/*++ Copyright (c) 2011 Microsoft Corporation Module Name: upolynomial_factorization_int.h Abstract: (Internal) header file for univariate polynomial factorization. This classes are exposed for debugging purposes only. Author: Dejan (t-dejanj) 2011-11-29 Notes: [1] Elwyn Ralph Berlekamp. Factoring Polynomials over Finite Fields. Bell System Technical Journal, 46(8-10):1853-1859, 1967. [2] Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison Wesley, third edition, 1997. [3] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1993. --*/ #ifndef UPOLYNOMIAL_FACTORIZATION_INT_H_ #define UPOLYNOMIAL_FACTORIZATION_INT_H_ #include "math/polynomial/upolynomial_factorization.h" namespace upolynomial { // copy p from some manager to zp_p in Z_p[x] inline void to_zp_manager(zp_manager & zp_upm, numeral_vector & p) { zp_numeral_manager & zp_nm(zp_upm.m()); for (unsigned i = 0; i < p.size(); ++ i) { zp_nm.p_normalize(p[i]); } zp_upm.trim(p); } // copy p from some manager to zp_p in Z_p[x] inline void to_zp_manager(zp_manager & zp_upm, numeral_vector const & p, numeral_vector & zp_p) { zp_numeral_manager & zp_nm(zp_upm.m()); zp_upm.reset(zp_p); for (unsigned i = 0; i < p.size(); ++ i) { numeral p_i; // no need to delete, we keep it pushed in zp_p zp_nm.set(p_i, p[i]); zp_p.push_back(std::move(p_i)); } zp_upm.trim(zp_p); } /** \brief Contains all possible degrees of a factorization of a polynomial. If p = p1^{k_1} * ... * pn^{k_n} with p_i of degree d_i then it is represents numbers of the for \sum a_i*d_i, where a_i <= k_i. Two numbers always in the set are deg(p) and 0. */ class factorization_degree_set { // the set itself, a (m_max_degree)-binary number bit_vector m_set; public: factorization_degree_set() { } factorization_degree_set(zp_factors const & factors) { zp_manager & upm = factors.upm(); // the set contains only {0} m_set.push_back(true); for (unsigned i = 0; i < factors.distinct_factors(); ++ i) { unsigned degree = upm.degree(factors[i]); unsigned multiplicity = factors.get_degree(i); for (unsigned k = 0; k < multiplicity; ++ k) { bit_vector tmp(m_set); m_set.shift_right(degree); m_set |= tmp; } } SASSERT(in_set(0) && in_set(factors.get_degree())); } unsigned max_degree() const { return m_set.size() - 1; } void swap(factorization_degree_set & other) { m_set.swap(other.m_set); } bool is_trivial() const { // check if set = {0, n} for (int i = 1; i < (int) m_set.size() - 1; ++ i) { if (m_set.get(i)) return false; } return true; } void remove(unsigned k) { m_set.set(k, false); } bool in_set(unsigned k) const { return m_set.get(k); } void intersect(const factorization_degree_set& other) { m_set &= other.m_set; } void display(std::ostream & out) const { out << "[0"; for (unsigned i = 1; i <= max_degree(); ++ i) { if (in_set(i)) { out << ", " << i; } } out << "] represented by " << m_set; } }; /** \brief A to iterate through all combinations of factors. This is only needed for the factorization, and we always iterate through the */ template class factorization_combination_iterator_base { protected: // total size of available factors int m_total_size; // maximal size of the selection int m_max_size; // the factors to select from factors_type const & m_factors; // which factors are enabled svector m_enabled; // the size of the current selection int m_current_size; // the current selection: indices at positions < m_current_size, other values are maxed out svector m_current; /** Assuming a valid selection m_current[0], ..., m_current[position], try to find the next option for m_current[position], i.e. the first bigger one that's enabled. */ int find(int position, int upper_bound) { int current = m_current[position] + 1; while (current < upper_bound && !m_enabled[current]) { current ++; } if (current == upper_bound) { return -1; } else { return current; } } public: factorization_combination_iterator_base(factors_type const & factors) : m_total_size(factors.distinct_factors()), m_max_size(factors.distinct_factors()/2), m_factors(factors) { SASSERT(factors.total_factors() > 1); SASSERT(factors.total_factors() == factors.distinct_factors()); // enable all to start with m_enabled.resize(m_factors.distinct_factors(), true); // max out the m_current so that it always fits m_current.resize(m_factors.distinct_factors()+1, m_factors.distinct_factors()); m_current_size = 0; } /** \brief Returns the factors we are enumerating through. */ factors_type const & get_factors() const { return m_factors; } /** \brief Computes the next combination of factors and returns true if it exists. If remove current is true it will eliminate the current selected elements from any future selection. */ bool next(bool remove_current) { int max_upper_bound = m_factors.distinct_factors(); do { // the index we are currently trying to fix int current_i = m_current_size - 1; // the value we found as plausable (-1 we didn't find anything) int current_value = -1; if (remove_current) { SASSERT(m_current_size > 0); // disable the elements of the current selection from ever appearing again for (current_i = m_current_size - 1; current_i > 