mirror of
https://github.com/Z3Prover/z3
synced 2025-04-05 17:14:07 +00:00
421 lines
15 KiB
C++
421 lines
15 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
upolynomial_factorization_int.h
|
|
|
|
Abstract:
|
|
|
|
(Internal) header file for univariate polynomial factorization.
|
|
This classes are exposed for debugging purposes only.
|
|
|
|
Author:
|
|
|
|
Dejan (t-dejanj) 2011-11-29
|
|
|
|
Notes:
|
|
|
|
[1] Elwyn Ralph Berlekamp. Factoring Polynomials over Finite Fields. Bell System Technical Journal,
|
|
46(8-10):1853-1859, 1967.
|
|
[2] Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison Wesley, third
|
|
edition, 1997.
|
|
[3] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1993.
|
|
|
|
--*/
|
|
#ifndef UPOLYNOMIAL_FACTORIZATION_INT_H_
|
|
#define UPOLYNOMIAL_FACTORIZATION_INT_H_
|
|
|
|
#include "math/polynomial/upolynomial_factorization.h"
|
|
|
|
namespace upolynomial {
|
|
// copy p from some manager to zp_p in Z_p[x]
|
|
inline void to_zp_manager(zp_manager & zp_upm, numeral_vector & p) {
|
|
zp_numeral_manager & zp_nm(zp_upm.m());
|
|
for (unsigned i = 0; i < p.size(); ++ i) {
|
|
zp_nm.p_normalize(p[i]);
|
|
}
|
|
zp_upm.trim(p);
|
|
}
|
|
|
|
// copy p from some manager to zp_p in Z_p[x]
|
|
inline void to_zp_manager(zp_manager & zp_upm, numeral_vector const & p, numeral_vector & zp_p) {
|
|
zp_numeral_manager & zp_nm(zp_upm.m());
|
|
zp_upm.reset(zp_p);
|
|
for (unsigned i = 0; i < p.size(); ++ i) {
|
|
numeral p_i; // no need to delete, we keep it pushed in zp_p
|
|
zp_nm.set(p_i, p[i]);
|
|
zp_p.push_back(std::move(p_i));
|
|
}
|
|
zp_upm.trim(zp_p);
|
|
}
|
|
|
|
/**
|
|
\brief Contains all possible degrees of a factorization of a polynomial.
|
|
If
|
|
p = p1^{k_1} * ... * pn^{k_n} with p_i of degree d_i
|
|
then it is represents numbers of the for \sum a_i*d_i, where a_i <= k_i. Two numbers always in the set are
|
|
deg(p) and 0.
|
|
|
|
*/
|
|
class factorization_degree_set {
|
|
|
|
// the set itself, a (m_max_degree)-binary number
|
|
bit_vector m_set;
|
|
|
|
public:
|
|
|
|
factorization_degree_set() { }
|
|
|
|
factorization_degree_set(zp_factors const & factors)
|
|
{
|
|
zp_manager & upm = factors.upm();
|
|
// the set contains only {0}
|
|
m_set.push_back(true);
|
|
for (unsigned i = 0; i < factors.distinct_factors(); ++ i) {
|
|
unsigned degree = upm.degree(factors[i]);
|
|
unsigned multiplicity = factors.get_degree(i);
|
|
for (unsigned k = 0; k < multiplicity; ++ k) {
|
|
bit_vector tmp(m_set);
|
|
m_set.shift_right(degree);
|
|
m_set |= tmp;
|
|
}
|
|
}
|
|
SASSERT(in_set(0) && in_set(factors.get_degree()));
|
|
}
|
|
|
|
unsigned max_degree() const { return m_set.size() - 1; }
|
|
|
|
void swap(factorization_degree_set & other) {
|
|
m_set.swap(other.m_set);
|
|
}
|
|
|
|
bool is_trivial() const {
|
|
// check if set = {0, n}
|
|
for (int i = 1; i < (int) m_set.size() - 1; ++ i) {
|
|
if (m_set.get(i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void remove(unsigned k) {
|
|
m_set.set(k, false);
|
|
}
|
|
|
|
bool in_set(unsigned k) const {
|
|
return m_set.get(k);
|
|
}
|
|
|
|
void intersect(const factorization_degree_set& other) {
|
|
m_set &= other.m_set;
|
|
}
|
|
|
|
void display(std::ostream & out) const {
|
|
out << "[0";
|
|
for (unsigned i = 1; i <= max_degree(); ++ i) {
|
|
if (in_set(i)) {
|
|
out << ", " << i;
|
|
}
|
|
}
|
|
out << "] represented by " << m_set;
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief A to iterate through all combinations of factors. This is only needed for the factorization, and we
|
|
always iterate through the
|
|
*/
|
|
template <typename factors_type>
|
|
class factorization_combination_iterator_base {
|
|
|
|
protected:
|
|
|
|
|
|
// total size of available factors
|
|
int m_total_size;
|
|
// maximal size of the selection
|
|
int m_max_size;
|
|
// the factors to select from
|
|
factors_type const & m_factors;
|
|
// which factors are enabled
|
|
svector<bool> m_enabled;
|
|
// the size of the current selection
|
|
int m_current_size;
|
|
// the current selection: indices at positions < m_current_size, other values are maxed out
|
|
svector<int> m_current;
|
|
|
|
/**
|
|
Assuming a valid selection m_current[0], ..., m_current[position], try to find the next option for
|
|
m_current[position], i.e. the first bigger one that's enabled.
