|
|
v[0] = 13;
|
|
v.pop();
|
|
|
|
}
|
|
|
|
void test_stacked_set() {
|
|
#ifdef LEAN_DEBUG
|
|
std::cout << "test_stacked_set" << std::endl;
|
|
stacked_unordered_set<int> s;
|
|
s.insert(1);
|
|
s.insert(2);
|
|
s.insert(3);
|
|
std::unordered_set<int> scopy = s();
|
|
s.push();
|
|
s.insert(4);
|
|
s.pop();
|
|
lean_assert(s() == scopy);
|
|
s.push();
|
|
s.push();
|
|
s.insert(4);
|
|
s.insert(5);
|
|
s.push();
|
|
s.insert(4);
|
|
s.pop(3);
|
|
lean_assert(s() == scopy);
|
|
#endif
|
|
}
|
|
|
|
void test_stacked() {
|
|
std::cout << "test_stacked_map()" << std::endl;
|
|
test_stacked_map_itself();
|
|
test_stacked_value();
|
|
test_stacked_vector();
|
|
test_stacked_set();
|
|
|
|
}
|
|
|
|
char * find_home_dir() {
|
|
#ifdef _WINDOWS
|
|
#else
|
|
char * home_dir = getenv("HOME");
|
|
if (home_dir == nullptr) {
|
|
std::cout << "cannot find home directory" << std::endl;
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void print_chunk(T * arr, unsigned len) {
|
|
for (unsigned i = 0; i < len; i++) {
|
|
std::cout << arr[i] << ", ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
struct mem_cpy_place_holder {
|
|
static void mem_copy_hook(int * destination, unsigned num) {
|
|
if (destination == nullptr || num == 0) {
|
|
throw "bad parameters";
|
|
}
|
|
}
|
|
};
|
|
|
|
void finalize(unsigned ret) {
|
|
/*
|
|
finalize_util_module();
|
|
finalize_numerics_module();
|
|
*/
|
|
// return ret;
|
|
}
|
|
|
|
void get_time_limit_and_max_iters_from_parser(argument_parser & args_parser, unsigned & time_limit, unsigned & max_iters) {
|
|
std::string s = args_parser.get_option_value("--max_iters");
|
|
if (s.size() > 0) {
|
|
max_iters = atoi(s.c_str());
|
|
} else {
|
|
max_iters = 0;
|
|
}
|
|
|
|
std::string time_limit_string = args_parser.get_option_value("--time_limit");
|
|
if (time_limit_string.size() > 0) {
|
|
time_limit = atoi(time_limit_string.c_str());
|
|
} else {
|
|
time_limit = 0;
|
|
}
|
|
}
|
|
|
|
|
|
std::string create_output_file_name(bool minimize, std::string file_name, bool use_mpq) {
|
|
std::string ret = file_name + "_lp_tst_" + (minimize?"min":"max");
|
|
if (use_mpq) return ret + "_mpq.out";
|
|
return ret + ".out";
|
|
}
|
|
|
|
std::string create_output_file_name_for_glpsol(bool minimize, std::string file_name){
|
|
return file_name + (minimize?"_min":"_max") + "_glpk_out";
|
|
}
|
|
|
|
int run_glpk(std::string file_name, std::string glpk_out_file_name, bool minimize, unsigned time_limit) {
|
|
std::string minmax(minimize?"--min":"--max");
|
|
std::string tmlim = time_limit > 0 ? std::string(" --tmlim ") + std::to_string(time_limit)+ " ":std::string();
|
|
std::string command_line = std::string("glpsol --nointopt --nomip ") + minmax + tmlim + + " -o " + glpk_out_file_name +" " + file_name + " > /dev/null";
|
|
return system(command_line.c_str());
|
|
}
|
|
|
|
std::string get_status(std::string file_name) {
|
|
std::ifstream f(file_name);
|
|
if (!f.is_open()) {
|
|
std::cout << "cannot open " << file_name << std::endl;
|
|
throw 0;
|
|
}
|
|
std::string str;
|
|
while (getline(f, str)) {
|
|
if (str.find("Status") != std::string::npos) {
|
|
vector<std::string> tokens = split_and_trim(str);
|
|
if (tokens.size() != 2) {
|
|
std::cout << "unexpected Status string " << str << std::endl;
|
|
throw 0;
|
|
}
|
|
return tokens[1];
|
|
}
|
|
}
|
|
std::cout << "cannot find the status line in " << file_name << std::endl;
|
|
throw 0;
|
|
}
|
|
|
|
// returns true if the costs should be compared too
|
|
bool compare_statuses(std::string glpk_out_file_name, std::string lp_out_file_name, unsigned & successes, unsigned & failures) {
|
|
std::string glpk_status = get_status(glpk_out_file_name);
|
|
std::string lp_tst_status = get_status(lp_out_file_name);
|
|
|
|
if (glpk_status != lp_tst_status) {
|
|
if (glpk_status == "UNDEFINED" && (lp_tst_status == "UNBOUNDED" || lp_tst_status == "INFEASIBLE")) {
|
|
successes++;
|
|
return false;
|
|
} else {
|
|
std::cout << "glpsol and lp_tst disagree: glpsol status is " << glpk_status;
|
|
std::cout << " but lp_tst status is " << lp_tst_status << std::endl;
|
|
failures++;
|
|
return false;
|
|
}
|
|
}
|
|
return lp_tst_status == "OPTIMAL";
|
|
}
|
|
|
|
double get_glpk_cost(std::string file_name) {
|
|
std::ifstream f(file_name);
|
|
if (!f.is_open()) {
|
|
std::cout << "cannot open " << file_name << std::endl;
|
|
throw 0;
|
|
}
|
|
std::string str;
|
|
while (getline(f, str)) {
|
|
if (str.find("Objective") != std::string::npos) {
|
|
vector<std::string> tokens = split_and_trim(str);
|
|
if (tokens.size() != 5) {
|
|
std::cout << "unexpected Objective std::string " << str << std::endl;
|
|
throw 0;
|
|
}
|
|
return atof(tokens[3].c_str());
|
|
}
|
|
}
|
|
std::cout << "cannot find the Objective line in " << file_name << std::endl;
|
|
throw 0;
|
|
}
|
|
|
|
double get_lp_tst_cost(std::string file_name) {
|
|
std::ifstream f(file_name);
