3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 02:15:19 +00:00
z3/src/qe/qe_mbi.cpp
Nikolaj Bjorner 2f756da294
adding dt-solver (#4739)
* adding dt-solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* dt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* move mbp to self-contained module

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* files

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Create CMakeLists.txt

* dt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* rename to bool_var2expr to indicate type class

* mbp

* na
2020-10-18 15:28:21 -07:00

548 lines
18 KiB
C++

/*++
Copyright (c) 2018 Microsoft Corporation
Module Name:
qe_mbi.cpp
Abstract:
Model-based interpolation utilities
Author:
Nikolaj Bjorner (nbjorner), Arie Gurfinkel 2018-6-8
Revision History:
Notes:
Reduction into:
T_EUF
T_LIRA
Other theories: DT, ARR reduced to EUF
BV is EUF/Boolean.
--*/
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "ast/for_each_expr.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "ast/rewriter/bool_rewriter.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/arith_decl_plugin.h"
#include "model/model_evaluator.h"
#include "solver/solver.h"
#include "qe/qe_mbi.h"
#include "qe/mbp/mbp_term_graph.h"
#include "qe/mbp/mbp_arith.h"
#include "qe/mbp/mbp_arrays.h"
namespace qe {
void mbi_plugin::set_shared(expr* a, expr* b) {
struct fun_proc {
obj_hashtable<func_decl> s;
void operator()(app* a) { if (is_uninterp(a)) s.insert(a->get_decl()); }
void operator()(expr*) {}
};
fun_proc symbols_in_a;
expr_fast_mark1 marks;
quick_for_each_expr(symbols_in_a, marks, a);
marks.reset();
m_shared_trail.reset();
m_shared.reset();
m_is_shared.reset();
struct intersect_proc {
mbi_plugin& p;
obj_hashtable<func_decl>& sA;
intersect_proc(mbi_plugin& p, obj_hashtable<func_decl>& sA):p(p), sA(sA) {}
void operator()(app* a) {
func_decl* f = a->get_decl();
if (sA.contains(f) && !p.m_shared.contains(f)) {
p.m_shared_trail.push_back(f);
p.m_shared.insert(f);
}
}
void operator()(expr*) {}
};
intersect_proc symbols_in_b(*this, symbols_in_a.s);
quick_for_each_expr(symbols_in_b, marks, b);
TRACE("qe",
tout << mk_pp(a, m) << "\n" << mk_pp(b, m) << "\n";
for (func_decl* f : m_shared) tout << f->get_name() << " "; tout << "\n";);
}
lbool mbi_plugin::check(expr_ref_vector& lits, model_ref& mdl) {
while (true) {
switch ((*this)(lits, mdl)) {
case mbi_sat:
return l_true;
case mbi_unsat:
return l_false;
case mbi_undef:
return l_undef;
case mbi_augment:
break;
}
}
}
bool mbi_plugin::is_shared(func_decl* f) {
return f->get_family_id() != null_family_id || m_shared.contains(f);
}
bool mbi_plugin::is_shared(expr* e) {
e = m_rep ? m_rep(e) : e;
if (!is_app(e)) return false;
unsigned id = e->get_id();
m_is_shared.reserve(id + 1, l_undef);
lbool r = m_is_shared[id];
if (r != l_undef) return r == l_true;
app* a = to_app(e);
bool all_shared = is_shared(a->get_decl());
for (expr* arg : *a) {
if (!all_shared)
break;
if (!is_shared(arg))
all_shared = false;
}
m_is_shared[id] = all_shared ? l_true : l_false;
return all_shared;
}
// -------------------------------
// prop_mbi
prop_mbi_plugin::prop_mbi_plugin(solver* s): mbi_plugin(s->get_manager()), m_solver(s) {}
// sketch of propositional
mbi_result prop_mbi_plugin::operator()(expr_ref_vector& lits, model_ref& mdl) {
lbool r = m_solver->check_sat(lits);
switch (r) {
case l_false:
lits.reset();
m_solver->get_unsat_core(lits);
return mbi_unsat;
case l_true:
m_solver->get_model(mdl);
lits.reset();
for (unsigned i = 0, sz = mdl->get_num_constants(); i < sz; ++i) {
func_decl* c = mdl->get_constant(i);
if (is_shared(c)) {
if (m.is_true(mdl->get_const_interp(c))) {
lits.push_back(m.mk_const(c));
}
else if (m.is_false(mdl->get_const_interp(c))) {
lits.push_back(m.mk_not(m.mk_const(c)));
}
}
}
return mbi_sat;
default:
return mbi_undef;
}
}
void prop_mbi_plugin::block(expr_ref_vector const& lits) {
expr_ref clause(mk_not(mk_and(lits)), m);
m_solver->assert_expr(clause);
}
// -------------------------------
// uflia_mbi
struct uflia_mbi::is_atom_proc {
ast_manager& m;
expr_ref_vector& m_atoms;
obj_hashtable<expr>& m_atom_set;
is_atom_proc(expr_ref_vector& atoms, obj_hashtable<expr>& atom_set):
m(atoms.m()), m_atoms(atoms), m_atom_set(atom_set) {}
void operator()(app* a) {
if (m_atom_set.contains(a)) {
// continue
}
else if (m.is_eq(a)) {
m_atoms.push_back(a);
m_atom_set.insert(a);
}
else if (m.is_bool(a) && a->get_family_id() != m.get_basic_family_id()) {
m_atoms.push_back(a);
m_atom_set.insert(a);
}
}
void operator()(expr*) {}
};
uflia_mbi::uflia_mbi(solver* s, solver* sNot):
mbi_plugin(s->get_manager()),
m_atoms(m),
m_fmls(m),
m_solver(s),
m_dual_solver(sNot) {
params_ref p;
p.set_bool("core.minimize", true);
m_solver->updt_params(p);
m_dual_solver->updt_params(p);
m_solver->get_assertions(m_fmls);
collect_atoms(m_fmls);
}
void uflia_mbi::collect_atoms(expr_ref_vector const& fmls) {
expr_fast_mark1 marks;
is_atom_proc proc(m_atoms, m_atom_set);
for (expr* e : fmls) {
quick_for_each_expr(proc, marks, e);
}
}
bool uflia_mbi::get_literals(model_ref& mdl, expr_ref_vector& lits) {
lits.reset();
IF_VERBOSE(10, verbose_stream() << "atoms: " << m_atoms << "\n");
for (expr* e : m_atoms) {
if (mdl->is_true(e)) {
lits.push_back(e);
}
else if (mdl->is_false(e)) {
lits.push_back(m.mk_not(e));
}
}
TRACE("qe", tout << "atoms from model: " << lits << "\n";);
solver_ref dual = m_dual_solver->translate(m, m_dual_solver->get_params());
dual->assert_expr(mk_not(mk_and(m_fmls)));
lbool r = dual->check_sat(lits);
TRACE("qe", dual->display(tout << "dual result " << r << "\n"););
if (l_false == r) {
// use the dual solver to find a 'small' implicant
lits.reset();
dual->get_unsat_core(lits);
return true;
}
else {
return false;
}
}
/**
* \brief A subterm is an arithmetic variable if:
* 1. it is not shared.
* 2. it occurs under an arithmetic operation.
* 3. it is not an arithmetic expression.
*
* The result is ordered using deepest term first.
*/
app_ref_vector uflia_mbi::get_arith_vars(expr_ref_vector const& lits) {
app_ref_vector avars(m);
bool_vector seen;
arith_util a(m);
for (expr* e : subterms(lits)) {
if ((m.is_eq(e) && a.is_int_real(to_app(e)->get_arg(0))) || a.is_arith_expr(e)) {
for (expr* arg : *to_app(e)) {
unsigned id = arg->get_id();
seen.reserve(id + 1, false);
if (is_app(arg) && !m.is_eq(arg) && !a.is_arith_expr(arg) && !is_shared(arg) && !seen[id]) {
seen[id] = true;
avars.push_back(to_app(arg));
}
}
}
}
order_avars(avars);
TRACE("qe", tout << "vars: " << avars << " from " << lits << "\n";);
return avars;
}
vector<mbp::def> uflia_mbi::arith_project(model_ref& mdl, app_ref_vector& avars, expr_ref_vector& lits) {
mbp::arith_project_plugin ap(m);
ap.set_check_purified(false);
return ap.project(*mdl.get(), avars, lits);
}
mbi_result uflia_mbi::operator()(expr_ref_vector& lits, model_ref& mdl) {
lbool r = m_solver->check_sat(lits);
switch (r) {
case l_false:
lits.reset();
m_solver->get_unsat_core(lits);
TRACE("qe", tout << "unsat core: " << lits << "\n";);
// optionally minimize core using superposition.
return mbi_unsat;
case l_true:
m_solver->get_model(mdl);
if (!get_literals(mdl, lits)) {
return mbi_undef;
}
project(mdl, lits);
return mbi_sat;
default:
// TBD: if not running solver to completion, then:
// 1. extract unit literals from m_solver.
// 2. run a cc over the units
// 3. extract equalities or other assignments over the congruence classes
// 4. ensure that at least some progress is made over original lits.
return mbi_undef;
}
}
/**
\brief main projection routine
*/
void uflia_mbi::project(model_ref& mdl, expr_ref_vector& lits) {
TRACE("qe",
tout << "project literals: " << lits << "\n" << *mdl << "\n";
tout << m_solver->get_assertions() << "\n";);
add_dcert(mdl, lits);
expr_ref_vector alits(m), uflits(m);
split_arith(lits, alits, uflits);
auto avars = get_arith_vars(lits);
vector<mbp::def> defs = arith_project(mdl, avars, alits);
for (auto const& d : defs) uflits.push_back(m.mk_eq(d.var, d.term));
TRACE("qe", tout << "uflits: " << uflits << "\n";);
project_euf(mdl, uflits);
lits.reset();
lits.append(alits);
lits.append(uflits);
IF_VERBOSE(10, verbose_stream() << "projection : " << lits << "\n");
TRACE("qe",
tout << "projection: " << lits << "\n";
tout << "avars: " << avars << "\n";
tout << "alits: " << lits << "\n";
tout << "uflits: " << uflits << "\n";);
}
void uflia_mbi::split_arith(expr_ref_vector const& lits,
expr_ref_vector& alits,
expr_ref_vector& uflits) {
arith_util a(m);
for (expr* lit : lits) {
expr* atom = lit, *x = nullptr, *y = nullptr;
m.is_not(lit, atom);
if (m.is_eq(atom, x, y)) {
if (a.is_int_real(x)) {
alits.push_back(lit);
}
uflits.push_back(lit);
}
else if (a.is_arith_expr(atom)) {
alits.push_back(lit);
}
else {
uflits.push_back(lit);
}
}
TRACE("qe",
tout << "alits: " << alits << "\n";
tout << "uflits: " << uflits << "\n";);
}
/**
\brief add difference certificates to formula.
*/
void uflia_mbi::add_dcert(model_ref& mdl, expr_ref_vector& lits) {
mbp::term_graph tg(m);
add_arith_dcert(*mdl.get(), lits);
func_decl_ref_vector shared(m_shared_trail);
tg.set_vars(shared, false);
lits.append(tg.dcert(*mdl.get(), lits));
TRACE("qe", tout << "project: " << lits << "\n";);
}
/**
Add disequalities between functions that appear in arithmetic context.
*/
void uflia_mbi::add_arith_dcert(model& mdl, expr_ref_vector& lits) {
obj_map<func_decl, ptr_vector<app>> apps;
arith_util a(m);
for (expr* e : subterms(lits)) {
if (a.is_int_real(e) && is_uninterp(e) && to_app(e)->get_num_args() > 0) {
func_decl* f = to_app(e)->get_decl();
apps.insert_if_not_there(f, ptr_vector<app>()).push_back(to_app(e));
}
}
for (auto const& kv : apps) {
ptr_vector<app> const& es = kv.m_value;
expr_ref_vector values(m);
for (expr* e : kv.m_value) values.push_back(mdl(e));
for (unsigned i = 0; i < es.size(); ++i) {
expr* v1 = values.get(i);
for (unsigned j = i + 1; j < es.size(); ++j) {
expr* v2 = values.get(j);
if (v1 != v2) {
add_arith_dcert(mdl, lits, es[i], es[j]);
}
}
}
}
}
void uflia_mbi::add_arith_dcert(model& mdl, expr_ref_vector& lits, app* a, app* b) {
arith_util arith(m);
SASSERT(a->get_decl() == b->get_decl());
for (unsigned i = a->get_num_args(); i-- > 0; ) {
expr* arg1 = a->get_arg(i), *arg2 = b->get_arg(i);
if (arith.is_int_real(arg1) && mdl(arg1) != mdl(arg2)) {
lits.push_back(m.mk_not(m.mk_eq(arg1, arg2)));
return;
}
}
}
/**
* \brief project private symbols.
*/