|
|
*/
|
|
int find(int position, int upper_bound) {
|
|
int current = m_current[position] + 1;
|
|
while (current < upper_bound && !m_enabled[current]) {
|
|
current ++;
|
|
}
|
|
if (current == upper_bound) {
|
|
return -1;
|
|
} else {
|
|
return current;
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
factorization_combination_iterator_base(factors_type const & factors)
|
|
: m_total_size(factors.distinct_factors()),
|
|
m_max_size(factors.distinct_factors()/2),
|
|
m_factors(factors)
|
|
{
|
|
SASSERT(factors.total_factors() > 1);
|
|
SASSERT(factors.total_factors() == factors.distinct_factors());
|
|
// enable all to start with
|
|
m_enabled.resize(m_factors.distinct_factors(), true);
|
|
// max out the m_current so that it always fits
|
|
m_current.resize(m_factors.distinct_factors()+1, m_factors.distinct_factors());
|
|
m_current_size = 0;
|
|
}
|
|
|
|
/**
|
|
\brief Returns the factors we are enumerating through.
|
|
*/
|
|
factors_type const & get_factors() const {
|
|
return m_factors;
|
|
}
|
|
|
|
/**
|
|
\brief Computes the next combination of factors and returns true if it exists. If remove current is true
|
|
it will eliminate the current selected elements from any future selection.
|
|
*/
|
|
bool next(bool remove_current) {
|
|
|
|
int max_upper_bound = m_factors.distinct_factors();
|
|
|
|
do {
|
|
|
|
// the index we are currently trying to fix
|
|
int current_i = m_current_size - 1;
|
|
// the value we found as plausable (-1 we didn't find anything)
|
|
int current_value = -1;
|
|
|
|
if (remove_current) {
|
|
SASSERT(m_current_size > 0);
|
|
// disable the elements of the current selection from ever appearing again
|
|
for (current_i = m_current_size - 1; current_i > 0; -- current_i) {
|
|
SASSERT(m_enabled[m_current[current_i]]);
|
|
m_enabled[m_current[current_i]] = false;
|
|
m_current[current_i] = max_upper_bound;
|
|
}
|
|
// the last one
|
|
SASSERT(m_enabled[m_current[0]]);
|
|
m_enabled[m_current[0]] = false;
|
|
// not removing current anymore
|
|
remove_current = false;
|
|
// out max size is also going down
|
|
m_total_size -= m_current_size;
|
|
m_max_size = m_total_size/2;
|
|
}
|
|
|
|
// we go back to the first one that can be increased (if removing current go all the way)
|
|
while (current_i >= 0) {
|
|
current_value = find(current_i, m_current[current_i + 1]);
|
|
if (current_value >= 0) {
|
|
// found one
|
|
m_current[current_i] = current_value;
|
|
break;
|
|
} else {
|
|
// go back some more
|
|
current_i --;
|
|
}
|
|
}
|
|
|
|
do {
|
|
|
|
if (current_value == -1) {
|
|
// we couldn't find any options, we have to increse size and start from the first one of that size
|
|
if (m_current_size >= m_max_size) {
|
|
return false;
|
|
} else {
|
|
m_current_size ++;
|
|
m_current[0] = -1;
|
|
current_i = 0;
|
|
current_value = find(current_i, max_upper_bound);
|
|
// if we didn't find any, we are done
|
|
if (current_value == -1) {
|
|
return false;
|
|
} else {
|
|
m_current[current_i] = current_value;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ok we have a new selection for the current one
|
|
for (current_i ++; current_i < m_current_size; ++ current_i) {
|
|
// start from the previous one
|
|
m_current[current_i] = m_current[current_i-1];
|
|
current_value = find(current_i, max_upper_bound);
|
|
if (current_value == -1) {
|
|
// screwed, didn't find the next one, this means we need to increase the size
|
|
m_current[0] = -1;
|
|
break;
|
|
} else {
|
|
m_current[current_i] = current_value;
|
|
}
|
|
}
|
|
|
|
} while (current_value == -1);
|
|
|
|
} while (filter_current());
|
|
|
|
// found the next one, hurray
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
\brief A function that returns true if the current combination should be ignored.
|
|
*/
|
|
virtual bool filter_current() const = 0;
|
|
|
|
/**
|
|
\brief Returns the size of the current selection (cardinality)
|
|
*/
|
|
unsigned left_size() const {
|
|
return m_current_size;
|
|
}
|
|
|
|
/**
|
|
\brief Returns the size of the rest of the current selection (cardinality)
|
|
*/
|
|
unsigned right_size() const {
|
|
return m_total_size - m_current_size;
|
|
}
|
|
|
|
void display(std::ostream& out) const {
|
|
out << "[ ";
|
|
for (unsigned i = 0; i < m_current.size(); ++ i) {
|
|
out << m_current[i] << " ";
|
|
}
|
|
out << "] from [ ";
|
|
for (unsigned i = 0; i < m_factors.distinct_factors(); ++ i) {
|
|
if (m_enabled[i]) {
|
|
out << i << " ";
|
|
}
|
|
}
|
|
out << "]" << std::endl;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
class ufactorization_combination_iterator : public factorization_combination_iterator_base<zp_factors> {
|
|
|
|
// the degree sets to choose from
|
|
factorization_degree_set const & m_degree_set;
|
|
|
|
public:
|
|
|
|
ufactorization_combination_iterator(zp_factors const & factors, factorization_degree_set const & degree_set)
|
|
: factorization_combination_iterator_base<zp_factors>(factors),
|
|
m_degree_set(degree_set)
|
|
{}
|
|
|
|
/**
|
|
\brief Filter the ones not in the degree set.
|
|
*/
|
|
bool filter_current() const {
|
|
|
|
// select only the ones that have degrees in the degree set
|
|
if (!m_degree_set.in_set(current_degree())) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
\brief Returns the degree of the current selection.
|
|
*/
|
|
unsigned current_degree() const {
|
|
unsigned degree = 0;
|
|
zp_manager & upm = m_factors.pm();
|
|
for (unsigned i = 0; i < left_size(); ++ i) {
|
|
degree += upm.degree(m_factors[m_current[i]]);
|
|
}
|
|
return degree;
|
|
}
|
|
|
|
void left(numeral_vector & out) const {
|
|
SASSERT(m_current_size > 0);
|
|
zp_manager & upm = m_factors.upm();
|
|
upm.set(m_factors[m_current[0]].size(), m_factors[m_current[0]].c_ptr(), out);
|
|
for (int i = 1; i < m_current_size; ++ i) {
|
|
upm.mul(out.size(), out.c_ptr(), m_factors[m_current[i]].size(), m_factors[m_current[i]].c_ptr(), out);
|
|
}
|
|
}
|
|
|
|
void get_left_tail_coeff(numeral const & m, numeral & out) {
|
|
zp_numeral_manager & nm = m_factors.upm().m();
|
|
nm.set(out, m);
|
|
for (int i = 0; i < m_current_size; ++ i) {
|
|
nm.mul(out, m_factors[m_current[i]][0], out);
|
|
}
|
|
}
|
|
|
|
void get_right_tail_coeff(numeral const & m, numeral & out) {
|
|
zp_numeral_manager & nm = m_factors.upm().m();
|
|
nm.set(out, m);
|
|
|
|
unsigned current = 0;
|
|
unsigned selection_i = 0;
|
|
|
|
// selection is ordered, so we just take the ones in between that are not disable
|
|
while (current < m_factors.distinct_factors()) {
|
|
if (!m_enabled[current]) {
|
|
// by skipping the disabled we never skip a selected one
|
|
current ++;
|
|
} else {
|
|
if (selection_i >= m_current.size() || (int) current < m_current[selection_i]) {
|
|
SASSERT(m_factors.get_degree(current) == 1);
|
|
nm.mul(out, m_factors[current][0], out);
|
|
current ++;
|
|
} else {
|
|
current ++;
|
|
selection_i ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void right(numeral_vector & out) const {
|
|
SASSERT(m_current_size > 0);
|
|
zp_manager & upm = m_factors.upm();
|
|
upm.reset(out);
|
|
|
|
unsigned current = 0;
|
|
unsigned selection_i = 0;
|
|
|
|
// selection is ordered, so we just take the ones in between that are not disable
|
|
while (current < m_factors.distinct_factors()) {
|
|
if (!m_enabled[current]) {
|
|
// by skipping the disabled we never skip a selected one
|
|
current ++;
|
|
} else {
|
|
if (selection_i >= m_current.size() || (int) current < m_current[selection_i]) {
|
|
SASSERT(m_factors.get_degree(current) == 1);
|
|
if (out.size() == 0) {
|
|
upm.set(m_factors[current].size(), m_factors[current].c_ptr(), out);
|
|
} else {
|
|
upm.mul(out.size(), out.c_ptr(), m_factors[current].size(), m_factors[current].c_ptr(), out);
|
|
}
|
|
current ++;
|
|
} else {
|
|
current ++;
|
|
selection_i ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
};
|
|
|
|
#endif
|