|
|
if (!f.is_open()) {
|
|
std::cout << "cannot open " << file_name << std::endl;
|
|
throw 0;
|
|
}
|
|
std::string str;
|
|
std::string cost_string;
|
|
while (getline(f, str)) {
|
|
if (str.find("cost") != std::string::npos) {
|
|
cost_string = str;
|
|
}
|
|
}
|
|
if (cost_string.size() == 0) {
|
|
std::cout << "cannot find the cost line in " << file_name << std::endl;
|
|
throw 0;
|
|
}
|
|
|
|
vector<std::string> tokens = split_and_trim(cost_string);
|
|
if (tokens.size() != 3) {
|
|
std::cout << "unexpected cost string " << cost_string << std::endl;
|
|
throw 0;
|
|
}
|
|
return atof(tokens[2].c_str());
|
|
}
|
|
|
|
bool values_are_one_percent_close(double a, double b) {
|
|
double maxval = std::max(fabs(a), fabs(b));
|
|
if (maxval < 0.000001) {
|
|
return true;
|
|
}
|
|
|
|
double one_percent = maxval / 100;
|
|
return fabs(a - b) <= one_percent;
|
|
}
|
|
|
|
// returns true if both are optimal
|
|
void compare_costs(std::string glpk_out_file_name,
|
|
std::string lp_out_file_name,
|
|
unsigned & successes,
|
|
unsigned & failures) {
|
|
double a = get_glpk_cost(glpk_out_file_name);
|
|
double b = get_lp_tst_cost(lp_out_file_name);
|
|
|
|
if (values_are_one_percent_close(a, b)) {
|
|
successes++;
|
|
} else {
|
|
failures++;
|
|
std::cout << "glpsol cost is " << a << " lp_tst cost is " << b << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void compare_with_glpk(std::string glpk_out_file_name, std::string lp_out_file_name, unsigned & successes, unsigned & failures, std::string /*lp_file_name*/) {
|
|
#ifdef CHECK_GLPK_SOLUTION
|
|
std::unordered_map<std::string, double> * solution_table = get_solution_from_glpsol_output(glpk_out_file_name);
|
|
if (solution_is_feasible(lp_file_name, *solution_table)) {
|
|
std::cout << "glpk solution is feasible" << std::endl;
|
|
} else {
|
|
std::cout << "glpk solution is infeasible" << std::endl;
|
|
}
|
|
delete solution_table;
|
|
#endif
|
|
if (compare_statuses(glpk_out_file_name, lp_out_file_name, successes, failures)) {
|
|
compare_costs(glpk_out_file_name, lp_out_file_name, successes, failures);
|
|
}
|
|
}
|
|
void test_lar_on_file(std::string file_name, argument_parser & args_parser);
|
|
|
|
void process_test_file(std::string test_dir, std::string test_file_name, argument_parser & args_parser, std::string out_dir, unsigned max_iters, unsigned time_limit, unsigned & successes, unsigned & failures, unsigned & inconclusives) {
|
|
bool use_mpq = args_parser.option_is_used("--mpq");
|
|
bool minimize = args_parser.option_is_used("--min");
|
|
std::string full_lp_tst_out_name = out_dir + "/" + create_output_file_name(minimize, test_file_name, use_mpq);
|
|
|
|
std::string input_file_name = test_dir + "/" + test_file_name;
|
|
if (input_file_name[input_file_name.size() - 1] == '~') {
|
|
// std::cout << "ignoring " << input_file_name << std::endl;
|
|
return;
|
|
}
|
|
std::cout <<"processing " << input_file_name << std::endl;
|
|
|
|
std::ofstream out(full_lp_tst_out_name);
|
|
if (!out.is_open()) {
|
|
std::cout << "cannot open file " << full_lp_tst_out_name << std::endl;
|
|
throw 0;
|
|
}
|
|
std::streambuf *coutbuf = std::cout.rdbuf(); // save old buffer
|
|
std::cout.rdbuf(out.rdbuf()); // redirect std::cout to dir_entry->d_name!
|
|
bool dual = args_parser.option_is_used("--dual");
|
|
try {
|
|
if (args_parser.option_is_used("--lar"))
|
|
test_lar_on_file(input_file_name, args_parser);
|
|
else
|
|
solve_mps(input_file_name, minimize, max_iters, time_limit, use_mpq, dual, false, args_parser);
|
|
}
|
|
catch(...) {
|
|
std::cout << "catching the failure" << std::endl;
|
|
failures++;
|
|
std::cout.rdbuf(coutbuf); // reset to standard output again
|
|
return;
|
|
}
|
|
std::cout.rdbuf(coutbuf); // reset to standard output again
|
|
|
|
if (args_parser.option_is_used("--compare_with_glpk")) {
|
|
std::string glpk_out_file_name = out_dir + "/" + create_output_file_name_for_glpsol(minimize, std::string(test_file_name));
|
|
int glpk_exit_code = run_glpk(input_file_name, glpk_out_file_name, minimize, time_limit);
|
|
if (glpk_exit_code != 0) {
|
|
std::cout << "glpk failed" << std::endl;
|
|
inconclusives++;
|
|
} else {
|
|
compare_with_glpk(glpk_out_file_name, full_lp_tst_out_name, successes, failures, input_file_name);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
int my_readdir(DIR *dirp, struct dirent *
|
|
#ifndef LEAN_WINDOWS
|
|
entry
|
|
#endif
|
|
, struct dirent **result) {
|
|
#ifdef LEAN_WINDOWS
|
|
*result = readdir(dirp); // NOLINT
|
|
return *result != nullptr? 0 : 1;
|
|
#else
|
|
return readdir_r(dirp, entry, result);
|
|
#endif
|
|
}
|
|
*/
|
|
/*
|
|
vector<std::pair<std::string, int>> get_file_list_of_dir(std::string test_file_dir) {
|
|
DIR *dir;
|
|
if ((dir = opendir(test_file_dir.c_str())) == nullptr) {
|
|
std::cout << "Cannot open directory " << test_file_dir << std::endl;
|
|
throw 0;
|
|
}
|
|
