Queue formal proof based on one-entry FIFO equivalence #11
|
@ -195,7 +195,7 @@ mod tests {
|
|||
assert_formal(
|
||||
format_args!("test_queue_{capacity}_{inp_ready_is_comb}_{out_valid_is_comb}"),
|
||||
queue_test(capacity, inp_ready_is_comb, out_valid_is_comb),
|
||||
FormalMode::Prove,
|
||||
FormalMode::BMC,
|
||||
14,
|
||||
None,
|
||||
ExportOptions {
|
||||
|
@ -203,6 +203,16 @@ mod tests {
|
|||
..ExportOptions::default()
|
||||
},
|
||||
);
|
||||
/// Formal verification of the FIFO queue
|
||||
///
|
||||
/// The strategy derives from the observation that, if we filter its
|
||||
/// input and output streams to consider just one in every N reads and
|
||||
/// writes (where N is the FIFO capacity), then the FIFO effectively
|
||||
/// behaves as a one-entry FIFO.
|
||||
///
|
||||
/// In particular, any counterexample of the full FIFO behaving badly
|
||||
/// will also be caught by one of the filtered versions (one which
|
||||
/// happens to be in phase with the offending input or output).
|
||||
#[hdl_module]
|
||||
fn queue_test(capacity: NonZeroUsize, inp_ready_is_comb: bool, out_valid_is_comb: bool) {
|
||||
#[hdl]
|
||||
|
@ -217,6 +227,8 @@ mod tests {
|
|||
rst: formal_reset().to_reset(),
|
||||
},
|
||||
);
|
||||
|
||||
// random input data
|
||||
#[hdl]
|
||||
let inp_data: HdlOption<UInt<8>> = wire();
|
||||
#[hdl]
|
||||
|
@ -225,16 +237,25 @@ mod tests {
|
|||
} else {
|
||||
connect(inp_data, HdlNone());
|
||||
}
|
||||
|
||||
// assert output ready at random
|
||||
#[hdl]
|
||||
let out_ready: Bool = wire();
|
||||
connect(out_ready, any_seq(Bool));
|
||||
let index_ty: UInt<32> = UInt::TYPE;
|
||||
|
||||
// The current number of elements in the FIFO ranges from zero to
|
||||
// maximum capacity, inclusive.
|
||||
let count_ty = UInt::range_inclusive(0..=capacity.get());
|
||||
// type for counters that wrap around at the FIFO capacity
|
||||
let index_ty = UInt::range(0..capacity.get());
|
||||
|
||||
// among all entries of the FIFO internal circular memory, choose
|
||||
// one at random to check
|
||||
#[hdl]
|
||||
let index_to_check = wire();
|
||||
let index_to_check = wire(index_ty);
|
||||
connect(index_to_check, any_const(index_ty));
|
||||
let index_max = !index_ty.zero();
|
||||
// we saturate at index_max, so only check indexes where we properly maintain position
|
||||
hdl_assume(clk, index_to_check.cmp_ne(index_max), "");
|
||||
|
||||
// instantiate and connect the queue
|
||||
#[hdl]
|
||||
let dut = instance(queue(
|
||||
UInt[ConstUsize::<8>],
|
||||
|
@ -245,108 +266,121 @@ mod tests {
|
|||
connect(dut.cd, cd);
|
||||
connect(dut.inp.data, inp_data);
|
||||
connect(dut.out.ready, out_ready);
|
||||
hdl_assume(
|
||||
clk,
|
||||
index_to_check.cmp_ne(!Expr::ty(index_to_check).zero()),
|
||||
"",
|
||||
);
|
||||
|
||||
// Keep an independent count of words in the FIFO. Ensure that
|
||||
// it's always correct, and never overflows.
