diff --git a/README-CMake.md b/README-CMake.md index 9289d40f1..abd2d3c87 100644 --- a/README-CMake.md +++ b/README-CMake.md @@ -1,4 +1,4 @@ -# Z3's CMake build system + # Z3's CMake build system [CMake](https://cmake.org/) is a "meta build system" that reads a description of the project written in the ``CMakeLists.txt`` files and emits a build diff --git a/src/shell/lp_frontend.cpp b/src/shell/lp_frontend.cpp index 9fad426a0..8bed24c83 100644 --- a/src/shell/lp_frontend.cpp +++ b/src/shell/lp_frontend.cpp @@ -80,7 +80,6 @@ void run_solver(lp_params & params, char const * mps_file_name) { solver->settings().set_message_ostream(&std::cout); solver->settings().report_frequency = params.rep_freq(); solver->settings().print_statistics = params.print_stats(); - solver->settings().presolve_with_double_solver_for_lar = params.presolve_with_dbl(); solver->find_maximal_solution(); *(solver->settings().get_message_ostream()) << "status is " << lp_status_to_string(solver->get_status()) << std::endl; diff --git a/src/smt/theory_lra.cpp b/src/smt/theory_lra.cpp index 4a602f808..4cff79cf2 100644 --- a/src/smt/theory_lra.cpp +++ b/src/smt/theory_lra.cpp @@ -148,8 +148,6 @@ namespace smt { arith_eq_adapter m_arith_eq_adapter; vector m_columns; - int m_print_counter = 0; - // temporary values kept during internalization struct internalize_state { expr_ref_vector m_terms; @@ -287,7 +285,6 @@ namespace smt { m_theory_var2var_index.reset(); m_solver->settings().set_resource_limit(m_resource_limit); m_solver->settings().simplex_strategy() = static_cast(lp.simplex_strategy()); - m_solver->settings().presolve_with_double_solver_for_lar = lp.presolve_with_dbl(); reset_variable_values(); m_solver->settings().bound_propagation() = BP_NONE != propagation_mode(); m_solver->set_propagate_bounds_on_pivoted_rows_mode(lp.bprop_on_pivoted_rows()); @@ -1985,7 +1982,6 @@ namespace smt { typedef pair_hash, bool_hash> value_sort_pair_hash; typedef map > value2var; value2var m_fixed_var_table; - const lean::constraint_index null_index = static_cast(-1); void propagate_eqs(lean::var_index vi, lean::constraint_index ci, lean::lconstraint_kind k, lp::bound& b) { if (propagate_eqs()) { @@ -2029,10 +2025,10 @@ namespace smt { lean::var_index ti = m_solver->adjust_term_index(vi); auto& vec = is_lower ? m_lower_terms : m_upper_terms; if (vec.size() <= ti) { - vec.resize(ti + 1, constraint_bound(null_index, rational())); + vec.resize(ti + 1, constraint_bound(UINT_MAX, rational())); } constraint_bound& b = vec[ti]; - if (b.first == null_index || (is_lower? b.second < v : b.second > v)) { + if (b.first == UINT_MAX || (is_lower? b.second < v : b.second > v)) { ctx().push_trail(vector_value_trail(vec, ti)); b.first = ci; b.second = v; @@ -2052,7 +2048,7 @@ namespace smt { rational val; TRACE("arith", tout << vi << " " << v << "\n";); if (v != null_theory_var && a.is_numeral(get_owner(v), val) && bound == val) { - ci = null_constraint_index; + ci = UINT_MAX; return bound == val; } @@ -2060,7 +2056,7 @@ namespace smt { if (vec.size() > ti) { constraint_bound& b = vec[ti]; ci = b.first; - return ci != null_index && bound == b.second; + return ci != UINT_MAX && bound == b.second; } else { return false; @@ -2144,22 +2140,10 @@ namespace smt { if (m_solver->A_r().row_count() > m_stats.m_max_rows) m_stats.m_max_rows = m_solver->A_r().row_count(); TRACE("arith_verbose", display(tout);); - bool print = false && m_print_counter++ % 1000 == 0; - stopwatch sw; - if (print) { - sw.start(); - } lean::lp_status status = m_solver->find_feasible_solution(); - if (print) { - sw.stop(); - } m_stats.m_num_iterations = m_solver->settings().st().m_total_iterations; m_stats.m_num_factorizations = m_solver->settings().st().m_num_factorizations; m_stats.m_need_to_solve_inf = m_solver->settings().st().m_need_to_solve_inf; - if (print) { - IF_VERBOSE(0, verbose_stream() << status << " " << sw.get_seconds() << " " << m_stats.m_num_iterations << " " << m_print_counter << "\n";); - } - //m_stats.m_num_iterations_with_no_progress += m_solver->settings().st().m_iters_with_no_cost_growing; switch (status) { case lean::lp_status::INFEASIBLE: @@ -2182,10 +2166,11 @@ namespace smt { literal_vector m_core; svector m_eqs; vector m_params; - lean::constraint_index const null_constraint_index = UINT_MAX; + + // lean::constraint_index const null_constraint_index = UINT_MAX; // not sure what a correct fix is void set_evidence(lean::constraint_index idx) { - if (idx == null_constraint_index) { + if (idx == UINT_MAX) { return; } switch (m_constraint_sources[idx]) { diff --git a/src/test/lp.cpp b/src/test/lp.cpp index 7829d81f5..f1df5b05e 100644 --- a/src/test/lp.cpp +++ b/src/test/lp.cpp @@ -1077,7 +1077,7 @@ bool get_double_from_args_parser(const char * option, argument_parser & args_par void update_settings(argument_parser & args_parser, lp_settings& settings) { unsigned n; - settings.m_simplex_strategy = simplex_strategy_enum::no_tableau; + settings.m_simplex_strategy = simplex_strategy_enum::lu; if (get_int_from_args_parser("--rep_frq", args_parser, n)) settings.report_frequency = n; else diff --git a/src/test/smt_reader.h b/src/test/smt_reader.h index 481985ed4..714e734ad 100644 --- a/src/test/smt_reader.h +++ b/src/test/smt_reader.h @@ -56,10 +56,11 @@ namespace lean { struct formula_constraint { lconstraint_kind m_kind; std::vector> m_coeffs; - mpq m_right_side = numeric_traits::zero(); + mpq m_right_side; void add_pair(mpq c, std::string name) { m_coeffs.push_back(make_pair(c, name)); } + formula_constraint() : m_right_side(numeric_traits::zero()) {} }; lisp_elem m_formula_lisp_elem; @@ -69,9 +70,11 @@ namespace lean { std::string m_file_name; std::ifstream m_file_stream; std::string m_line; - bool m_is_OK = true; - unsigned m_line_number = 0; - smt_reader(std::string file_name): + bool m_is_OK; + unsigned m_line_number; + smt_reader(std::string file_name): + m_is_OK(true), + m_line_number(0), m_file_name(file_name), m_file_stream(file_name) { } diff --git a/src/util/lp/binary_heap_priority_queue.h b/src/util/lp/binary_heap_priority_queue.h index 1a1f89592..a6206948c 100644 --- a/src/util/lp/binary_heap_priority_queue.h +++ b/src/util/lp/binary_heap_priority_queue.h @@ -16,8 +16,7 @@ class binary_heap_priority_queue { // indexing for A starts from 1 vector m_heap; // keeps the elements of the queue vector m_heap_inverse; // o = m_heap[m_heap_inverse[o]] - unsigned m_heap_size = 0; - + unsigned m_heap_size; // is is the child place in heap void swap_with_parent(unsigned i); void put_at(unsigned i, unsigned h); @@ -29,7 +28,7 @@ public: public: void remove(unsigned o); unsigned size() const { return m_heap_size; } - binary_heap_priority_queue(): m_heap(1) {} // the empty constructror + binary_heap_priority_queue(): m_heap(1), m_heap_size(0) {} // the empty constructror // n is the initial queue capacity. // The capacity will be enlarged two times automatically if needed binary_heap_priority_queue(unsigned n); diff --git a/src/util/lp/binary_heap_priority_queue.hpp b/src/util/lp/binary_heap_priority_queue.hpp index 2ad65c536..440b45b02 100644 --- a/src/util/lp/binary_heap_priority_queue.hpp +++ b/src/util/lp/binary_heap_priority_queue.hpp @@ -83,7 +83,8 @@ template void binary_heap_priority_queue::remove(unsigned o) { template binary_heap_priority_queue::binary_heap_priority_queue(unsigned n) : m_priorities(n), m_heap(n + 1), // because the indexing for A starts from 1 - m_heap_inverse(n, -1) + m_heap_inverse(n, -1), + m_heap_size(0) { } diff --git a/src/util/lp/binary_heap_upair_queue.h b/src/util/lp/binary_heap_upair_queue.h index d5df7affc..26cfd5532 100644 --- a/src/util/lp/binary_heap_upair_queue.h +++ b/src/util/lp/binary_heap_upair_queue.h @@ -20,8 +20,8 @@ template class binary_heap_upair_queue { binary_heap_priority_queue m_q; std::unordered_map m_pairs_to_index; - vector m_pairs; // inverse to index - vector m_available_spots; + svector m_pairs; // inverse to index + svector m_available_spots; public: binary_heap_upair_queue(unsigned size); diff --git a/src/util/lp/bound_analyzer_on_row.h b/src/util/lp/bound_analyzer_on_row.h index 7987c89e9..bc0b72eee 100644 --- a/src/util/lp/bound_analyzer_on_row.h +++ b/src/util/lp/bound_analyzer_on_row.h @@ -19,9 +19,9 @@ class bound_analyzer_on_row { linear_combination_iterator & m_it; unsigned m_row_or_term_index; - int m_column_of_u = -1; // index of an unlimited from above monoid + int m_column_of_u; // index of an unlimited from above monoid // -1 means that such a value is not found, -2 means that at least two of such monoids were found - int m_column_of_l = -1; // index of an unlimited from below monoid + int m_column_of_l; // index of an unlimited from below monoid impq m_rs; bound_propagator & m_bp; public : @@ -36,7 +36,9 @@ public : m_it(it), m_row_or_term_index(row_or_term_index), m_rs(rs), - m_bp(bp) + m_bp(bp), + m_column_of_u(-1), + m_column_of_l(-1) {} diff --git a/src/util/lp/column_info.h b/src/util/lp/column_info.h index 7e44ccf43..ed916757d 100644 --- a/src/util/lp/column_info.h +++ b/src/util/lp/column_info.h @@ -15,16 +15,16 @@ inline bool is_valid(unsigned j) { return static_cast(j) >= 0;} template class column_info { std::string m_name; - bool m_low_bound_is_set = false; - bool m_low_bound_is_strict = false; - bool m_upper_bound_is_set = false; - bool m_upper_bound_is_strict = false; + bool m_low_bound_is_set; + bool m_low_bound_is_strict; + bool m_upper_bound_is_set; + bool m_upper_bound_is_strict; T m_low_bound; T m_upper_bound; - T m_cost = numeric_traits::zero(); + T m_cost; T m_fixed_value; - bool m_is_fixed = false; - unsigned m_column_index = static_cast(-1); + bool m_is_fixed; + unsigned m_column_index; public: bool operator==(const column_info & c) const { return m_name == c.m_name && @@ -44,9 +44,24 @@ public: m_column_index = j; } // the default constructor - column_info() {} - - column_info(unsigned column_index) : m_column_index(column_index) { + column_info(): + m_low_bound_is_set(false), + m_low_bound_is_strict(false), + m_upper_bound_is_set (false), + m_upper_bound_is_strict (false), + m_is_fixed(false), + m_cost(numeric_traits::zero()), + m_column_index(static_cast(-1)) + {} + + column_info(unsigned column_index) : + m_low_bound_is_set(false), + m_low_bound_is_strict(false), + m_upper_bound_is_set (false), + m_upper_bound_is_strict (false), + m_is_fixed(false), + m_cost(numeric_traits::zero()), + m_column_index(column_index) { } column_info(const column_info & ci) { diff --git a/src/util/lp/conversion_helper.h b/src/util/lp/conversion_helper.h new file mode 100644 index 000000000..ea88a98bf --- /dev/null +++ b/src/util/lp/conversion_helper.h @@ -0,0 +1,44 @@ +/* + Copyright (c) 2013 Microsoft Corporation. All rights reserved. + Released under Apache 2.0 license as described in the file LICENSE. + + Author: Lev Nachmanson +*/ +#pragma once +namespace lean { +template +struct conversion_helper { + static V get_low_bound(const column_info & ci) { + return V(ci.get_low_bound(), ci.low_bound_is_strict()? 1 : 0); + } + + static V get_upper_bound(const column_info & ci) { + return V(ci.get_upper_bound(), ci.upper_bound_is_strict()? -1 : 0); + } +}; + +template<> +struct conversion_helper { + static double conversion_helper ::get_upper_bound(const column_info & ci) { + if (!ci.upper_bound_is_strict()) + return ci.get_upper_bound().get_double(); + double eps = 0.00001; + if (!ci.low_bound_is_set()) + return ci.get_upper_bound().get_double() - eps; + eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps); + return ci.get_upper_bound().get_double() - eps; + } + + static double get_low_bound(const column_info & ci) { + if (!ci.low_bound_is_strict()) + return ci.get_low_bound().get_double(); + double eps = 0.00001; + if (!ci.upper_bound_is_set()) + return ci.get_low_bound().get_double() + eps; + eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps); + return ci.get_low_bound().get_double() + eps; + } + +}; + +} diff --git a/src/util/lp/core_solver_pretty_printer.h b/src/util/lp/core_solver_pretty_printer.h index 6dbeb28cf..2a3a14b31 100644 --- a/src/util/lp/core_solver_pretty_printer.h +++ b/src/util/lp/core_solver_pretty_printer.h @@ -16,7 +16,6 @@ template class lp_core_solver_base; // forward definiti template class core_solver_pretty_printer { std::ostream & m_out; - template using vector = vector; typedef std::string string; lp_core_solver_base & m_core_solver; vector m_column_widths; @@ -34,15 +33,15 @@ class core_solver_pretty_printer { std::string m_cost_title; std::string m_basis_heading_title; std::string m_x_title; - std::string m_low_bounds_title = "low"; - std::string m_upp_bounds_title = "upp"; - std::string m_exact_norm_title = "exact cn"; - std::string m_approx_norm_title = "approx cn"; + std::string m_low_bounds_title; + std::string m_upp_bounds_title; + std::string m_exact_norm_title; + std::string m_approx_norm_title; unsigned ncols() { return m_core_solver.m_A.column_count(); } unsigned nrows() { return m_core_solver.m_A.row_count(); } - unsigned m_artificial_start = std::numeric_limits::max(); + unsigned m_artificial_start; indexed_vector m_w_buff; indexed_vector m_ed_buff; vector m_exact_column_norms; diff --git a/src/util/lp/core_solver_pretty_printer.hpp b/src/util/lp/core_solver_pretty_printer.hpp index aa963b220..786b8b3a1 100644 --- a/src/util/lp/core_solver_pretty_printer.hpp +++ b/src/util/lp/core_solver_pretty_printer.hpp @@ -23,6 +23,12 @@ core_solver_pretty_printer::core_solver_pretty_printer(lp_core_solver_base m_rs(ncols(), zero_of_type()), m_w_buff(core_solver.m_w), m_ed_buff(core_solver.m_ed) { + m_low_bounds_title = "low"; + m_upp_bounds_title = "upp"; + m_exact_norm_title = "exact cn"; + m_approx_norm_title = "approx cn"; + m_artificial_start = std::numeric_limits::max(); + m_column_widths.resize(core_solver.m_A.column_count(), 0), init_m_A_and_signs(); init_costs(); diff --git a/src/util/lp/init_lar_solver.h b/src/util/lp/init_lar_solver.h new file mode 100644 index 000000000..3c74e622d --- /dev/null +++ b/src/util/lp/init_lar_solver.h @@ -0,0 +1,573 @@ +/* + Copyright (c) 2017 Microsoft Corporation + Author: Lev Nachmanson +*/ + +// here we are inside lean::lar_solver class + +bool strategy_is_undecided() const { + return m_settings.simplex_strategy() == simplex_strategy_enum::undecided; +} + +var_index add_var(unsigned ext_j) { + var_index i; + lean_assert (ext_j < m_terms_start_index); + + if (ext_j >= m_terms_start_index) + throw 0; // todo : what is the right way to exit? + + if (try_get_val(m_ext_vars_to_columns, ext_j, i)) { + return i; + } + lean_assert(m_vars_to_ul_pairs.size() == A_r().column_count()); + i = A_r().column_count(); + m_vars_to_ul_pairs.push_back (ul_pair(static_cast(-1))); + add_non_basic_var_to_core_fields(ext_j); + lean_assert(sizes_are_correct()); + return i; +} + +void register_new_ext_var_index(unsigned ext_v) { + lean_assert(!contains(m_ext_vars_to_columns, ext_v)); + unsigned j = m_ext_vars_to_columns.size(); + m_ext_vars_to_columns[ext_v] = j; + lean_assert(m_columns_to_ext_vars_or_term_indices.size() == j); + m_columns_to_ext_vars_or_term_indices.push_back(ext_v); +} + +void add_non_basic_var_to_core_fields(unsigned ext_j) { + register_new_ext_var_index(ext_j); + m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column); + m_columns_with_changed_bound.increase_size_by_one(); + add_new_var_to_core_fields_for_mpq(false); + if (use_lu()) + add_new_var_to_core_fields_for_doubles(false); +} + +void add_new_var_to_core_fields_for_doubles(bool register_in_basis) { + unsigned j = A_d().column_count(); + A_d().add_column(); + lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j); + // lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later + m_mpq_lar_core_solver.m_d_x.resize(j + 1 ); + m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1); + m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1); + lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method + if (register_in_basis) { + A_d().add_row(); + m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size()); + m_mpq_lar_core_solver.m_d_basis.push_back(j); + }else { + m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1); + m_mpq_lar_core_solver.m_d_nbasis.push_back(j); + } +} + +void add_new_var_to_core_fields_for_mpq(bool register_in_basis) { + unsigned j = A_r().column_count(); + A_r().add_column(); + lean_assert(m_mpq_lar_core_solver.m_r_x.size() == j); + // lean_assert(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later + m_mpq_lar_core_solver.m_r_x.resize(j + 1); + m_mpq_lar_core_solver.m_r_low_bounds.increase_size_by_one(); + m_mpq_lar_core_solver.m_r_upper_bounds.increase_size_by_one(); + m_mpq_lar_core_solver.m_r_solver.m_inf_set.increase_size_by_one(); + m_mpq_lar_core_solver.m_r_solver.m_costs.resize(j + 1); + m_mpq_lar_core_solver.m_r_solver.m_d.resize(j + 1); + lean_assert(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method + if (register_in_basis) { + A_r().add_row(); + m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size()); + m_mpq_lar_core_solver.m_r_basis.push_back(j); + if (m_settings.bound_propagation()) + m_rows_with_changed_bounds.insert(A_r().row_count() - 1); + } else { + m_mpq_lar_core_solver.m_r_heading.push_back(- static_cast(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1); + m_mpq_lar_core_solver.m_r_nbasis.push_back(j); + } +} + + +var_index add_term_undecided(const vector> & coeffs, + const mpq &m_v) { + m_terms.push_back(new lar_term(coeffs, m_v)); + m_orig_terms.push_back(new lar_term(coeffs, m_v)); + return m_terms_start_index + m_terms.size() - 1; +} + +// terms +var_index add_term(const vector> & coeffs, + const mpq &m_v) { + if (strategy_is_undecided()) + return add_term_undecided(coeffs, m_v); + + m_terms.push_back(new lar_term(coeffs, m_v)); + m_orig_terms.push_back(new lar_term(coeffs, m_v)); + unsigned adjusted_term_index = m_terms.size() - 1; + var_index ret = m_terms_start_index + adjusted_term_index; + if (use_tableau() && !coeffs.empty()) { + add_row_for_term(m_orig_terms.back(), ret); + if (m_settings.bound_propagation()) + m_rows_with_changed_bounds.insert(A_r().row_count() - 1); + } + lean_assert(m_ext_vars_to_columns.size() == A_r().column_count()); + return ret; +} + +void add_row_for_term(const lar_term * term, unsigned term_ext_index) { + lean_assert(sizes_are_correct()); + add_row_from_term_no_constraint(term, term_ext_index); + lean_assert(sizes_are_correct()); +} + +void add_row_from_term_no_constraint(const lar_term * term, unsigned term_ext_index) { + register_new_ext_var_index(term_ext_index); + // j will be a new variable + unsigned j = A_r().column_count(); + ul_pair ul(j); + m_vars_to_ul_pairs.push_back(ul); + add_basic_var_to_core_fields(); + if (use_tableau()) { + auto it = iterator_on_term_with_basis_var(*term, j); + A_r().fill_last_row_with_pivoting(it, + m_mpq_lar_core_solver.m_r_solver.m_basis_heading); + m_mpq_lar_core_solver.m_r_solver.m_b.resize(A_r().column_count(), zero_of_type()); + } else { + fill_last_row_of_A_r(A_r(), term); + } + m_mpq_lar_core_solver.m_r_x[j] = get_basic_var_value_from_row_directly(A_r().row_count() - 1); + if (use_lu()) + fill_last_row_of_A_d(A_d(), term); +} + +void add_basic_var_to_core_fields() { + bool use_lu = m_mpq_lar_core_solver.need_to_presolve_with_double_solver(); + lean_assert(!use_lu || A_r().column_count() == A_d().column_count()); + m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column); + m_columns_with_changed_bound.increase_size_by_one(); + m_rows_with_changed_bounds.increase_size_by_one(); + add_new_var_to_core_fields_for_mpq(true); + if (use_lu) + add_new_var_to_core_fields_for_doubles(true); +} + +constraint_index add_var_bound(var_index j, lconstraint_kind kind, const mpq & right_side) { + constraint_index ci = m_constraints.size(); + if (!is_term(j)) { // j is a var + auto vc = new lar_var_constraint(j, kind, right_side); + m_constraints.push_back(vc); + update_column_type_and_bound(j, kind, right_side, ci); + } else { + add_var_bound_on_constraint_for_term(j, kind, right_side, ci); + } + lean_assert(sizes_are_correct()); + return ci; +} + +void update_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_index) { + switch(m_mpq_lar_core_solver.m_column_types[j]) { + case column_type::free_column: + update_free_column_type_and_bound(j, kind, right_side, constr_index); + break; + case column_type::boxed: + update_boxed_column_type_and_bound(j, kind, right_side, constr_index); + break; + case column_type::low_bound: + update_low_bound_column_type_and_bound(j, kind, right_side, constr_index); + break; + case column_type::upper_bound: + update_upper_bound_column_type_and_bound(j, kind, right_side, constr_index); + break; + case column_type::fixed: + update_fixed_column_type_and_bound(j, kind, right_side, constr_index); + break; + default: + lean_assert(false); // cannot be here + } +} + +void add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) { + lean_assert(is_term(j)); + unsigned adjusted_term_index = adjust_term_index(j); + unsigned term_j; + if (try_get_val(m_ext_vars_to_columns, j, term_j)) { + mpq rs = right_side - m_orig_terms[adjusted_term_index]->m_v; + m_constraints.push_back(new lar_term_constraint(m_orig_terms[adjusted_term_index], kind, right_side)); + update_column_type_and_bound(term_j, kind, rs, ci); + } + else { + add_constraint_from_term_and_create_new_column_row(j, m_orig_terms[adjusted_term_index], kind, right_side); + } +} + + +void add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term, + lconstraint_kind kind, const mpq & right_side) { + + add_row_from_term_no_constraint(term, term_j); + unsigned j = A_r().column_count() - 1; + update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size()); + m_constraints.push_back(new lar_term_constraint(term, kind, right_side)); + lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size()); +} + +void decide_on_strategy_and_adjust_initial_state() { + lean_assert(strategy_is_undecided()); + if (m_vars_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) { + m_settings.simplex_strategy() = simplex_strategy_enum::lu; + } else { + m_settings.simplex_strategy() = simplex_strategy_enum::tableau_rows; // todo: when to switch to tableau_costs? + } + adjust_initial_state(); +} + +void adjust_initial_state() { + switch (m_settings.simplex_strategy()) { + case simplex_strategy_enum::lu: + adjust_initial_state_for_lu(); + break; + case simplex_strategy_enum::tableau_rows: + adjust_initial_state_for_tableau_rows(); + break; + case simplex_strategy_enum::tableau_costs: + lean_assert(false); // not implemented + } +} + +void adjust_initial_state_for_lu() { + copy_from_mpq_matrix(A_d()); + unsigned n = A_d().column_count(); + m_mpq_lar_core_solver.m_d_x.resize(n); + m_mpq_lar_core_solver.m_d_low_bounds.resize(n); + m_mpq_lar_core_solver.m_d_upper_bounds.resize(n); + m_mpq_lar_core_solver.m_d_heading = m_mpq_lar_core_solver.m_r_heading; + m_mpq_lar_core_solver.m_d_basis = m_mpq_lar_core_solver.m_r_basis; + + /* + unsigned j = A_d().column_count(); + A_d().add_column(); + lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j); + // lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later + m_mpq_lar_core_solver.m_d_x.resize(j + 1 ); + m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1); + m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1); + lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method + if (register_in_basis) { + A_d().add_row(); + m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size()); + m_mpq_lar_core_solver.m_d_basis.push_back(j); + }else { + m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1); + m_mpq_lar_core_solver.m_d_nbasis.push_back(j); + }*/ +} + +void adjust_initial_state_for_tableau_rows() { + for (unsigned j = 0; j < m_terms.size(); j++) { + if (contains(m_ext_vars_to_columns, j + m_terms_start_index)) + continue; + add_row_from_term_no_constraint(m_terms[j], j + m_terms_start_index); + } +} + +// this fills the last row of A_d and sets the basis column: -1 in the last column of the row +void fill_last_row_of_A_d(static_matrix & A, const lar_term* ls) { + lean_assert(A.row_count() > 0); + lean_assert(A.column_count() > 0); + unsigned last_row = A.row_count() - 1; + lean_assert(A.m_rows[last_row].empty()); + + for (auto & t : ls->m_coeffs) { + lean_assert(!is_zero(t.second)); + var_index j = t.first; + A.set(last_row, j, - t.second.get_double()); + } + + unsigned basis_j = A.column_count() - 1; + A.set(last_row, basis_j, - 1 ); +} + +void