vector<std::pair<std::string, int>> ret;
|
|
struct dirent entry;
|
|
struct dirent* result;
|
|
int return_code;
|
|
for (return_code = my_readdir(dir, &entry, &result);
|
|
#ifndef LEAN_WINDOWS
|
|
result != nullptr &&
|
|
#endif
|
|
return_code == 0;
|
|
return_code = my_readdir(dir, &entry, &result)) {
|
|
DIR *tmp_dp = opendir(result->d_name);
|
|
struct stat file_record;
|
|
if (tmp_dp == nullptr) {
|
|
std::string s = test_file_dir+ "/" + result->d_name;
|
|
int stat_ret = stat(s.c_str(), & file_record);
|
|
if (stat_ret!= -1) {
|
|
ret.push_back(make_pair(result->d_name, file_record.st_size));
|
|
} else {
|
|
perror("stat");
|
|
exit(1);
|
|
}
|
|
} else {
|
|
closedir(tmp_dp);
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return ret;
|
|
}
|
|
*/
|
|
/*
|
|
struct file_size_comp {
|
|
unordered_map<std::string, int>& m_file_sizes;
|
|
file_size_comp(unordered_map<std::string, int>& fs) :m_file_sizes(fs) {}
|
|
int operator()(std::string a, std::string b) {
|
|
std::cout << m_file_sizes.size() << std::endl;
|
|
std::cout << a << std::endl;
|
|
std::cout << b << std::endl;
|
|
|
|
auto ls = m_file_sizes.find(a);
|
|
std::cout << "fa" << std::endl;
|
|
auto rs = m_file_sizes.find(b);
|
|
std::cout << "fb" << std::endl;
|
|
if (ls != m_file_sizes.end() && rs != m_file_sizes.end()) {
|
|
std::cout << "fc " << std::endl;
|
|
int r = (*ls < *rs? -1: (*ls > *rs)? 1 : 0);
|
|
std::cout << "calc r " << std::endl;
|
|
return r;
|
|
} else {
|
|
std::cout << "sc " << std::endl;
|
|
return 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
*/
|
|
struct sort_pred {
|
|
bool operator()(const std::pair<std::string, int> &left, const std::pair<std::string, int> &right) {
|
|
return left.second < right.second;
|
|
}
|
|
};
|
|
|
|
|
|
void test_files_from_directory(std::string test_file_dir, argument_parser & args_parser) {
|
|
/*
|
|
std::cout << "loading files from directory \"" << test_file_dir << "\"" << std::endl;
|
|
std::string out_dir = args_parser.get_option_value("--out_dir");
|
|
if (out_dir.size() == 0) {
|
|
out_dir = "/tmp/test";
|
|
}
|
|
DIR *out_dir_p = opendir(out_dir.c_str());
|
|
if (out_dir_p == nullptr) {
|
|
std::cout << "Cannot open output directory \"" << out_dir << "\"" << std::endl;
|
|
return;
|
|
}
|
|
closedir(out_dir_p);
|
|
vector<std::pair<std::string, int>> files = get_file_list_of_dir(test_file_dir);
|
|
std::sort(files.begin(), files.end(), sort_pred());
|
|
unsigned max_iters, time_limit;
|
|
get_time_limit_and_max_iters_from_parser(args_parser, time_limit, max_iters);
|
|
unsigned successes = 0, failures = 0, inconclusives = 0;
|
|
for (auto & t : files) {
|
|
process_test_file(test_file_dir, t.first, args_parser, out_dir, max_iters, time_limit, successes, failures, inconclusives);
|
|
}
|
|
std::cout << "comparing with glpk: successes " << successes << ", failures " << failures << ", inconclusives " << inconclusives << std::endl;
|
|
*/
|
|
}
|
|
|
|
|
|
std::unordered_map<std::string, lean::mpq> get_solution_map(lp_solver<lean::mpq, lean::mpq> * lps, mps_reader<lean::mpq, lean::mpq> & reader) {
|
|
std::unordered_map<std::string, lean::mpq> ret;
|
|
for (auto it : reader.column_names()) {
|
|
ret[it] = lps->get_column_value_by_name(it);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void run_lar_solver(argument_parser & args_parser, lar_solver * solver, mps_reader<lean::mpq, lean::mpq> * reader) {
|
|
std::string maxng = args_parser.get_option_value("--maxng");
|
|
if (maxng.size() > 0) {
|
|
solver->settings().max_number_of_iterations_with_no_improvements = atoi(maxng.c_str());
|
|
}
|
|
if (args_parser.option_is_used("-pd")){
|
|
solver->settings().presolve_with_double_solver_for_lar = true;
|
|
}
|
|
|
|
std::string iter = args_parser.get_option_value("--max_iters");
|
|
if (iter.size() > 0) {
|
|
solver->settings().max_total_number_of_iterations = atoi(iter.c_str());
|
|
}
|
|
if (args_parser.option_is_used("--compare_with_primal")){
|
|
if (reader == nullptr) {
|
|
std::cout << "cannot compare with primal, the reader is null " << std::endl;
|
|
return;
|
|
}
|
|
auto * lps = reader->create_solver(false);
|
|
lps->find_maximal_solution();
|
|
std::unordered_map<std::string, lean::mpq> sol = get_solution_map(lps, *reader);
|
|
std::cout << "status = " << lp_status_to_string(solver->get_status()) << std::endl;
|
|
return;
|
|
}
|
|
int begin = get_millisecond_count();
|
|
lp_status status = solver->solve();
|
|
std::cout << "status is " << lp_status_to_string(status) << ", processed for " << get_millisecond_span(begin) / 1000.0 <<" seconds, and " << solver->get_total_iterations() << " iterations" << std::endl;
|
|
if (solver->get_status() == INFEASIBLE) {
|
|
vector<std::pair<lean::mpq, constraint_index>> evidence;
|
|
solver->get_infeasibility_explanation(evidence);
|
|
}
|
|
if (args_parser.option_is_used("--randomize_lar")) {
|
|