void uflia_mbi::project_euf(model_ref& mdl, expr_ref_vector& lits) {
mbp::term_graph tg(m);
func_decl_ref_vector shared(m_shared_trail);
tg.set_vars(shared, false);
tg.add_lits(lits);
lits.reset();
lits.append(tg.project(*mdl.get()));
TRACE("qe", tout << "project: " << lits << "\n";);
}
/**
* \brief Order arithmetical variables:
* sort arithmetical terms, such that deepest terms are first.
*/
void uflia_mbi::order_avars(app_ref_vector& avars) {
// sort avars based on depth
std::function<bool(app*, app*)> compare_depth =
[](app* x, app* y) {
return
(x->get_depth() > y->get_depth()) ||
(x->get_depth() == y->get_depth() && x->get_id() > y->get_id());
};
std::sort(avars.c_ptr(), avars.c_ptr() + avars.size(), compare_depth);
TRACE("qe", tout << "avars:" << avars << "\n";);
}
void uflia_mbi::block(expr_ref_vector const& lits) {
expr_ref clause(mk_not(mk_and(lits)), m);
collect_atoms(lits);
m_fmls.push_back(clause);
TRACE("qe", tout << "block " << lits << "\n";);
m_solver->assert_expr(clause);
}
/** --------------------------------------------------------------
* ping-pong interpolation of Gurfinkel & Vizel
* compute a binary interpolant.
*/
lbool interpolator::pingpong(mbi_plugin& a, mbi_plugin& b, expr_ref& itp) {
model_ref mdl;
expr_ref_vector lits(m);
bool turn = true;
vector<expr_ref_vector> itps, blocks;
itps.push_back(expr_ref_vector(m));
itps.push_back(expr_ref_vector(m));
blocks.push_back(expr_ref_vector(m));
blocks.push_back(expr_ref_vector(m));
mbi_result last_res = mbi_undef;
bool_rewriter rw(m);
while (true) {
auto* t1 = turn ? &a : &b;
auto* t2 = turn ? &b : &a;
mbi_result next_res = (*t1)(lits, mdl);
switch (next_res) {
case mbi_sat:
if (last_res == mbi_sat) {
itp = nullptr;
return l_true;
}
TRACE("mbi", tout << "new lits " << lits << "\n";);
break; // continue
case mbi_unsat: {
if (lits.empty()) {
// TBD, either a => itp and itp => !b
// or b => itp and itp => !a
itp = mk_and(itps[!turn]);
return l_false;
}
t2->block(lits);
expr_ref lemma(mk_not(mk_and(lits)));
TRACE("mbi", tout << lemma << "\n";);
blocks[turn].push_back(lemma);
itp = m.mk_implies(mk_and(blocks[!turn]), lemma);
// TBD: compute closure over variables not in vars
itps[turn].push_back(itp);
lits.reset(); // or find a prefix of lits?
break;
}
case mbi_augment:
break;
case mbi_undef:
return l_undef;
}
turn = !turn;
last_res = next_res;
}
}
/**
* One-sided pogo creates clausal interpolants.
* It creates a set of consequences of b that are inconsistent with a.
*/
lbool interpolator::pogo(mbi_plugin& a, mbi_plugin& b, expr_ref& itp) {
expr_ref_vector lits(m), itps(m);
while (true) {
model_ref mdl;
lits.reset();
switch (a.check(lits, mdl)) {
case l_true:
switch (b.check(lits, mdl)) {
case l_true:
return l_true;
case l_false:
a.block(lits);
itps.push_back(mk_and(lits));
break;
case l_undef:
return l_undef;
}
break;
case l_false:
itp = mk_or(itps);
return l_false;
case l_undef:
return l_undef;
}
}
}
lbool interpolator::pogo(solver_factory& sf, expr* _a, expr* _b, expr_ref& itp) {
params_ref p;
expr_ref a(_a, m), b(_b, m);
th_rewriter rewrite(m);
rewrite(a);
rewrite(b);
solver_ref sA = sf(m, p, false /* no proofs */, true, true, symbol::null);
solver_ref sB = sf(m, p, false /* no proofs */, true, true, symbol::null);
solver_ref sNotA = sf(m, p, false /* no proofs */, true, true, symbol::null);
sA->assert_expr(a);
sB->assert_expr(b);
uflia_mbi pA(sA.get(), sNotA.get());
prop_mbi_plugin pB(sB.get());
pA.set_shared(a, b);
pB.set_shared(a, b);
return pogo(pA, pB, itp);
}
};