update_free_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_ind) { + mpq y_of_bound(0); + switch (kind) { + case LT: + y_of_bound = -1; + case LE: + m_mpq_lar_core_solver.m_column_types[j] = column_type::upper_bound; + lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound); + lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j); + { + auto up = numeric_pair(right_side, y_of_bound); + m_mpq_lar_core_solver.m_r_upper_bounds[j] = up; + } + set_upper_bound_witness(j, constr_ind); + break; + case GT: + y_of_bound = 1; + case GE: + m_mpq_lar_core_solver.m_column_types[j] = column_type::low_bound; + lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j); + { + auto low = numeric_pair(right_side, y_of_bound); + m_mpq_lar_core_solver.m_r_low_bounds[j] = low; + } + set_low_bound_witness(j, constr_ind); + break; + case EQ: + m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed; + m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = numeric_pair(right_side, zero_of_type()); + set_upper_bound_witness(j, constr_ind); + set_low_bound_witness(j, constr_ind); + break; + + default: + lean_unreachable(); + + } + m_columns_with_changed_bound.insert(j); +} + +void update_upper_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) { + lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound); + mpq y_of_bound(0); + switch (kind) { + case LT: + y_of_bound = -1; + case LE: + { + auto up = numeric_pair(right_side, y_of_bound); + if (up < m_mpq_lar_core_solver.m_r_upper_bounds()[j]) { + m_mpq_lar_core_solver.m_r_upper_bounds[j] = up; + set_upper_bound_witness(j, ci); + m_columns_with_changed_bound.insert(j); + } + } + break; + case GT: + y_of_bound = 1; + case GE: + m_mpq_lar_core_solver.m_column_types[j] = column_type::boxed; + { + auto low = numeric_pair(right_side, y_of_bound); + m_mpq_lar_core_solver.m_r_low_bounds[j] = low; + set_low_bound_witness(j, ci); + m_columns_with_changed_bound.insert(j); + if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + } else { + m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed; + } + } + break; + case EQ: + { + auto v = numeric_pair(right_side, zero_of_type()); + if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + set_low_bound_witness(j, ci); + m_infeasible_column_index = j; + } else { + m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v; + m_columns_with_changed_bound.insert(j); + set_low_bound_witness(j, ci); + set_upper_bound_witness(j, ci); + m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed; + } + break; + } + break; + + default: + lean_unreachable(); + + } +} + +void update_boxed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) { + lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j])); + mpq y_of_bound(0); + switch (kind) { + case LT: + y_of_bound = -1; + case LE: + { + auto up = numeric_pair(right_side, y_of_bound); + if (up < m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_mpq_lar_core_solver.m_r_upper_bounds[j] = up; + set_upper_bound_witness(j, ci); + m_columns_with_changed_bound.insert(j); + } + + if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + lean_assert(false); + m_infeasible_column_index = j; + } else { + if (m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]) + m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed; + } + } + break; + case GT: + y_of_bound = 1; + case GE: + { + auto low = numeric_pair(right_side, y_of_bound); + if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_mpq_lar_core_solver.m_r_low_bounds[j] = low; + m_columns_with_changed_bound.insert(j); + set_low_bound_witness(j, ci); + } + if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + } else if ( low == m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed; + } + } + break; + case EQ: + { + auto v = numeric_pair(right_side, zero_of_type()); + if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_upper_bound_witness(j, ci); + } else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_low_bound_witness(j, ci); + } else { + m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v; + set_low_bound_witness(j, ci); + set_upper_bound_witness(j, ci); + m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed; + m_columns_with_changed_bound.insert(j); + } + + break; + } + + default: + lean_unreachable(); + + } +} +void update_low_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) { + lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound); + mpq y_of_bound(0); + switch (kind) { + case LT: + y_of_bound = -1; + case LE: + { + auto up = numeric_pair(right_side, y_of_bound); + m_mpq_lar_core_solver.m_r_upper_bounds[j] = up; + set_upper_bound_witness(j, ci); + m_columns_with_changed_bound.insert(j); + + if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + } else { + m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed; + } + } + break; + case GT: + y_of_bound = 1; + case GE: + { + auto low = numeric_pair(right_side, y_of_bound); + if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_mpq_lar_core_solver.m_r_low_bounds[j] = low; + m_columns_with_changed_bound.insert(j); + set_low_bound_witness(j, ci); + } + } + break; + case EQ: + { + auto v = numeric_pair(right_side, zero_of_type()); + if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_upper_bound_witness(j, ci); + } else { + m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v; + set_low_bound_witness(j, ci); + set_upper_bound_witness(j, ci); + m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed; + } + m_columns_with_changed_bound.insert(j); + break; + } + + default: + lean_unreachable(); + + } +} + +void update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) { + lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j])); + lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero())); + auto v = numeric_pair(right_side, mpq(0)); + + mpq y_of_bound(0); + switch (kind) { + case LT: + if (v <= m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_upper_bound_witness(j, ci); + } + break; + case LE: + { + if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_upper_bound_witness(j, ci); + } + } + break; + case GT: + { + if (v >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index =j; + set_low_bound_witness(j, ci); + } + } + break; + case GE: + { + if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_low_bound_witness(j, ci); + } + } + break; + case EQ: + { + if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_upper_bound_witness(j, ci); + } else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) { + m_status = INFEASIBLE; + m_infeasible_column_index = j; + set_low_bound_witness(j, ci); + } + break; + } + + default: + lean_unreachable(); + + } +} + diff --git a/src/util/lp/iterator_on_column.h b/src/util/lp/iterator_on_column.h index 5ad925d3e..215514b39 100644 --- a/src/util/lp/iterator_on_column.h +++ b/src/util/lp/iterator_on_column.h @@ -11,7 +11,7 @@ template struct iterator_on_column:linear_combination_iterator { const vector& m_column; // the offset in term coeffs const static_matrix & m_A; - int m_i = -1; // the initial offset in the column + int m_i; // the initial offset in the column unsigned size() const { return m_column.size(); } iterator_on_column(const vector& column, const static_matrix & A) // the offset in term coeffs : diff --git a/src/util/lp/iterator_on_indexed_vector.h b/src/util/lp/iterator_on_indexed_vector.h index c19c08e64..532b62617 100644 --- a/src/util/lp/iterator_on_indexed_vector.h +++ b/src/util/lp/iterator_on_indexed_vector.h @@ -8,8 +8,11 @@ namespace lean { template struct iterator_on_indexed_vector:linear_combination_iterator { const indexed_vector & m_v; - unsigned m_offset = 0; - iterator_on_indexed_vector(const indexed_vector & v) : m_v(v){} + unsigned m_offset; + iterator_on_indexed_vector(const indexed_vector & v) : + m_v(v), + m_offset(0) + {} unsigned size() const { return m_v.m_index.size(); } bool next(T & a, unsigned & i) { if (m_offset >= m_v.m_index.size()) diff --git a/src/util/lp/iterator_on_pivot_row.h b/src/util/lp/iterator_on_pivot_row.h index 19c0c7df1..1a9381a70 100644 --- a/src/util/lp/iterator_on_pivot_row.h +++ b/src/util/lp/iterator_on_pivot_row.h @@ -7,12 +7,14 @@ namespace lean { template struct iterator_on_pivot_row:linear_combination_iterator { - bool m_basis_returned = false; + bool m_basis_returned; const indexed_vector & m_v; unsigned m_basis_j; iterator_on_indexed_vector m_it; unsigned size() const { return m_it.size(); } - iterator_on_pivot_row(const indexed_vector & v, unsigned basis_j) : m_v(v), m_basis_j(basis_j), m_it(v) {} + iterator_on_pivot_row(const indexed_vector & v, unsigned basis_j) : + m_basis_returned(false), + m_v(v), m_basis_j(basis_j), m_it(v) {} bool next(T & a, unsigned & i) { if (m_basis_returned == false) { m_basis_returned = true; diff --git a/src/util/lp/iterator_on_row.h b/src/util/lp/iterator_on_row.h index 212768db9..96a1a8cf3 100644 --- a/src/util/lp/iterator_on_row.h +++ b/src/util/lp/iterator_on_row.h @@ -8,8 +8,8 @@ namespace lean { template struct iterator_on_row:linear_combination_iterator { const vector> & m_row; - unsigned m_i= 0; // offset - iterator_on_row(const vector> & row) : m_row(row) + unsigned m_i; // offset + iterator_on_row(const vector> & row) : m_row(row), m_i(0) {} unsigned size() const { return m_row.size(); } bool next(T & a, unsigned & i) { diff --git a/src/util/lp/iterator_on_term_with_basis_var.h b/src/util/lp/iterator_on_term_with_basis_var.h index 9279dd637..74a2c4038 100644 --- a/src/util/lp/iterator_on_term_with_basis_var.h +++ b/src/util/lp/iterator_on_term_with_basis_var.h @@ -9,11 +9,12 @@ namespace lean { struct iterator_on_term_with_basis_var:linear_combination_iterator { std::unordered_map::const_iterator m_i; // the offset in term coeffs - bool m_term_j_returned = false; + bool m_term_j_returned; const lar_term & m_term; unsigned m_term_j; unsigned size() const {return static_cast(m_term.m_coeffs.size() + 1);} iterator_on_term_with_basis_var(const lar_term & t, unsigned term_j) : + m_term_j_returned(false), m_i(t.m_coeffs.begin()), m_term(t), m_term_j(term_j) {} diff --git a/src/util/lp/lar_core_solver.h b/src/util/lp/lar_core_solver.h index 00abb188d..58151c8be 100644 --- a/src/util/lp/lar_core_solver.h +++ b/src/util/lp/lar_core_solver.h @@ -25,7 +25,7 @@ class lar_core_solver { // to grow and is set to -1 otherwise int m_sign_of_entering_delta; vector> m_infeasible_linear_combination; - int m_infeasible_sum_sign = 0; // todo: get rid of this field + int m_infeasible_sum_sign; // todo: get rid of this field vector> m_right_sides_dummy; vector m_costs_dummy; vector m_d_right_sides_dummy; diff --git a/src/util/lp/lar_core_solver.hpp b/src/util/lp/lar_core_solver.hpp index ded6762c5..a6dd7e3e0 100644 --- a/src/util/lp/lar_core_solver.hpp +++ b/src/util/lp/lar_core_solver.hpp @@ -14,7 +14,8 @@ namespace lean { lar_core_solver::lar_core_solver( lp_settings & settings, const column_namer & column_names -): + ): + m_infeasible_sum_sign(0), m_r_solver(m_r_A, m_right_sides_dummy, m_r_x, diff --git a/src/util/lp/lar_solver.h b/src/util/lp/lar_solver.h index 39961c3ad..b8609675a 100644 --- a/src/util/lp/lar_solver.h +++ b/src/util/lp/lar_solver.h @@ -35,7 +35,7 @@ namespace lean { class lar_solver : public column_namer { //////////////////// fields ////////////////////////// lp_settings m_settings; - stacked_value m_status = OPTIMAL; + stacked_value m_status; stacked_value m_simplex_strategy; std::unordered_map m_ext_vars_to_columns; vector m_columns_to_ext_vars_or_term_indices; @@ -46,13 +46,13 @@ class lar_solver : public column_namer { int_set m_columns_with_changed_bound; int_set m_rows_with_changed_bounds; int_set m_basic_columns_with_changed_cost; - stacked_value m_infeasible_column_index = -1; // such can be found at the initialization step + stacked_value m_infeasible_column_index; // such can be found at the initialization step stacked_value m_term_count; vector m_terms; vector m_orig_terms; - const var_index m_terms_start_index = 1000000; + const var_index m_terms_start_index; indexed_vector m_column_buffer; - std::function m_column_type_function = [this] (unsigned j) {return m_mpq_lar_core_solver.m_column_types()[j];}; + std::function m_column_type_function; public: lar_core_solver m_mpq_lar_core_solver; unsigned constraint_count() const { @@ -83,7 +83,12 @@ public: lar_solver() : m_mpq_lar_core_solver( m_settings, *this - ) {} + ), + m_status(OPTIMAL), + m_infeasible_column_index(-1), + m_terms_start_index(1000000), + m_column_type_function ([this] (unsigned j) {return m_mpq_lar_core_solver.m_column_types()[j];}) + {} void set_propagate_bounds_on_pivoted_rows_mode(bool v) { m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows = v? (& m_rows_with_changed_bounds) : nullptr; diff --git a/src/util/lp/linear_combination_iterator.h b/src/util/lp/linear_combination_iterator.h index 9a1a2de77..634accfd4 100644 --- a/src/util/lp/linear_combination_iterator.h +++ b/src/util/lp/linear_combination_iterator.h @@ -16,7 +16,7 @@ struct linear_combination_iterator { template struct linear_combination_iterator_on_vector : linear_combination_iterator { vector> & m_vector; - int m_offset = 0; + int m_offset; bool next(T & a, unsigned & i) { if(m_offset >= m_vector.size()) return false; @@ -40,7 +40,10 @@ struct linear_combination_iterator_on_vector : linear_combination_iterator { linear_combination_iterator * clone() { return new linear_combination_iterator_on_vector(m_vector); } - linear_combination_iterator_on_vector(vector> & vec): m_vector(vec) {} + linear_combination_iterator_on_vector(vector> & vec): + m_vector(vec), + m_offset(0) + {} unsigned size() const { return m_vector.size(); } }; diff --git a/src/util/lp/lp_core_solver_base.h b/src/util/lp/lp_core_solver_base.h index d8618f32a..86382dd49 100644 --- a/src/util/lp/lp_core_solver_base.h +++ b/src/util/lp/lp_core_solver_base.h @@ -17,7 +17,7 @@ namespace lean { template // X represents the type of the x variable and the bounds class lp_core_solver_base { - unsigned m_total_iterations = 0; + unsigned m_total_iterations; unsigned inc_total_iterations() { ++m_settings.st().m_total_iterations; return m_total_iterations++; } private: lp_status m_status; @@ -25,7 +25,7 @@ public: bool current_x_is_feasible() const { return m_inf_set.size() == 0; } bool current_x_is_infeasible() const { return m_inf_set.size() != 0; } int_set m_inf_set; - bool m_using_infeas_costs = false; + bool m_using_infeas_costs; vector m_columns_nz; // m_columns_nz[i] keeps an approximate value of non zeroes the i-th column @@ -42,23 +42,23 @@ public: lp_settings & m_settings; vector m_y; // the buffer for yB = cb // a device that is able to solve Bx=c, xB=d, and change the basis - lu * m_factorization = nullptr; + lu * m_factorization; const column_namer & m_column_names; indexed_vector m_w; // the vector featuring in 24.3 of the Chvatal book vector m_d; // the vector of reduced costs indexed_vector m_ed; // the solution of B*m_ed = a - unsigned m_iters_with_no_cost_growing = 0; + unsigned m_iters_with_no_cost_growing; const vector & m_column_types; const vector & m_low_bounds; const vector & m_upper_bounds; vector m_column_norms; // the approximate squares of column norms that help choosing a profitable column vector m_copy_of_xB; - unsigned m_basis_sort_counter = 0; + unsigned m_basis_sort_counter; vector m_steepest_edge_coefficients; vector m_trace_of_basis_change_vector; // the even positions are entering, the odd positions are leaving - bool m_tracing_basis_changes = false; - int_set* m_pivoted_rows = nullptr; - bool m_look_for_feasible_solution_only = false; + bool m_tracing_basis_changes; + int_set* m_pivoted_rows; + bool m_look_for_feasible_solution_only; void start_tracing_basis_changes() { m_trace_of_basis_change_vector.resize(0); m_tracing_basis_changes = true; diff --git a/src/util/lp/lp_core_solver_base.hpp b/src/util/lp/lp_core_solver_base.hpp index 4b67e86ee..5ae1e399c 100644 --- a/src/util/lp/lp_core_solver_base.hpp +++ b/src/util/lp/lp_core_solver_base.hpp @@ -45,7 +45,14 @@ lp_core_solver_base(static_matrix & A, m_upper_bounds(upper_bound_values), m_column_norms(m_n()), m_copy_of_xB(m_m()), - m_steepest_edge_coefficients(A.column_count()) { + m_steepest_edge_coefficients(A.column_count()), + m_total_iterations(0), + m_using_infeas_costs(false), + m_iters_with_no_cost_growing(0), + m_basis_sort_counter(0), + m_tracing_basis_changes(false), + m_pivoted_rows(nullptr), + m_look_for_feasible_solution_only(false) { lean_assert(bounds_for_boxed_are_set_correctly()); init(); init_basis_heading_and_non_basic_columns_vector(); diff --git a/src/util/lp/lp_dual_simplex.h b/src/util/lp/lp_dual_simplex.h index 78ff08b0a..4dff2a4f1 100644 --- a/src/util/lp/lp_dual_simplex.h +++ b/src/util/lp/lp_dual_simplex.h @@ -11,7 +11,7 @@ namespace lean { template class lp_dual_simplex: public lp_solver { - lp_dual_core_solver * m_core_solver = nullptr; + lp_dual_core_solver * m_core_solver; vector m_b_copy; vector m_low_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver vector m_column_types_of_core_solver; @@ -24,6 +24,7 @@ public: } } + lp_dual_simplex() : m_core_solver(nullptr) {} void decide_on_status_after_stage1(); diff --git a/src/util/lp/lp_primal_core_solver.h b/src/util/lp/lp_primal_core_solver.h index 62464ca8b..e4d869289 100644 --- a/src/util/lp/lp_primal_core_solver.h +++ b/src/util/lp/lp_primal_core_solver.h @@ -38,13 +38,13 @@ public: vector> m_breakpoints; binary_heap_priority_queue m_breakpoint_indices_queue; indexed_vector m_beta; // see Swietanowski working vector beta for column norms - T m_epsilon_of_reduced_cost = T(1)/T(10000000); + T m_epsilon_of_reduced_cost; vector m_costs_backup; T m_converted_harris_eps; unsigned m_inf_row_index_for_tableau; bool m_bland_mode_tableau; int_set m_left_basis_tableau; - unsigned m_bland_mode_threshold = 1000; + unsigned m_bland_mode_threshold; unsigned m_left_basis_repeated; vector m_leaving_candidates; // T m_converted_harris_eps = convert_struct::convert(this->m_settings.harris_feasibility_tolerance); @@ -905,6 +905,8 @@ public: column_type_array, low_bound_values, upper_bound_values), + m_epsilon_of_reduced_cost(T(1)/T(10000000)), + m_bland_mode_threshold(1000), m_beta(A.row_count()) { if (!(numeric_traits::precise())) { diff --git a/src/util/lp/lp_primal_simplex.h b/src/util/lp/lp_primal_simplex.h index 3b1288fc7..fcddb4eb1 100644 --- a/src/util/lp/lp_primal_simplex.h +++ b/src/util/lp/lp_primal_simplex.h @@ -15,7 +15,7 @@ namespace lean { template class lp_primal_simplex: public lp_solver { - lp_primal_core_solver * m_core_solver = nullptr; + lp_primal_core_solver * m_core_solver; vector m_low_bounds; private: unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); } @@ -28,7 +28,7 @@ private: void set_scaled_costs(); public: - lp_primal_simplex() {} + lp_primal_simplex(): m_core_solver(nullptr) {} column_info * get_or_create_column_info(unsigned column); diff --git a/src/util/lp/lp_settings.h b/src/util/lp/lp_settings.h index 5fab4e451..e97f5f5f5 100644 --- a/src/util/lp/lp_settings.h +++ b/src/util/lp/lp_settings.h @@ -106,49 +106,49 @@ private: default_lp_resource_limit m_default_resource_limit; lp_resource_limit* m_resource_limit; // used for debug output - std::ostream* m_debug_out = &std::cout; + std::ostream* m_debug_out; // used for messages, for example, the computation progress messages - std::ostream* m_message_out = &std::cout; + std::ostream* m_message_out; stats m_stats; public: - unsigned reps_in_scaler = 20; + unsigned reps_in_scaler; // when the absolute value of an element is less than pivot_epsilon // in pivoting, we treat it as a zero - double pivot_epsilon = 0.00000001; + double pivot_epsilon; // see Chatal, page 115 - double positive_price_epsilon = 1e-7; + double positive_price_epsilon; // a quatation "if some choice of the entering vairable leads to an eta matrix // whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ... - double entering_diag_epsilon = 1e-8; - int c_partial_pivoting = 10; // this is the constant c from page 410 - unsigned depth_of_rook_search = 4; - bool using_partial_pivoting = true; + double entering_diag_epsilon; + int c_partial_pivoting; // this is the constant c from page 410 + unsigned depth_of_rook_search; + bool using_partial_pivoting; // dissertation of Achim Koberstein // if Bx - b is different at any component more that refactor_epsilon then we refactor - double refactor_tolerance = 1e-4; - double pivot_tolerance = 1e-6; - double zero_tolerance = 1e-12; - double drop_tolerance = 1e-14; - double tolerance_for_artificials = 1e-4; - double can_be_taken_to_basis_tolerance = 0.00001; + double refactor_tolerance; + double pivot_tolerance; + double zero_tolerance; + double drop_tolerance; + double tolerance_for_artificials; + double can_be_taken_to_basis_tolerance; - unsigned percent_of_entering_to_check = 5; // we try to find a profitable column in a percentage of the columns - bool use_scaling = true; - double scaling_maximum = 1; - double scaling_minimum = 0.5; - double harris_feasibility_tolerance = 1e-7; // page 179 of Istvan Maros - double ignore_epsilon_of_harris = 10e-5; - unsigned max_number_of_iterations_with_no_improvements = 2000000; - unsigned max_total_number_of_iterations = 20000000; - double time_limit = std::numeric_limits::max(); // the maximum time limit of the total run time in seconds + unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns + bool use_scaling; + double scaling_maximum; + double scaling_minimum; + double harris_feasibility_tolerance; // page 179 of Istvan Maros + double ignore_epsilon_of_harris; + unsigned max_number_of_iterations_with_no_improvements; + unsigned max_total_number_of_iterations; + double time_limit; // the maximum time limit of the total run time in seconds // dual section - double dual_feasibility_tolerance = 1e-7; // // page 71 of the PhD thesis of Achim Koberstein - double primal_feasibility_tolerance = 1e-7; // page 71 of the PhD thesis of Achim Koberstein - double relative_primal_feasibility_tolerance = 1e-9; // page 71 of the PhD thesis of Achim Koberstein + double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein + double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein + double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein - bool m_bound_propagation = true; + bool m_bound_propagation; bool bound_progation() const { return m_bound_propagation; @@ -158,7 +158,53 @@ public: return m_bound_propagation; } - lp_settings() : m_default_resource_limit(*this), m_resource_limit(&m_default_resource_limit) {} + lp_settings() : m_default_resource_limit(*this), + m_resource_limit(&m_default_resource_limit), + m_debug_out( &std::cout), + m_message_out(&std::cout), + reps_in_scaler(20), + pivot_epsilon(0.00000001), + positive_price_epsilon(1e-7), + entering_diag_epsilon ( 1e-8), + c_partial_pivoting ( 10), // this is the constant c from page 410 + depth_of_rook_search ( 4), + using_partial_pivoting ( true), + // dissertation of Achim Koberstein + // if Bx - b is different at any component more that refactor_epsilon then we refactor + refactor_tolerance ( 1e-4), + pivot_tolerance ( 1e-6), + zero_tolerance ( 1e-12), + drop_tolerance ( 1e-14), + tolerance_for_artificials ( 1e-4), + can_be_taken_to_basis_tolerance ( 0.00001), + + percent_of_entering_to_check ( 5),// we try to find a profitable column in a percentage of the columns + use_scaling ( true), + scaling_maximum ( 1), + scaling_minimum ( 0.5), + harris_feasibility_tolerance ( 1e-7), // page 179 of Istvan Maros + ignore_epsilon_of_harris ( 10e-5), + max_number_of_iterations_with_no_improvements ( 2000000), + max_total_number_of_iterations ( 20000000), + time_limit ( std::numeric_limits::max()), // the maximum time limit of the total run time in seconds + // dual section + dual_feasibility_tolerance ( 1e-7), // // page 71 of the PhD thesis of Achim Koberstein + primal_feasibility_tolerance ( 1e-7), // page 71 of the PhD thesis of Achim Koberstein + relative_primal_feasibility_tolerance ( 1e-9), // page 71 of the PhD thesis of Achim Koberstein + m_bound_propagation ( true), + presolve_with_double_solver_for_lar(true), + m_simplex_strategy(simplex_strategy_enum::tableau_rows), + report_frequency(1000), + print_statistics(false), + column_norms_update_frequency(12000), + scale_with_ratio(true), + density_threshold(0.7), + use_breakpoints_in_feasibility_search(false), + random_seed(1), + max_row_length_for_bound_propagation(300), + backup_costs(true), + column_number_threshold_for_using_lu_in_lar_solver(4000) + {} void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; } bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); } @@ -227,8 +273,8 @@ public: return is_eps_small_general(t, tolerance_for_artificials); } // the method of lar solver to use - bool presolve_with_double_solver_for_lar = true; - simplex_strategy_enum m_simplex_strategy = simplex_strategy_enum::tableau_rows; + bool presolve_with_double_solver_for_lar; + simplex_strategy_enum m_simplex_strategy; simplex_strategy_enum simplex_strategy() const { return m_simplex_strategy; } @@ -250,20 +296,20 @@ public: return m_simplex_strategy == simplex_strategy_enum::tableau_rows; } - int report_frequency = 1000; - bool print_statistics = false; - unsigned column_norms_update_frequency = 12000; - bool scale_with_ratio = true; - double density_threshold = 0.7; // need to tune it up, todo + int report_frequency; + bool print_statistics; + unsigned column_norms_update_frequency; + bool scale_with_ratio; + double density_threshold; // need to tune it up, todo #ifdef LEAN_DEBUG static unsigned ddd; // used for debugging #endif - bool use_breakpoints_in_feasibility_search = false; - unsigned random_seed = 1; + bool use_breakpoints_in_feasibility_search; + unsigned random_seed; static unsigned long random_next; - unsigned max_row_length_for_bound_propagation = 300; - bool backup_costs = true; - unsigned column_number_threshold_for_using_lu_in_lar_solver = 4000; + unsigned max_row_length_for_bound_propagation; + bool backup_costs; + unsigned column_number_threshold_for_using_lu_in_lar_solver; }; // end of lp_settings class diff --git a/src/util/lp/lp_solver.h b/src/util/lp/lp_solver.h index eeb3ff6d3..1bfe7dcdc 100644 --- a/src/util/lp/lp_solver.h +++ b/src/util/lp/lp_solver.h @@ -39,10 +39,10 @@ protected: T get_column_cost_value(unsigned j, column_info * ci) const; public: unsigned m_total_iterations; - static_matrix* m_A = nullptr; // this is the matrix of constraints + static_matrix* m_A; // this is the matrix of constraints vector m_b; // the right side vector - unsigned m_first_stage_iterations = 0; - unsigned m_second_stage_iterations = 0; + unsigned m_first_stage_iterations; + unsigned m_second_stage_iterations; std::unordered_map> m_constraints; std::unordered_map*> m_map_from_var_index_to_column_info; std::unordered_map > m_A_values; @@ -52,8 +52,8 @@ public: std::unordered_map m_core_solver_columns_to_external_columns; vector m_column_scale; std::unordered_map m_name_map; - unsigned m_artificials = 0; - unsigned m_slacks = 0; + unsigned m_artificials; + unsigned m_slacks; vector m_column_types; vector m_costs; vector m_x; @@ -63,10 +63,17 @@ public: vector m_heading; - lp_status m_status = lp_status::UNKNOWN; + lp_status m_status; lp_settings m_settings; - lp_solver() {} + lp_solver(): + m_A(nullptr), // this is the matrix of constraints + m_first_stage_iterations (0), + m_second_stage_iterations (0), + m_artificials (0), + m_slacks (0), + m_status(lp_status::UNKNOWN) + {} unsigned row_count() const { return this->m_A->row_count(); } @@ -232,14 +239,6 @@ protected: out << "extended A[" << this->m_A->row_count() << "," << this->m_A->column_count() << "]" << std::endl; } - struct row_tighten_stats { - unsigned n_of_new_bounds = 0; - unsigned n_of_fixed = 0; - bool is_obsolete = false; - }; - - - public: lp_settings & settings() { return m_settings;} void print_model(std::ostream & s) const { diff --git a/src/util/lp/lu.h b/src/util/lp/lu.h index 415b7f978..f58c0d845 100644 --- a/src/util/lp/lu.h +++ b/src/util/lp/lu.h @@ -110,7 +110,7 @@ enum class LU_status { OK, Degenerated}; // Using Suhl-Suhl method described in the dissertation of Achim Koberstein, Chapter 5 template class lu { - LU_status m_status = LU_status::OK; + LU_status m_status; public: // the fields unsigned m_dim; @@ -123,12 +123,12 @@ public: vector *> m_tail; lp_settings & m_settings; - bool m_failure = false; + bool m_failure; indexed_vector m_row_eta_work_vector; indexed_vector m_w_for_extension; indexed_vector m_y_copy; indexed_vector m_ii; //to optimize the work with the m_index fields - unsigned m_refactor_counter = 0; + unsigned m_refactor_counter; // constructor // if A is an m by n matrix then basis has length m and values in [0,n); the values are all different // they represent the set of m columns diff --git a/src/util/lp/lu.hpp b/src/util/lp/lu.hpp index ba5e092d3..c0b3d19ad 100644 --- a/src/util/lp/lu.hpp +++ b/src/util/lp/lu.hpp @@ -118,7 +118,10 @@ lu::lu(static_matrix const & A, m_r_wave(m_dim), m_U(A, basis), // create the square matrix that eventually will be factorized m_settings(settings), - m_row_eta_work_vector(A.row_count()){ + m_row_eta_work_vector(A.row_count()), + m_status(LU_status::OK), + m_failure(false), + m_refactor_counter(0) { lean_assert(!(numeric_traits::precise() && settings.use_tableau())); #ifdef LEAN_DEBUG debug_test_of_basis(A, basis); diff --git a/src/util/lp/mps_reader.h b/src/util/lp/mps_reader.h index c79a7d426..206220584 100644 --- a/src/util/lp/mps_reader.h +++ b/src/util/lp/mps_reader.h @@ -93,22 +93,28 @@ template class mps_reader { enum row_type { Cost, Less_or_equal, Greater_or_equal, Equal }; struct bound { - bool m_low_is_set = true; + bool m_low_is_set; T m_low; - bool m_upper_is_set = false; + bool m_upper_is_set; T m_upper; - bool m_value_is_fixed = false; + bool m_value_is_fixed; T m_fixed_value; - bool m_free = false; + bool m_free; // constructor - bound() : m_low(numeric_traits::zero()) {} // it seems all mps files I have seen have the default low value 0 on a variable + bound() : m_low(numeric_traits::zero()), + m_low_is_set(true), + m_upper_is_set(false), + m_value_is_fixed(false), + m_free(false) {} // it seems all mps files I have seen have the default low value 0 on a variable }; struct column { std::string m_name; - bound * m_bound = nullptr; + bound * m_bound; unsigned m_index; - column(std::string name, unsigned index): m_name(name), m_index(index) { + column(std::string name, unsigned index): m_name(name), + m_bound(nullptr), + m_index(index) { } }; @@ -116,15 +122,18 @@ class mps_reader { row_type m_type; std::string m_name; std::unordered_map m_row_columns; - T m_right_side = numeric_traits::zero(); + T m_right_side; unsigned m_index; - T m_range = numeric_traits::zero(); - row(row_type type, std::string name, unsigned index) : m_type(type), m_name(name), m_index(index) { + T m_range; + row(row_type type, std::string name, unsigned index) : m_type(type), m_name(name), m_index(index), + m_right_side(zero_of_type()), + m_range(zero_of_type()) + { } }; std::string m_file_name; - bool m_is_OK = true; + bool m_is_OK; std::unordered_map m_rows; std::unordered_map m_columns; std::unordered_map m_names_to_var_index; @@ -133,9 +142,9 @@ class mps_reader { std::string m_cost_row_name; std::ifstream m_file_stream; // needed to adjust the index row - unsigned m_cost_line_count = 0; - unsigned m_line_number = 0; - std::ostream * m_message_stream = & std::cout; + unsigned m_cost_line_count; + unsigned m_line_number; + std::ostream * m_message_stream; void set_m_ok_to_false() { *m_message_stream << "setting m_is_OK to false" << std::endl; @@ -737,8 +746,11 @@ public: } mps_reader(std::string file_name): - m_file_name(file_name), m_file_stream(file_name) { - } + m_is_OK(true), + m_file_name(file_name), m_file_stream(file_name), + m_cost_line_count(0), + m_line_number(0), + m_message_stream(& std::cout) {} void read() { if (!m_file_stream.is_open()){ set_m_ok_to_false(); diff --git a/src/util/lp/numeric_pair.h b/src/util/lp/numeric_pair.h index 2cea4158d..84c99b3b1 100644 --- a/src/util/lp/numeric_pair.h +++ b/src/util/lp/numeric_pair.h @@ -101,16 +101,14 @@ struct numeric_pair { numeric_pair(T xp, T yp) : x(xp), y(yp) {} - template numeric_pair(const X & n) : x(n), y(0) { } - template - numeric_pair(const numeric_pair & n) : x(n.x), y(n.y) {} + numeric_pair(const numeric_pair & n) : x(n.x), y(n.y) {} template - numeric_pair(X xp, Y yp) : numeric_pair(convert_struct::convert(xp), convert_struct::convert(yp)) {} + numeric_pair(X xp, Y yp) : x(convert_struct::convert(xp)), y(convert_struct::convert(yp)) {} bool operator<(const numeric_pair& a) const { return x < a.x || (x == a.x && y < a.y); diff --git a/src/util/lp/permutation_matrix.h b/src/util/lp/permutation_matrix.h index 6c0367482..4bdd57f25 100644 --- a/src/util/lp/permutation_matrix.h +++ b/src/util/lp/permutation_matrix.h @@ -132,42 +132,4 @@ class permutation_matrix : public tail_matrix { }; // end of the permutation class -#ifdef LEAN_DEBUG -template -class permutation_generator { - unsigned m_n; - permutation_generator* m_lower; - bool m_done = false; - permutation_matrix m_current; - unsigned m_last; -public: - permutation_generator(unsigned n); - permutation_generator(const permutation_generator & o); - bool move_next(); - - ~permutation_generator() { - if (m_lower != nullptr) { - delete m_lower; - } - } - - permutation_matrix *current() { - return &m_current; - } -}; - -template -inline unsigned number_of_inversions(permutation_matrix & p); - -template -int sign(permutation_matrix & p) { - return is_even(number_of_inversions(p))? 