if (solver->get_status() != OPTIMAL) {
|
|
std::cout << "cannot check randomize on an infeazible problem" << std::endl;
|
|
return;
|
|
}
|
|
std::cout << "checking randomize" << std::endl;
|
|
vector<var_index> all_vars = solver->get_list_of_all_var_indices();
|
|
unsigned m = all_vars.size();
|
|
if (m > 100)
|
|
m = 100;
|
|
|
|
var_index *vars = new var_index[m];
|
|
for (unsigned i = 0; i < m; i++)
|
|
vars[i]=all_vars[i];
|
|
|
|
solver->random_update(m, vars);
|
|
delete []vars;
|
|
}
|
|
}
|
|
|
|
lar_solver * create_lar_solver_from_file(std::string file_name, argument_parser & args_parser) {
|
|
if (args_parser.option_is_used("--smt")) {
|
|
smt_reader reader(file_name);
|
|
reader.read();
|
|
if (!reader.is_ok()){
|
|
std::cout << "cannot process " << file_name << std::endl;
|
|
return nullptr;
|
|
}
|
|
return reader.create_lar_solver();
|
|
}
|
|
mps_reader<lean::mpq, lean::mpq> reader(file_name);
|
|
reader.read();
|
|
if (!reader.is_ok()) {
|
|
std::cout << "cannot process " << file_name << std::endl;
|
|
return nullptr;
|
|
}
|
|
return reader.create_lar_solver();
|
|
}
|
|
|
|
void test_lar_on_file(std::string file_name, argument_parser & args_parser) {
|
|
lar_solver * solver = create_lar_solver_from_file(file_name, args_parser);
|
|
mps_reader<lean::mpq, lean::mpq> reader(file_name);
|
|
mps_reader<lean::mpq, lean::mpq> * mps_reader = nullptr;
|
|
reader.read();
|
|
if (reader.is_ok()) {
|
|
mps_reader = & reader;
|
|
run_lar_solver(args_parser, solver, mps_reader);
|
|
}
|
|
delete solver;
|
|
}
|
|
|
|
vector<std::string> get_file_names_from_file_list(std::string filelist) {
|
|
std::ifstream file(filelist);
|
|
if (!file.is_open()) {
|
|
std::cout << "cannot open " << filelist << std::endl;
|
|
return vector<std::string>();
|
|
}
|
|
vector<std::string> ret;
|
|
bool end;
|
|
do {
|
|
std::string s = read_line(end, file);
|
|
if (end)
|
|
break;
|
|
if (s.size() == 0)
|
|
break;
|
|
ret.push_back(s);
|
|
} while (true);
|
|
return ret;
|
|
}
|
|
|
|
void test_lar_solver(argument_parser & args_parser) {
|
|
|
|
std::string file_name = args_parser.get_option_value("--file");
|
|
if (file_name.size() > 0) {
|
|
test_lar_on_file(file_name, args_parser);
|
|
return;
|
|
}
|
|
|
|
std::string file_list = args_parser.get_option_value("--filelist");
|
|
if (file_list.size() > 0) {
|
|
for (std::string fn : get_file_names_from_file_list(file_list))
|
|
test_lar_on_file(fn, args_parser);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void test_numeric_pair() {
|
|
numeric_pair<lean::mpq> a;
|
|
numeric_pair<lean::mpq> b(2, lean::mpq(6, 2));
|
|
a = b;
|
|
numeric_pair<lean::mpq> c(0.1, 0.5);
|
|
a += 2*c;
|
|
a -= c;
|
|
lean_assert (a == b + c);
|
|
numeric_pair<lean::mpq> d = a * 2;
|
|
std::cout << a << std::endl;
|
|
lean_assert(b == b);
|
|
lean_assert(b < a);
|
|
lean_assert(b <= a);
|
|
lean_assert(a > b);
|
|
lean_assert(a != b);
|
|
lean_assert(a >= b);
|
|
lean_assert(-a < b);
|
|
lean_assert(a < 2 * b);
|
|
lean_assert(b + b > a);
|
|
lean_assert(lean::mpq(2.1) * b + b > a);
|
|
lean_assert(-b * lean::mpq(2.1) - b < lean::mpq(0.99) * a);
|
|
std::cout << - b * lean::mpq(2.1) - b << std::endl;
|
|
lean_assert(-b *(lean::mpq(2.1) + 1) == - b * lean::mpq(2.1) - b);
|
|
}
|
|
|
|
void get_matrix_dimensions(std::ifstream & f, unsigned & m, unsigned & n) {
|
|
std::string line;
|
|
getline(f, line);
|
|
getline(f, line);
|
|
vector<std::string> r = split_and_trim(line);
|
|
m = atoi(r[1].c_str());
|
|
getline(f, line);
|
|
r = split_and_trim(line);
|
|
n = atoi(r[1].c_str());
|
|
}
|
|
|
|
void read_row_cols(unsigned i, static_matrix<double, double>& A, std::ifstream & f) {
|
|
do {
|
|
std::string line;
|
|
getline(f, line);
|
|
if (line== "row_end")
|
|
break;
|
|
auto r = split_and_trim(line);
|
|
lean_assert(r.size() == 4);
|
|
unsigned j = atoi(r[1].c_str());
|
|
double v = atof(r[3].c_str());
|
|
A.set(i, j, v);
|
|
} while (true);
|
|
}
|
|
|
|
bool read_row(static_matrix<double, double> & A, std::ifstream & f) {
|
|
std::string line;
|
|
getline(f, line);
|
|
if (static_cast<int>(line.find("row")) == -1)
|
|
return false;
|
|
auto r = split_and_trim(line);
|
|
if (r[0] != "row")
|
|
std::cout << "wrong row line" << line << std::endl;
|
|
unsigned i = atoi(r[1].c_str());
|
|
read_row_cols(i, A, f);
|
|
return true;
|
|
}
|
|
|
|
void read_rows(static_matrix<double, double>& A, std::ifstream & f) {
|
|
while (read_row(A, f)) {}
|
|
}
|
|
|
|
void read_basis(vector<unsigned> & basis, std::ifstream & f) {
|
|
std::cout << "reading basis" << std::endl;
|
|
std::string line;
|
|
getline(f, line);
|
|
lean_assert(line == "basis_start");
|
|
do {
|
|
getline(f, line);
|
|
if (line == "basis_end")
|
|
break;
|
|
unsigned j = atoi(line.c_str());
|
|
basis.push_back(j);
|
|
} while (true);
|
|
}
|
|
|
|
void read_indexed_vector(indexed_vector<double> & v, std::ifstream & f) {
|
|
std::string line;