|
||||
#[hdl]
|
||||
let expected_count_reg = reg_builder().clock_domain(cd).reset(0u32);
|
||||
#[hdl]
|
||||
let next_expected_count = wire();
|
||||
connect(next_expected_count, expected_count_reg);
|
||||
connect(expected_count_reg, next_expected_count);
|
||||
let expected_count_reg = reg_builder().clock_domain(cd).reset(count_ty.zero());
|
||||
#[hdl]
|
||||
if ReadyValid::firing(dut.inp) & !ReadyValid::firing(dut.out) {
|
||||
connect_any(next_expected_count, expected_count_reg + 1u8);
|
||||
hdl_assert(clk, expected_count_reg.cmp_ne(capacity.get()), "");
|
||||
connect_any(expected_count_reg, expected_count_reg + 1u8);
|
||||
} else if !ReadyValid::firing(dut.inp) & ReadyValid::firing(dut.out) {
|
||||
connect_any(next_expected_count, expected_count_reg - 1u8);
|
||||
hdl_assert(clk, expected_count_reg.cmp_ne(count_ty.zero()), "");
|
||||
connect_any(expected_count_reg, expected_count_reg - 1u8);
|
||||
}
|
||||
hdl_assert(cd.clk, expected_count_reg.cmp_eq(dut.count), "");
|
||||
|
||||
#[hdl]
|
||||
let prev_out_ready_reg = reg_builder().clock_domain(cd).reset(!0_hdl_u3);
|
||||
connect_any(
|
||||
prev_out_ready_reg,
|
||||
(prev_out_ready_reg << 1) | out_ready.cast_to(UInt[1]),
|
||||
);
|
||||
#[hdl]
|
||||
let prev_inp_valid_reg = reg_builder().clock_domain(cd).reset(!0_hdl_u3);
|
||||
connect_any(
|
||||
prev_inp_valid_reg,
|
||||
(prev_inp_valid_reg << 1) | HdlOption::is_some(inp_data).cast_to(UInt[1]),
|
||||
);
|
||||
hdl_assume(
|
||||
clk,
|
||||
(prev_out_ready_reg & prev_inp_valid_reg).cmp_ne(0u8),
|
||||
"",
|
||||
);
|
||||
hdl_assert(clk, expected_count_reg.cmp_eq(dut.count), "");
|
||||
|
||||
// keep an independent write index into the FIFO's circular buffer
|
||||
#[hdl]
|
||||
let inp_index_reg = reg_builder().clock_domain(cd).reset(index_ty.zero());
|
||||
#[hdl]
|
||||
let stored_inp_data_reg = reg_builder().clock_domain(cd).reset(0u8);
|
||||
|
||||
#[hdl]
|
||||
if let HdlSome(data) = ReadyValid::firing_data(dut.inp) {
|
||||
if ReadyValid::firing(dut.inp) {
|
||||
#[hdl]
|
||||
if inp_index_reg.cmp_lt(index_max) {
|
||||
if inp_index_reg.cmp_ne(capacity.get() - 1) {
|
||||
connect_any(inp_index_reg, inp_index_reg + 1u8);
|
||||
#[hdl]
|
||||
if inp_index_reg.cmp_eq(index_to_check) {
|
||||
connect(stored_inp_data_reg, data);
|
||||
}
|
||||
} else {
|
||||
connect_any(inp_index_reg, 0_hdl_u0);
|
||||
}
|
||||
}
|
||||
|
||||
#[hdl]
|
||||
if inp_index_reg.cmp_lt(index_to_check) {
|
||||
hdl_assert(clk, stored_inp_data_reg.cmp_eq(0u8), "");
|
||||
}
|
||||
|
||||
// keep an independent read index into the FIFO's circular buffer
|
||||
#[hdl]
|
||||
let out_index_reg = reg_builder().clock_domain(cd).reset(index_ty.zero());
|
||||
#[hdl]
|
||||
let stored_out_data_reg = reg_builder().clock_domain(cd).reset(0u8);
|
||||
|
||||
#[hdl]
|
||||
if let HdlSome(data) = ReadyValid::firing_data(dut.out) {
|
||||
if ReadyValid::firing(dut.out) {
|
||||
#[hdl]
|
||||
if out_index_reg.cmp_lt(index_max) {
|
||||
if out_index_reg.cmp_ne(capacity.get() - 1) {
|
||||
connect_any(out_index_reg, out_index_reg + 1u8);
|
||||
#[hdl]
|
||||
if out_index_reg.cmp_eq(index_to_check) {
|
||||
connect(stored_out_data_reg, data);
|
||||
}
|
||||
} else {
|
||||
connect_any(out_index_reg, 0_hdl_u0);
|
||||
}
|
||||
}
|
||||
|
||||
// filter the input data stream, predicated by the read index
|
||||