1: -1; -} - -template -T det_val_on_perm(permutation_matrix* u, const matrix& m); - -template -T determinant(const matrix& m); -#endif } diff --git a/src/util/lp/permutation_matrix.hpp b/src/util/lp/permutation_matrix.hpp index 09435674d..ec9af5a50 100644 --- a/src/util/lp/permutation_matrix.hpp +++ b/src/util/lp/permutation_matrix.hpp @@ -320,100 +320,4 @@ template bool permutation_matrix::is_identity() c } -#ifdef LEAN_DEBUG -template -permutation_generator::permutation_generator(unsigned n): m_n(n), m_current(n) { - lean_assert(n > 0); - if (n > 1) { - m_lower = new permutation_generator(n - 1); - } else { - m_lower = nullptr; - } - - m_last = 0; -} - -template -permutation_generator::permutation_generator(const permutation_generator & o): m_n(o.m_n), m_done(o.m_done), m_current(o.m_current), m_last(o.m_last) { - if (m_lower != nullptr) { - m_lower = new permutation_generator(o.m_lower); - } else { - m_lower = nullptr; - } -} - -template bool -permutation_generator::move_next() { - if (m_done) { - return false; - } - - if (m_lower == nullptr) { - if (m_last == 0) { - m_last++; - return true; - } else { - m_done = true; - return false; - } - } else { - if (m_last < m_n && m_last > 0) { - m_current[m_last - 1] = m_current[m_last]; - m_current[m_last] = m_n - 1; - m_last++; - return true; - } else { - if (m_lower -> move_next()) { - auto lower_curr = m_lower -> current(); - for ( unsigned i = 1; i < m_n; i++ ){ - m_current[i] = (*lower_curr)[i - 1]; - } - m_current[0] = m_n - 1; - m_last = 1; - return true; - } else { - m_done = true; - return false; - } - } - } -} - -template -inline unsigned number_of_inversions(permutation_matrix & p) { - unsigned ret = 0; - unsigned n = p.size(); - for (unsigned i = 0; i < n; i++) { - for (unsigned j = i + 1; j < n; j++) { - if (p[i] > p[j]) { - ret++; - } - } - } - return ret; -} - -template -T det_val_on_perm(permutation_matrix* u, const matrix& m) { - unsigned n = m.row_count(); - T ret = numeric_traits::one(); - for (unsigned i = 0; i < n; i++) { - unsigned j = (*u)[i]; - ret *= m(i, j); - } - return ret * sign(*u); -} - -template -T determinant(const matrix& m) { - lean_assert(m.column_count() == m.row_count()); - unsigned n = m.row_count(); - permutation_generator allp(n); - T ret = numeric_traits::zero(); - while (allp.move_next()){ - ret += det_val_on_perm(allp.current(), m); - } - return ret; -} -#endif } diff --git a/src/util/lp/permutation_matrix_instances.cpp b/src/util/lp/permutation_matrix_instances.cpp index e0cc1a144..91473fabc 100644 --- a/src/util/lp/permutation_matrix_instances.cpp +++ b/src/util/lp/permutation_matrix_instances.cpp @@ -46,11 +46,6 @@ template void lean::permutation_matrix template void lean::permutation_matrix >::apply_reverse_from_left_to_T(vector&); template void lean::permutation_matrix >::apply_reverse_from_right_to_T(vector&); template void lean::permutation_matrix::multiply_by_permutation_from_right(lean::permutation_matrix&); - -#ifdef LEAN_DEBUG -template bool lean::permutation_generator::move_next(); -template lean::permutation_generator::permutation_generator(unsigned int); -#endif template lean::permutation_matrix::permutation_matrix(unsigned int); template void lean::permutation_matrix::apply_reverse_from_left_to_X(vector &); template void lean::permutation_matrix< lean::mpq, lean::mpq>::apply_reverse_from_left_to_X(vector &); diff --git a/src/util/lp/random_updater.h b/src/util/lp/random_updater.h index 3dbab8323..2d65e191d 100644 --- a/src/util/lp/random_updater.h +++ b/src/util/lp/random_updater.h @@ -16,12 +16,15 @@ namespace lean { template struct numeric_pair; // forward definition class lar_core_solver; // forward definition class random_updater { - unsigned range = 100000; + unsigned range ; struct interval { - bool upper_bound_is_set = false; + bool upper_bound_is_set; numeric_pair upper_bound; - bool low_bound_is_set = false; + bool low_bound_is_set; numeric_pair low_bound; + interval() : upper_bound_is_set(false), + low_bound_is_set(false) {} + void set_low_bound(const numeric_pair & v) { if (low_bound_is_set) { low_bound = std::max(v, low_bound); diff --git a/src/util/lp/random_updater.hpp b/src/util/lp/random_updater.hpp index 68e2f5bc9..635053a09 100644 --- a/src/util/lp/random_updater.hpp +++ b/src/util/lp/random_updater.hpp @@ -12,7 +12,9 @@ namespace lean { random_updater::random_updater( lar_core_solver & lar_core_solver, - const vector & column_indices) : m_core_solver(lar_core_solver) { + const vector & column_indices) : + m_core_solver(lar_core_solver), + range(100000) { for (unsigned j : column_indices) add_column_to_sets(j); } diff --git a/src/util/lp/sparse_matrix.h b/src/util/lp/sparse_matrix.h index 96f0cf2ae..8fcb75e03 100644 --- a/src/util/lp/sparse_matrix.h +++ b/src/util/lp/sparse_matrix.h @@ -30,10 +30,10 @@ class sparse_matrix #endif { struct col_header { - unsigned m_shortened_markovitz = 0; + unsigned m_shortened_markovitz; vector> m_values; // the actual column values - col_header() {} + col_header(): m_shortened_markovitz(0) {} void shorten_markovich_by_one() { m_shortened_markovitz++; @@ -44,7 +44,7 @@ class sparse_matrix } }; - unsigned m_n_of_active_elems = 0; + unsigned m_n_of_active_elems; binary_heap_upair_queue m_pivot_queue; public: vector>> m_rows; diff --git a/src/util/lp/sparse_matrix.hpp b/src/util/lp/sparse_matrix.hpp index 0d2a90ea0..f25eadbb4 100644 --- a/src/util/lp/sparse_matrix.hpp +++ b/src/util/lp/sparse_matrix.hpp @@ -40,7 +40,8 @@ sparse_matrix::sparse_matrix(static_matrix const &A, vector::zero(); diff --git a/src/util/lp/square_dense_submatrix.h b/src/util/lp/square_dense_submatrix.h index 10ae973d6..019497aa5 100644 --- a/src/util/lp/square_dense_submatrix.h +++ b/src/util/lp/square_dense_submatrix.h @@ -42,7 +42,7 @@ public: unsigned m_index_start; unsigned m_dim; vector m_v; - sparse_matrix * m_parent = nullptr; + sparse_matrix * m_parent; permutation_matrix m_row_permutation; indexed_vector m_work_vector; public: diff --git a/src/util/lp/ul_pair.h b/src/util/lp/ul_pair.h index 0e96364ce..2e77a7db0 100644 --- a/src/util/lp/ul_pair.h +++ b/src/util/lp/ul_pair.h @@ -32,14 +32,14 @@ inline bool compare(const std::pair & a, const std::pair(-1); - constraint_index m_upper_bound_witness = static_cast(-1); + constraint_index m_low_bound_witness; + constraint_index m_upper_bound_witness; public: constraint_index& low_bound_witness() {return m_low_bound_witness;} constraint_index low_bound_witness() const {return m_low_bound_witness;} constraint_index& upper_bound_witness() { return m_upper_bound_witness;} constraint_index upper_bound_witness() const {return m_upper_bound_witness;} - row_index m_i = static_cast(-1); + row_index m_i; bool operator!=(const ul_pair & p) const { return !(*this == p); } @@ -50,8 +50,15 @@ public: m_i == p.m_i; } // empty constructor - ul_pair(){} - ul_pair(row_index ri) : m_i(ri) {} + ul_pair() : + m_low_bound_witness(static_cast(-1)), + m_upper_bound_witness(static_cast(-1)), + m_i(static_cast(-1)) +{} + ul_pair(row_index ri) : + m_low_bound_witness(static_cast(-1)), + m_upper_bound_witness(static_cast(-1)), + m_i(ri) {} ul_pair(const ul_pair & o): m_low_bound_witness(o.m_low_bound_witness), m_upper_bound_witness(o.m_upper_bound_witness), m_i(o.m_i) {} };