|
|
getline(f, line);
|
|
lean_assert(line == "vector_start");
|
|
do {
|
|
getline(f, line);
|
|
if (line == "vector_end") break;
|
|
auto r = split_and_trim(line);
|
|
unsigned i = atoi(r[0].c_str());
|
|
double val = atof(r[1].c_str());
|
|
v.set_value(val, i);
|
|
std::cout << "setting value " << i << " = " << val << std::endl;
|
|
} while (true);
|
|
}
|
|
|
|
void check_lu_from_file(std::string lufile_name) {
|
|
std::ifstream f(lufile_name);
|
|
if (!f.is_open()) {
|
|
std::cout << "cannot open file " << lufile_name << std::endl;
|
|
}
|
|
unsigned m, n;
|
|
get_matrix_dimensions(f, m, n);
|
|
std::cout << "init matrix " << m << " by " << n << std::endl;
|
|
static_matrix<double, double> A(m, n);
|
|
read_rows(A, f);
|
|
vector<unsigned> basis;
|
|
read_basis(basis, f);
|
|
indexed_vector<double> v(m);
|
|
// read_indexed_vector(v, f);
|
|
f.close();
|
|
vector<int> basis_heading;
|
|
lp_settings settings;
|
|
vector<unsigned> non_basic_columns;
|
|
lu<double, double> lsuhl(A, basis, settings);
|
|
indexed_vector<double> d(A.row_count());
|
|
unsigned entering = 26;
|
|
lsuhl.solve_Bd(entering, d, v);
|
|
#ifdef LEAN_DEBUG
|
|
auto B = get_B(lsuhl, basis);
|
|
vector<double> a(m);
|
|
A.copy_column_to_vector(entering, a);
|
|
indexed_vector<double> cd(d);
|
|
B.apply_from_left(cd.m_data, settings);
|
|
lean_assert(vectors_are_equal(cd.m_data , a));
|
|
#endif
|
|
}
|
|
|
|
void test_square_dense_submatrix() {
|
|
std::cout << "testing square_dense_submatrix" << std::endl;
|
|
unsigned parent_dim = 7;
|
|
sparse_matrix<double, double> parent(parent_dim);
|
|
fill_matrix(parent);
|
|
unsigned index_start = 3;
|
|
square_dense_submatrix<double, double> d;
|
|
d.init(&parent, index_start);
|
|
for (unsigned i = index_start; i < parent_dim; i++)
|
|
for (unsigned j = index_start; j < parent_dim; j++)
|
|
d[i][j] = i*3+j*2;
|
|
#ifdef LEAN_DEBUG
|
|
unsigned dim = parent_dim - index_start;
|
|
dense_matrix<double, double> m(dim, dim);
|
|
for (unsigned i = index_start; i < parent_dim; i++)
|
|
for (unsigned j = index_start; j < parent_dim; j++)
|
|
m[i-index_start][j-index_start] = d[i][j];
|
|
print_matrix(&m, std::cout);
|
|
#endif
|
|
for (unsigned i = index_start; i < parent_dim; i++)
|
|
for (unsigned j = index_start; j < parent_dim; j++)
|
|
d[i][j] = d[j][i];
|
|
#ifdef LEAN_DEBUG
|
|
for (unsigned i = index_start; i < parent_dim; i++)
|
|
for (unsigned j = index_start; j < parent_dim; j++)
|
|
m[i-index_start][j-index_start] = d[i][j];
|
|
|
|
print_matrix(&m, std::cout);
|
|
std::cout << std::endl;
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
void print_st(lp_status status) {
|
|
std::cout << lp_status_to_string(status) << std::endl;
|
|
}
|
|
|
|
|
|
|
|
void test_term() {
|
|
lar_solver solver;
|
|
unsigned _x = 0;
|
|
unsigned _y = 1;
|
|
var_index x = solver.add_var(_x);
|
|
var_index y = solver.add_var(_y);
|
|
|
|
vector<std::pair<mpq, var_index>> term_ls;
|
|
term_ls.push_back(std::pair<mpq, var_index>((int)1, x));
|
|
term_ls.push_back(std::pair<mpq, var_index>((int)1, y));
|
|
var_index z = solver.add_term(term_ls, mpq(3));
|
|
|
|
vector<std::pair<mpq, var_index>> ls;
|
|
ls.push_back(std::pair<mpq, var_index>((int)1, x));
|
|
ls.push_back(std::pair<mpq, var_index>((int)1, y));
|
|
ls.push_back(std::pair<mpq, var_index>((int)1, z));
|
|
|
|
solver.add_constraint(ls, lconstraint_kind::EQ, mpq(0));
|
|
auto status = solver.solve();
|
|
std::cout << lp_status_to_string(status) << std::endl;
|
|
std::unordered_map<var_index, mpq> model;
|
|
solver.get_model(model);
|
|
|
|
for (auto & t : model) {
|
|
std::cout << solver.get_variable_name(t.first) << " = " << t.second.get_double() << ",";
|
|
}
|
|
std::cout << std::endl;
|
|
|
|
}
|
|
|
|
void test_evidence_for_total_inf_simple(argument_parser & args_parser) {
|
|
lar_solver solver;
|
|
var_index x = solver.add_var(0);
|
|
var_index y = solver.add_var(1);
|
|
solver.add_var_bound(x, LE, -mpq(1));
|
|
solver.add_var_bound(y, GE, mpq(0));
|
|
vector<std::pair<mpq, var_index>> ls;
|
|
|
|
ls.push_back(std::pair<mpq, var_index>((int)1, x));
|
|
ls.push_back(std::pair<mpq, var_index>((int)1, y));
|
|
solver.add_constraint(ls, GE, mpq(1));
|
|
ls.pop_back();
|
|
ls.push_back(std::pair<mpq, var_index>(-(int)1, y));
|
|
solver.add_constraint(ls, lconstraint_kind::GE, mpq(0));
|
|
auto status = solver.solve();
|
|
std::cout << lp_status_to_string(status) << std::endl;
|
|
std::unordered_map<var_index, mpq> model;
|
|
lean_assert(solver.get_status() == INFEASIBLE);
|
|
}
|
|
void test_bound_propagation_one_small_sample1() {
|
|
/*
|
|
(<= (+ a (* (- 1.0) b)) 0.0)
|
|
(<= (+ b (* (- 1.0) x_13)) 0.0)
|
|
--> (<= (+ a (* (- 1.0) c)) 0.0)
|
|
|
|
the inequality on (<= a c) is obtained from a triangle inequality (<= a b) (<= b c).
|
|
If b becomes basic variable, then it is likely the old solver ends up with a row that implies (<= a c).