// matching the chosen position in the FIFO's circular buffer
|
||||
#[hdl]
|
||||
if out_index_reg.cmp_lt(index_to_check) {
|
||||
hdl_assert(clk, stored_out_data_reg.cmp_eq(0u8), "");
|
||||
let inp_index_matches = wire();
|
||||
connect(inp_index_matches, inp_index_reg.cmp_eq(index_to_check));
|
||||
#[hdl]
|
||||
let inp_firing_data = wire();
|
||||
connect(inp_firing_data, HdlNone());
|
||||
#[hdl]
|
||||
if inp_index_matches {
|
||||
connect(inp_firing_data, ReadyValid::firing_data(dut.inp));
|
||||
}
|
||||
|
||||
hdl_assert(clk, inp_index_reg.cmp_ge(out_index_reg), "");
|
||||
|
||||
// filter the output data stream, predicated by the write index
|
||||
// matching the chosen position in the FIFO's circular buffer
|
||||
#[hdl]
|
||||
if inp_index_reg.cmp_lt(index_max) & out_index_reg.cmp_lt(index_max) {
|
||||
hdl_assert(
|
||||
clk,
|
||||
expected_count_reg.cmp_eq(inp_index_reg - out_index_reg),
|
||||
"",
|
||||
);
|
||||
} else {
|
||||
hdl_assert(
|
||||
clk,
|
||||
expected_count_reg.cmp_ge(inp_index_reg - out_index_reg),
|
||||
"",
|
||||
);
|
||||
let out_index_matches = wire();
|
||||
connect(out_index_matches, out_index_reg.cmp_eq(index_to_check));
|
||||
#[hdl]
|
||||
let out_firing_data = wire();
|
||||
connect(out_firing_data, HdlNone());
|
||||
#[hdl]
|
||||
if out_index_matches {
|
||||
connect(out_firing_data, ReadyValid::firing_data(dut.out));
|
||||
}
|
||||
|
||||
// Implement a one-entry FIFO and ensure its equivalence to the
|
||||
// filtered FIFO.
|
||||
//
|
||||
// the holding register for our one-entry FIFO
|
||||
#[hdl]
|
||||
if inp_index_reg.cmp_gt(index_to_check) & out_index_reg.cmp_gt(index_to_check) {
|
||||
hdl_assert(clk, stored_inp_data_reg.cmp_eq(stored_out_data_reg), "");
|
||||
let stored_reg = reg_builder().clock_domain(cd).reset(HdlNone());
|
||||
#[hdl]
|
||||
match stored_reg {
|
||||
// If the holding register is empty...
|
||||
HdlNone => {
|
||||
#[hdl]
|
||||
match inp_firing_data {
|
||||
// ... and we are not receiving data, then we must not
|
||||
// transmit any data.
|
||||
HdlNone => hdl_assert(clk, HdlOption::is_none(out_firing_data), ""),
|
||||
// If we are indeed receiving some data...
|
||||
HdlSome(data_in) => {
|
||||
#[hdl]
|
||||
match out_firing_data {
|
||||
// ... and transmitting at the same time, we
|
||||
// must be transmitting the input data itself,
|
||||
// since the holding register is empty.
|
||||
HdlSome(data_out) => hdl_assert(clk, data_out.cmp_eq(data_in), ""),
|
||||
// If we are receiving, but not transmitting,
|
||||
// store the received data in the holding
|
||||
// register.
|
||||
HdlNone => connect(stored_reg, HdlSome(data_in)),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// If there is some value stored in the holding register...
|
||||
HdlSome(stored) => {
|
||||
#[hdl]
|
||||
match out_firing_data {
|
||||
// ... and we are not transmitting it, we cannot
|
||||
// receive any more data.
|
||||
HdlNone => hdl_assert(clk, HdlOption::is_none(inp_firing_data), ""),
|
||||
// If we are transmitting a previously stored value...
|
||||
HdlSome(data_out) => {
|
||||
// ... it must be the same data we stored earlier.
|
||||
hdl_assert(clk, data_out.cmp_eq(stored), "");
|
||||
// Also, accept new data, if any. Otherwise,
|
||||
// let the holding register become empty.
|
||||
connect(stored_reg, inp_firing_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue