3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 01:54:08 +00:00
z3/src/sat/smt/q_mbi.cpp
Nikolaj Bjorner 2f756da294
adding dt-solver (#4739)
* adding dt-solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* dt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* move mbp to self-contained module

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* files

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Create CMakeLists.txt

* dt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* rename to bool_var2expr to indicate type class

* mbp

* na
2020-10-18 15:28:21 -07:00

236 lines
7.1 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_mbi.cpp
Abstract:
Model-based quantifier instantiation plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#include "ast/ast_trail.h"
#include "ast/rewriter/var_subst.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/q_mbi.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/euf_solver.h"
namespace q {
mbqi::mbqi(euf::solver& ctx, solver& s):
ctx(ctx),
qs(s),
m(s.get_manager()),
m_model_fixer(ctx, qs),
m_model_finder(ctx),
m_fresh_trail(m)
{}
void mbqi::restrict_to_universe(expr * sk, ptr_vector<expr> const & universe) {
SASSERT(!universe.empty());
expr_ref_vector eqs(m);
for (expr * e : universe) {
eqs.push_back(m.mk_eq(sk, e));
}
expr_ref fml(m.mk_or(eqs), m);
m_solver->assert_expr(fml);
}
void mbqi::register_value(expr* e) {
sort* s = m.get_sort(e);
obj_hashtable<expr>* values = nullptr;
if (!m_fresh.find(s, values)) {
values = alloc(obj_hashtable<expr>);
m_fresh.insert(s, values);
m_values.push_back(values);
}
if (!values->contains(e)) {
for (expr* b : *values) {
expr_ref eq = ctx.mk_eq(e, b);
qs.add_unit(~qs.b_internalize(eq));
}
values->insert(e);
m_fresh_trail.push_back(e);
}
}
// sort -> [ value -> expr ]
// for fixed value return expr
// new fixed value is distinct from other expr
expr_ref mbqi::replace_model_value(expr* e) {
if (m.is_model_value(e)) {
register_value(e);
return expr_ref(e, m);
}
if (is_app(e) && to_app(e)->get_num_args() > 0) {
expr_ref_vector args(m);
for (expr* arg : *to_app(e)) {
args.push_back(replace_model_value(arg));
}
return expr_ref(m.mk_app(to_app(e)->get_decl(), args), m);
}
return expr_ref(e, m);
}
expr_ref mbqi::choose_term(euf::enode* r) {
unsigned sz = r->class_size();
unsigned start = ctx.s().rand()() % sz;
unsigned i = 0;
for (euf::enode* n : euf::enode_class(r))
if (i++ >= start)
return expr_ref(n->get_expr(), m);
return expr_ref(nullptr, m);
}
lbool mbqi::check_forall(quantifier* q) {
init_solver();
::solver::scoped_push _sp(*m_solver);
expr_ref_vector vars(m);
quantifier* q_flat = qs.flatten(q);
expr_ref body = specialize(q_flat, vars);
m_solver->assert_expr(body);
lbool r = m_solver->check_sat(0, nullptr);
if (r == l_undef)
return r;
if (r == l_false)
return l_true;
model_ref mdl0, mdl1;
m_solver->get_model(mdl0);
expr_ref proj(m);
auto add_projection = [&](model& mdl, bool inv) {
proj = project(mdl, q_flat, vars, inv);
if (!proj)
return;
if (is_forall(q))
qs.add_clause(~ctx.expr2literal(q), ctx.b_internalize(proj));
else
qs.add_clause(ctx.expr2literal(q), ~ctx.b_internalize(proj));
};
bool added = false;
#if 0
m_model_finder.restrict_instantiations(*m_solver, *mdl0, q_flat, vars);
for (unsigned i = 0; i < m_max_cex && l_true == m_solver->check_sat(0, nullptr); ++i) {
m_solver->get_model(mdl1);
add_projection(*mdl1, true);
if (!proj)
break;
added = true;
m_solver->assert_expr(m.mk_not(proj));
}
#endif
if (!added) {
add_projection(*mdl0, false);
added = proj;
}
return added ? l_false : l_undef;
}
expr_ref mbqi::specialize(quantifier* q, expr_ref_vector& vars) {
expr_ref body(m);
unsigned sz = q->get_num_decls();
if (!m_model->eval_expr(q->get_expr(), body, true))
return expr_ref(m);
vars.resize(sz, nullptr);
for (unsigned i = 0; i < sz; ++i) {
sort* s = q->get_decl_sort(i);
vars[i] = m.mk_fresh_const(q->get_decl_name(i), s, false);
if (m_model->has_uninterpreted_sort(s))
restrict_to_universe(vars.get(i), m_model->get_universe(s));
}
var_subst subst(m);
body = subst(body, vars);
if (is_forall(q))
body = m.mk_not(body);
return body;
}
/**
* A most rudimentary projection operator that only tries to find proxy terms from the set of existing terms.
* Refinements:
* - grammar based from MBQI paper
* - quantifier elimination based on projection operators defined in qe.
*
* - eliminate as-array terms, use lambda
* - have mode with inv-term from model-finder
*/
expr_ref mbqi::project(model& mdl, quantifier* q, expr_ref_vector& vars, bool inv) {
unsigned sz = q->get_num_decls();
unsigned max_generation = 0;
expr_ref_vector vals(m);
vals.resize(sz, nullptr);
auto const& v2r = ctx.values2root();
for (unsigned i = 0; i < sz; ++i) {
app* v = to_app(vars.get(i));
func_decl* f = v->get_decl();
expr_ref val(mdl.get_some_const_interp(f), m);
if (!val)
return expr_ref(m);
val = mdl.unfold_as_array(val);
if (!val)
return expr_ref(m);
if (inv)
vals[i] = m_model_finder.inv_term(mdl, q, i, val, max_generation);
euf::enode* r = nullptr;
if (!vals.get(i) && v2r.find(val, r))
vals[i] = choose_term(r);
if (!vals.get(i))
vals[i] = replace_model_value(val);
}
var_subst subst(m);
return subst(q->get_expr(), vals);
}
lbool mbqi::operator()() {
lbool result = l_true;
m_model = nullptr;
for (sat::literal lit : qs.m_universal) {
quantifier* q = to_quantifier(ctx.bool_var2expr(lit.var()));
if (!ctx.is_relevant(q))
continue;
init_model();
switch (check_forall(q)) {
case l_false:
result = l_false;
break;
case l_undef:
if (result == l_true)
result = l_undef;
break;
default:
break;
}
}
m_max_cex += ctx.get_config().m_mbqi_max_cexs;
return result;
}
void mbqi::init_model() {
if (m_model)
return;
m_model = alloc(model, m);
ctx.update_model(m_model);
}
void mbqi::init_solver() {
if (!m_solver)
m_solver = mk_smt2_solver(m, ctx.s().params());
}
void mbqi::init_search() {
m_max_cex = ctx.get_config().m_mbqi_max_cexs;
}
void mbqi::finalize_model(model& mdl) {
m_model_fixer(mdl);
}
}