|
|
a - b <= 0.0
|
|
b - c <= 0.0
|
|
|
|
got to get a <= c
|
|
*/
|
|
std::function<bool (unsigned, bool, bool, const mpq & )> bound_is_relevant =
|
|
[&](unsigned j, bool is_low_bound, bool strict, const rational& bound_val) {
|
|
return true;
|
|
};
|
|
lar_solver ls;
|
|
unsigned a = ls.add_var(0);
|
|
unsigned b = ls.add_var(1);
|
|
unsigned c = ls.add_var(2);
|
|
vector<std::pair<mpq, var_index>> coeffs;
|
|
coeffs.push_back(std::pair<mpq, var_index>(1, a));
|
|
coeffs.push_back(std::pair<mpq, var_index>(-1, c));
|
|
ls.add_term(coeffs, zero_of_type<mpq>());
|
|
coeffs.pop_back();
|
|
coeffs.push_back(std::pair<mpq, var_index>(-1, b));
|
|
ls.add_term(coeffs, zero_of_type<mpq>());
|
|
coeffs.clear();
|
|
coeffs.push_back(std::pair<mpq, var_index>(1, a));
|
|
coeffs.push_back(std::pair<mpq, var_index>(-1, b));
|
|
ls.add_constraint(coeffs, LE, zero_of_type<mpq>());
|
|
coeffs.clear();
|
|
coeffs.push_back(std::pair<mpq, var_index>(1, b));
|
|
coeffs.push_back(std::pair<mpq, var_index>(-1, c));
|
|
ls.add_constraint(coeffs, LE, zero_of_type<mpq>());
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(a, LE, mpq(1));
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
std::cout << " bound ev from test_bound_propagation_one_small_sample1" << std::endl;
|
|
for (auto & be : bp.m_ibounds) {
|
|
std::cout << "bound\n";
|
|
ls.print_implied_bound(be, std::cout);
|
|
}
|
|
}
|
|
|
|
void test_bound_propagation_one_small_samples() {
|
|
test_bound_propagation_one_small_sample1();
|
|
/*
|
|
(>= x_46 0.0)
|
|
(<= x_29 0.0)
|
|
(not (<= x_68 0.0))
|
|
(<= (+ (* (/ 1001.0 1998.0) x_10) (* (- 1.0) x_151) x_68) (- (/ 1001.0 999.0)))
|
|
(<= (+ (* (/ 1001.0 999.0) x_9)
|
|
(* (- 1.0) x_152)
|
|
(* (/ 1001.0 999.0) x_151)
|
|
(* (/ 1001.0 999.0) x_68))
|
|
(- (/ 1502501.0 999000.0)))
|
|
(not (<= (+ (* (/ 999.0 2.0) x_10) (* (- 1.0) x_152) (* (- (/ 999.0 2.0)) x_151))
|
|
(/ 1001.0 2.0)))
|
|
(not (<= x_153 0.0))z
|
|
(>= (+ x_9 (* (- (/ 1001.0 999.0)) x_10) (* (- 1.0) x_153) (* (- 1.0) x_68))
|
|
(/ 5003.0 1998.0))
|
|
--> (not (<= (+ x_10 x_46 (* (- 1.0) x_29)) 0.0))
|
|
|
|
and
|
|
|
|
(<= (+ a (* (- 1.0) b)) 0.0)
|
|
(<= (+ b (* (- 1.0) x_13)) 0.0)
|
|
--> (<= (+ a (* (- 1.0) x_13)) 0.0)
|
|
|
|
In the first case, there typically are no atomic formulas for bounding x_10. So there is never some
|
|
basic lemma of the form (>= x46 0), (<= x29 0), (>= x10 0) -> (not (<= (+ x10 x46 (- x29)) 0)).
|
|
Instead the bound on x_10 falls out from a bigger blob of constraints.
|
|
|
|
In the second case, the inequality on (<= x19 x13) is obtained from a triangle inequality (<= x19 x9) (<= x9 x13).
|
|
If x9 becomes basic variable, then it is likely the old solver ends up with a row that implies (<= x19 x13).
|
|
*/
|
|
}
|
|
void test_bound_propagation_one_row() {
|
|
lar_solver ls;
|
|
unsigned x0 = ls.add_var(0);
|
|
unsigned x1 = ls.add_var(1);
|
|
vector<std::pair<mpq, var_index>> c;
|
|
c.push_back(std::pair<mpq, var_index>(1, x0));
|
|
c.push_back(std::pair<mpq, var_index>(-1, x1));
|
|
ls.add_constraint(c, EQ, one_of_type<mpq>());
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(x0, LE, mpq(1));
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
}
|
|
void test_bound_propagation_one_row_with_bounded_vars() {
|
|
lar_solver ls;
|
|
unsigned x0 = ls.add_var(0);
|
|
unsigned x1 = ls.add_var(1);
|
|
vector<std::pair<mpq, var_index>> c;
|
|
c.push_back(std::pair<mpq, var_index>(1, x0));
|
|
c.push_back(std::pair<mpq, var_index>(-1, x1));
|
|
ls.add_constraint(c, EQ, one_of_type<mpq>());
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(x0, GE, mpq(-3));
|
|
ls.add_var_bound(x0, LE, mpq(3));
|
|
ls.add_var_bound(x0, LE, mpq(1));
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
}
|
|
void test_bound_propagation_one_row_mixed() {
|
|
lar_solver ls;
|
|
unsigned x0 = ls.add_var(0);
|
|
unsigned x1 = ls.add_var(1);
|
|
vector<std::pair<mpq, var_index>> c;
|
|
c.push_back(std::pair<mpq, var_index>(1, x0));
|
|
c.push_back(std::pair<mpq, var_index>(-1, x1));
|
|
ls.add_constraint(c, EQ, one_of_type<mpq>());
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(x1, LE, mpq(1));
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
}
|
|
|
|
void test_bound_propagation_two_rows() {
|
|
lar_solver ls;
|
|
unsigned x = ls.add_var(0);
|
|
unsigned y = ls.add_var(1);
|
|
unsigned z = ls.add_var(2);
|
|
vector<std::pair<mpq, var_index>> c;
|
|
c.push_back(std::pair<mpq, var_index>(1, x));
|
|
c.push_back(std::pair<mpq, var_index>(2, y));
|
|
c.push_back(std::pair<mpq, var_index>(3, z));
|
|
ls.add_constraint(c, GE, one_of_type<mpq>());
|
|
c.clear();
|
|
c.push_back(std::pair<mpq, var_index>(3, x));
|
|
c.push_back(std::pair<mpq, var_index>(2, y));
|
|
c.push_back(std::pair<mpq, var_index>(1, z));
|
|