0; -- current_i) { SASSERT(m_enabled[m_current[current_i]]); m_enabled[m_current[current_i]] = false; m_current[current_i] = max_upper_bound; } // the last one SASSERT(m_enabled[m_current[0]]); m_enabled[m_current[0]] = false; // not removing current anymore remove_current = false; // out max size is also going down m_total_size -= m_current_size; m_max_size = m_total_size/2; } // we go back to the first one that can be increased (if removing current go all the way) while (current_i >= 0) { current_value = find(current_i, m_current[current_i + 1]); if (current_value >= 0) { // found one m_current[current_i] = current_value; break; } else { // go back some more current_i --; } } do { if (current_value == -1) { // we couldn't find any options, we have to increse size and start from the first one of that size if (m_current_size >= m_max_size) { return false; } else { m_current_size ++; m_current[0] = -1; current_i = 0; current_value = find(current_i, max_upper_bound); // if we didn't find any, we are done if (current_value == -1) { return false; } else { m_current[current_i] = current_value; } } } // ok we have a new selection for the current one for (current_i ++; current_i < m_current_size; ++ current_i) { // start from the previous one m_current[current_i] = m_current[current_i-1]; current_value = find(current_i, max_upper_bound); if (current_value == -1) { // screwed, didn't find the next one, this means we need to increase the size m_current[0] = -1; break; } else { m_current[current_i] = current_value; } } } while (current_value == -1); } while (filter_current()); // found the next one, hurray return true; } /** \brief A function that returns true if the current combination should be ignored. */ virtual bool filter_current() const = 0; /** \brief Returns the size of the current selection (cardinality) */ unsigned left_size() const { return m_current_size; } /** \brief Returns the size of the rest of the current selection (cardinality) */ unsigned right_size() const { return m_total_size - m_current_size; } void display(std::ostream& out) const { out << "[ "; for (unsigned i = 0; i < m_current.size(); ++ i) { out << m_current[i] << " "; } out << "] from [ "; for (unsigned i = 0; i < m_factors.distinct_factors(); ++ i) { if (m_enabled[i]) { out << i << " "; } } out << "]" << std::endl; } }; class ufactorization_combination_iterator : public factorization_combination_iterator_base { // the degree sets to choose from factorization_degree_set const & m_degree_set; public: ufactorization_combination_iterator(zp_factors const & factors, factorization_degree_set const & degree_set) : factorization_combination_iterator_base(factors), m_degree_set(degree_set) {} /** \brief Filter the ones not in the degree set. */ bool filter_current() const { // select only the ones that have degrees in the degree set if (!m_degree_set.in_set(current_degree())) { return true; } return false; } /** \brief Returns the degree of the current selection. */ unsigned current_degree() const { unsigned degree = 0; zp_manager & upm = m_factors.pm(); for (unsigned i = 0; i < left_size(); ++ i) { degree += upm.degree(m_factors[m_current[i]]); } return degree; } void left(numeral_vector & out) const { SASSERT(m_current_size > 0); zp_manager & upm = m_factors.upm(); upm.set(m_factors[m_current[0]].size(), m_factors[m_current[0]].c_ptr(), out); for (int i = 1; i < m_current_size; ++ i) { upm.mul(out.size(), out.c_ptr(), m_factors[m_current[i]].size(), m_factors[m_current[i]].c_ptr(), out); } } void get_left_tail_coeff(numeral const & m, numeral & out) { zp_numeral_manager & nm = m_factors.upm().m(); nm.set(out, m); for (int i = 0; i < m_current_size; ++ i) { nm.mul(out, m_factors[m_current[i]][0], out); } } void get_right_tail_coeff(numeral const & m, numeral & out) { zp_numeral_manager & nm = m_factors.upm().m(); nm.set(out, m); unsigned current = 0; unsigned selection_i = 0; // selection is ordered, so we just take the ones in between that are not disable while (current < m_factors.distinct_factors()) { if (!m_enabled[current]) { // by skipping the disabled we never skip a selected one current ++; } else { if (selection_i >= m_current.size() || (int) current < m_current[selection_i]) { SASSERT(m_factors.get_degree(current) == 1); nm.mul(out, m_factors[current][0], out); current ++; } else { current ++; selection_i ++; } } } } void right(numeral_vector & out) const { SASSERT(m_current_size > 0); zp_manager & upm = m_factors.upm(); upm.reset(out); unsigned current = 0; unsigned selection_i = 0; // selection is ordered, so we just take the ones in between that are not disable while (current < m_factors.distinct_factors()) { if (!m_enabled[current]) { // by skipping the disabled we never skip a selected one current ++; } else { if (selection_i >= m_current.size() || (int) current < m_current[selection_i]) { SASSERT(m_factors.get_degree(current) == 1); if (out.size() == 0) { upm.set(m_factors[current].size(), m_factors[current].c_ptr(), out); } else { upm.mul(out.size(), out.c_ptr(), m_factors[current].size(), m_factors[current].c_ptr(), out); } current ++; } else { current ++; selection_i ++; } } } } }; }; #endif