ls.add_constraint(c, GE, one_of_type<mpq>());
|
|
ls.add_var_bound(x, LE, mpq(2));
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(y, LE, mpq(1));
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
}
|
|
|
|
void test_total_case_u() {
|
|
std::cout << "test_total_case_u\n";
|
|
lar_solver ls;
|
|
unsigned x = ls.add_var(0);
|
|
unsigned y = ls.add_var(1);
|
|
unsigned z = ls.add_var(2);
|
|
vector<std::pair<mpq, var_index>> c;
|
|
c.push_back(std::pair<mpq, var_index>(1, x));
|
|
c.push_back(std::pair<mpq, var_index>(2, y));
|
|
c.push_back(std::pair<mpq, var_index>(3, z));
|
|
ls.add_constraint(c, LE, one_of_type<mpq>());
|
|
ls.add_var_bound(x, GE, zero_of_type<mpq>());
|
|
ls.add_var_bound(y, GE, zero_of_type<mpq>());
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(z, GE, zero_of_type<mpq>());
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
}
|
|
bool contains_j_kind(unsigned j, lconstraint_kind kind, const mpq & rs, const vector<implied_bound> & ev) {
|
|
for (auto & e : ev) {
|
|
if (e.m_j == j && e.m_bound == rs && e.kind() == kind)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
void test_total_case_l(){
|
|
std::cout << "test_total_case_l\n";
|
|
lar_solver ls;
|
|
unsigned x = ls.add_var(0);
|
|
unsigned y = ls.add_var(1);
|
|
unsigned z = ls.add_var(2);
|
|
vector<std::pair<mpq, var_index>> c;
|
|
c.push_back(std::pair<mpq, var_index>(1, x));
|
|
c.push_back(std::pair<mpq, var_index>(2, y));
|
|
c.push_back(std::pair<mpq, var_index>(3, z));
|
|
ls.add_constraint(c, GE, one_of_type<mpq>());
|
|
ls.add_var_bound(x, LE, one_of_type<mpq>());
|
|
ls.add_var_bound(y, LE, one_of_type<mpq>());
|
|
ls.settings().presolve_with_double_solver_for_lar = true;
|
|
vector<implied_bound> ev;
|
|
ls.add_var_bound(z, LE, zero_of_type<mpq>());
|
|
ls.solve();
|
|
bound_propagator bp(ls);
|
|
ls.propagate_bounds_for_touched_rows(bp);
|
|
lean_assert(ev.size() == 4);
|
|
lean_assert(contains_j_kind(x, GE, - one_of_type<mpq>(), ev));
|
|
}
|
|
void test_bound_propagation() {
|
|
test_total_case_u();
|
|
test_bound_propagation_one_small_samples();
|
|
test_bound_propagation_one_row();
|
|
test_bound_propagation_one_row_with_bounded_vars();
|
|
test_bound_propagation_two_rows();
|
|
test_bound_propagation_one_row_mixed();
|
|
test_total_case_l();
|
|
|
|
}
|
|
|
|
void test_int_set() {
|
|
int_set s(4);
|
|
s.insert(2);
|
|
s.print(std::cout);
|
|
s.insert(1);
|
|
s.insert(2);
|
|
s.print(std::cout);
|
|
lean_assert(s.contains(2));
|
|
lean_assert(s.size() == 2);
|
|
s.erase(2);
|
|
lean_assert(s.size() == 1);
|
|
s.erase(2);
|
|
lean_assert(s.size() == 1);
|
|
s.print(std::cout);
|
|
s.insert(3);
|
|
s.insert(2);
|
|
s.clear();
|
|
lean_assert(s.size() == 0);
|
|
|
|
|
|
}
|
|
|
|
void test_rationals_no_numeric_pairs() {
|
|
stopwatch sw;
|
|
|
|
vector<mpq> c;
|
|
for (unsigned j = 0; j < 10; j ++)
|
|
c.push_back(mpq(my_random()%100, 1 + my_random()%100 ));
|
|
|
|
vector<mpq> x;
|
|
for (unsigned j = 0; j < 10; j ++)
|
|
x.push_back(mpq(my_random()%100, 1 + my_random()%100 ));
|
|
|
|
unsigned k = 500000;
|
|
mpq r=zero_of_type<mpq>();
|
|
sw.start();
|
|
|
|
for (unsigned j = 0; j < k; j++){
|
|
mpq val = zero_of_type<mpq>();
|
|
for (unsigned j=0;j< c.size(); j++){
|
|
val += c[j]*x[j];
|
|
}
|
|
|
|
r += val;
|
|
}
|
|
|
|
sw.stop();
|
|
std::cout << "operation with rationals no pairs " << sw.get_seconds() << std::endl;
|
|
std::cout << T_to_string(r) << std::endl;
|
|
}
|
|
|
|
void test_rationals_no_numeric_pairs_plus() {
|
|
stopwatch sw;
|
|
|
|
vector<mpq> c;
|
|
for (unsigned j = 0; j < 10; j ++)
|
|
c.push_back(mpq(my_random()%100, 1 + my_random()%100 ));
|
|
|
|
vector<mpq> x;
|
|
for (unsigned j = 0; j < 10; j ++)
|
|
x.push_back(mpq(my_random()%100, 1 + my_random()%100 ));
|
|
|
|
unsigned k = 500000;
|
|
mpq r=zero_of_type<mpq>();
|
|
sw.start();
|
|
|
|
for (unsigned j = 0; j < k; j++){
|
|
mpq val = zero_of_type<mpq>();
|
|
for (unsigned j=0;j< c.size(); j++){
|
|
val = val + c[j]*x[j];
|
|
}
|
|
|
|
r = r + val;
|
|
}
|
|
|
|
sw.stop();
|
|
std::cout << "operation with rationals no pairs " << sw.get_seconds() << std::endl;
|
|
std::cout << T_to_string(r) << std::endl;
|
|
}
|
|
|
|
|
|
|
|
void test_rationals() {
|
|
stopwatch sw;
|
|
|
|
vector<mpq> c;
|
|
for (unsigned j = 0; j < 10; j ++)
|
|
c.push_back(mpq(my_random()%100, 1 + my_random()%100));
|
|
|
|
|
|
|
|
vector<numeric_pair<mpq>> x;
|
|
for (unsigned j = 0; j < 10; j ++)
|
|
x.push_back(mpq(my_random()%100, 1 + my_random()%100 ));
|
|
|
|
std::cout << "x = ";
|
|
print_vector(x, std::cout);
|
|
|
|
unsigned k = 1000000;
|
|
numeric_pair<mpq> r=zero_of_type<numeric_pair<mpq>>();
|
|
sw.start();
|
|
|
|
for (unsigned j = 0; j < k; j++) {
|
|
for (unsigned i = 0; i < c.size(); i++) {
|
|
r+= c[i] * x[i];
|
|
}
|
|
}
|
|
sw.stop();
|
|
std::cout << "operation with rationals " << sw.get_seconds() << std::endl;
|
|
std::cout << T_to_string(r) << std::endl;
|
|
}
|
|
|
|
void test_lp_local(int argn, char**argv) {
|
|
std::cout << "resize\n";
|
|
vector<mpq> r;
|
|
r.resize(1);
|
|
|
|
// initialize_util_module();
|
|
// initialize_numerics_module();
|
|
int ret;
|
|
argument_parser args_parser(argn, argv);
|
|
setup_args_parser(args_parser);
|
|
if (!args_parser.parse()) {
|
|
std::cout << args_parser.m_error_message << std::endl;
|
|
std::cout << args_parser.usage_string();
|
|
ret = 1;
|
|
return finalize(ret);
|
|
}
|
|
|
|
args_parser.print();
|
|
|
|
if (args_parser.option_is_used("--test_mpq")) {
|
|
test_rationals();
|
|
return finalize(0);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--test_mpq_np")) {
|
|
test_rationals_no_numeric_pairs();
|
|
return finalize(0);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--test_mpq_np_plus")) {
|
|
test_rationals_no_numeric_pairs_plus();
|
|
return finalize(0);
|
|
}
|
|
|
|
|
|
|
|
if (args_parser.option_is_used("--test_int_set")) {
|
|
test_int_set();
|
|
return finalize(0);
|
|
}
|
|
if (args_parser.option_is_used("--bp")) {
|
|
test_bound_propagation();
|
|
return finalize(0);
|
|
}
|
|
|
|
|
|
std::string lufile = args_parser.get_option_value("--checklu");
|
|
if (lufile.size()) {
|
|
check_lu_from_file(lufile);
|
|
return finalize(0);
|
|
}
|
|
|
|
#ifdef LEAN_DEBUG
|
|
if (args_parser.option_is_used("--test_swaps")) {
|
|
sparse_matrix<double, double> m(10);
|
|
fill_matrix(m);
|
|
test_swap_rows_with_permutation(m);
|
|
test_swap_cols_with_permutation(m);
|
|
return finalize(0);
|
|
}
|
|
#endif
|
|
if (args_parser.option_is_used("--test_perm")) {
|
|
test_permutations();
|
|
return finalize(0);
|
|
}
|
|
if (args_parser.option_is_used("--test_file_directory")) {
|
|
test_files_from_directory(args_parser.get_option_value("--test_file_directory"), args_parser);
|
|
return finalize(0);
|
|
}
|
|
std::string file_list = args_parser.get_option_value("--filelist");
|
|
if (file_list.size() > 0) {
|
|
for (std::string fn : get_file_names_from_file_list(file_list))
|
|
solve_mps(fn, args_parser);
|
|
return finalize(0);
|
|
}
|
|
|
|
if (args_parser.option_is_used("-tbq")) {
|
|
test_binary_priority_queue();
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
#ifdef LEAN_DEBUG
|
|
lp_settings settings;
|
|
update_settings(args_parser, settings);
|
|
if (args_parser.option_is_used("--test_lu")) {
|
|
test_lu(settings);
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--test_small_lu")) {
|
|
test_small_lu(settings);
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--lar")){
|
|
std::cout <<"calling test_lar_solver" << std::endl;
|
|
test_lar_solver(args_parser);
|
|
return finalize(0);
|
|
}
|
|
|
|
|
|
|
|
if (args_parser.option_is_used("--test_larger_lu")) {
|
|
test_larger_lu(settings);
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--test_larger_lu_with_holes")) {
|
|
test_larger_lu_with_holes(settings);
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
#endif
|
|
if (args_parser.option_is_used("--eti")) {
|
|
test_evidence_for_total_inf_simple(args_parser);
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
|
|
if (args_parser.option_is_used("--test_lp_0")) {
|
|
test_lp_0();
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--smap")) {
|
|
test_stacked();
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
if (args_parser.option_is_used("--term")) {
|
|
test_term();
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
unsigned max_iters;
|
|
unsigned time_limit;
|
|
get_time_limit_and_max_iters_from_parser(args_parser, time_limit, max_iters);
|
|
bool dual = args_parser.option_is_used("--dual");
|
|
bool solve_for_rational = args_parser.option_is_used("--mpq");
|
|
std::string file_name = args_parser.get_option_value("--file");
|
|
if (file_name.size() > 0) {
|
|
solve_mps(file_name, args_parser.option_is_used("--min"), max_iters, time_limit, solve_for_rational, dual, args_parser.option_is_used("--compare_with_primal"), args_parser);
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
|
|
if (args_parser.option_is_used("--solve_some_mps")) {
|
|
#if _LINUX_
|
|
solve_some_mps(args_parser);
|
|
#endif
|
|
ret = 0;
|
|
return finalize(ret);
|
|
}
|
|
// lean::ccc = 0;
|
|
return finalize(0);
|
|
test_init_U();
|
|
test_replace_column();
|
|
#ifdef LEAN_DEBUG
|
|
sparse_matrix_with_permutaions_test();
|
|
test_dense_matrix();
|
|
test_swap_operations();
|
|
test_permutations();
|
|
test_pivot_like_swaps_and_pivot();
|
|
#endif
|
|
tst1();
|
|
std::cout << "done with LP tests\n";
|
|
return finalize(0); // has_violations() ? 1 : 0);
|
|
}
|
|
}
|
|
void tst_lp(char ** argv, int argc, int& i) {
|
|
lean::test_lp_local(argc - 2, argv + 2);
|
|
}
|