mirror of
https://github.com/Z3Prover/z3
synced 2025-04-27 19:05:51 +00:00
289 lines
8.8 KiB
C++
289 lines
8.8 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
--*/
|
|
#pragma once
|
|
#include <map>
|
|
#include <set>
|
|
#include "util/map.h"
|
|
#include "math/lp/nex.h"
|
|
namespace nla {
|
|
|
|
struct occ {
|
|
unsigned m_occs; // number of occurences
|
|
unsigned m_power; // min power in occurences
|
|
occ() : m_occs(0), m_power(0) {}
|
|
occ(unsigned k, unsigned p) : m_occs(k), m_power(p) {}
|
|
// use the "name injection rule here"
|
|
friend std::ostream& operator<<(std::ostream& out, const occ& c) {
|
|
return out << "(occs:" << c.m_occs <<", pow:" << c.m_power << ")";
|
|
}
|
|
};
|
|
|
|
|
|
// the purpose of this class is to create nex objects, keep them,
|
|
// sort them, and delete them
|
|
|
|
class nex_creator {
|
|
ptr_vector<nex> m_allocated;
|
|
std::unordered_map<lpvar, occ> m_occurences_map;
|
|
std::unordered_map<lpvar, unsigned> m_powers;
|
|
unsigned_vector m_active_vars_weights;
|
|
|
|
public:
|
|
static std::string ch(unsigned j) {
|
|
std::stringstream s;
|
|
s << "j" << j;
|
|
return s.str();
|
|
}
|
|
|
|
// assuming that every lpvar is less than this number
|
|
void set_number_of_vars(unsigned k) {
|
|
m_active_vars_weights.resize(k);
|
|
}
|
|
|
|
unsigned get_number_of_vars() const {
|
|
return m_active_vars_weights.size();
|
|
}
|
|
|
|
void set_var_weight(unsigned j, unsigned weight) {
|
|
m_active_vars_weights[j] = weight;
|
|
}
|
|
|
|
private:
|
|
svector<unsigned>& active_vars_weights() { return m_active_vars_weights; }
|
|
const svector<unsigned>& active_vars_weights() const { return m_active_vars_weights; }
|
|
|
|
nex_mul* mk_mul(const vector<nex_pow>& v) {
|
|
auto r = alloc(nex_mul, rational::zero(), v);
|
|
add_to_allocated(r);
|
|
return r;
|
|
}
|
|
|
|
void mul_args() { }
|
|
|
|
template <typename K>
|
|
void mul_args(K e) {
|
|
m_mk_mul *= e;
|
|
}
|
|
|
|
template <typename K, typename ...Args>
|
|
void mul_args(K e, Args ... es) {
|
|
m_mk_mul *= e;
|
|
mul_args(es...);
|
|
}
|
|
|
|
template <typename T>
|
|
void add_sum(T) { }
|
|
|
|
template <typename T, typename K, typename ...Args>
|
|
void add_sum(T& r, K e, Args ... es) {
|
|
r += e;
|
|
add_sum(r, es ...);
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
nex* simplify(nex* e);
|
|
|
|
bool gt(lpvar j, lpvar k) const {
|
|
unsigned wj = m_active_vars_weights[j];
|
|
unsigned wk = m_active_vars_weights[k];
|
|
return wj != wk ? wj > wk : j > k;
|
|
}
|
|
|
|
void simplify_children_of_mul(vector<nex_pow>& children, rational&);
|
|
|
|
nex* clone(const nex* a) {
|
|
switch (a->type()) {
|
|
case expr_type::VAR:
|
|
return mk_var(to_var(a)->var());
|
|
case expr_type::SCALAR:
|
|
return mk_scalar(to_scalar(a)->value());
|
|
case expr_type::MUL: {
|
|
mul_factory mf(*this);
|
|
for (const auto& p : a->to_mul()) {
|
|
mf *= nex_pow(clone(p.e()), p.pow());
|
|
}
|
|
mf *= a->to_mul().coeff();
|
|
return mf.mk();
|
|
}
|
|
case expr_type::SUM: {
|
|
sum_factory sf(*this);
|
|
for (nex const* e : a->to_sum()) {
|
|
sf += clone(e);
|
|
}
|
|
return sf.mk();
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const std::unordered_map<lpvar, occ>& occurences_map() const { return m_occurences_map; }
|
|
std::unordered_map<lpvar, occ>& occurences_map() { return m_occurences_map; }
|
|
const std::unordered_map<lpvar, unsigned>& powers() const { return m_powers; }
|
|
std::unordered_map<lpvar, unsigned>& powers() { return m_powers; }
|
|
|
|
void add_to_allocated(nex* r) {
|
|
m_allocated.push_back(r);
|
|
CTRACE("grobner_stats_d", m_allocated.size() % 1000 == 0, tout << "m_allocated.size() = " << m_allocated.size() << "\n";);
|
|
}
|
|
|
|
// NSB: we can use region allocation, but still need to invoke destructor
|
|
// because of 'rational' (and m_children in nex_mul unless we get rid of this)
|
|
void pop(unsigned sz) {
|
|
for (unsigned j = sz; j < m_allocated.size(); j++)
|
|
dealloc(m_allocated[j]);
|
|
m_allocated.resize(sz);
|
|
TRACE("grobner_stats_d", tout << "m_allocated.size() = " << m_allocated.size() << "\n";);
|
|
}
|
|
|
|
void clear() {
|
|
for (auto e : m_allocated)
|
|
dealloc(e);
|
|
m_allocated.clear();
|
|
}
|
|
|
|
nex_creator() : m_mk_mul(*this) {}
|
|
|
|
~nex_creator() {
|
|
clear();
|
|
}
|
|
unsigned size() const { return m_allocated.size(); }
|
|
|
|
class mul_factory {
|
|
nex_creator& c;
|
|
rational m_coeff;
|
|
vector<nex_pow> m_args;
|
|
public:
|
|
mul_factory(nex_creator& c) :c(c), m_coeff(1) {}
|
|
void reset() { m_coeff = rational::one(); m_args.reset(); }
|
|
void operator*=(rational const& coeff) { m_coeff *= coeff; }
|
|
void operator*=(nex_pow const& p) { m_args.push_back(p); }
|
|
void operator*=(nex const* n) { m_args.push_back(nex_pow(n, 1)); }
|
|
bool empty() const { return m_args.empty(); }
|
|
nex_mul* mk() {
|
|
auto r = alloc(nex_mul, m_coeff, m_args);
|
|
c.add_to_allocated(r);
|
|
return r;
|
|
}
|
|
nex* mk_reduced() {
|
|
if (m_args.empty()) return c.mk_scalar(m_coeff);
|
|
if (m_coeff.is_one() && m_args.size() == 1 && m_args[0].pow() == 1) return m_args[0].e();
|
|
return mk();
|
|
}
|
|
};
|
|
|
|
class sum_factory {
|
|
nex_creator& c;
|
|
ptr_vector<nex> m_args;
|
|
public:
|
|
sum_factory(nex_creator& c) :c(c) {}
|
|
void reset() { m_args.reset(); }
|
|
void operator+=(nex const* n) { m_args.push_back(const_cast<nex*>(n)); }
|
|
void operator+=(nex* n) { m_args.push_back(n); }
|
|
bool empty() const { return m_args.empty(); }
|
|
nex_sum* mk() { return c.mk_sum(m_args); }
|
|
};
|
|
|
|
mul_factory m_mk_mul;
|
|
|
|
nex_sum* mk_sum() {
|
|
ptr_vector<nex> v0;
|
|
return mk_sum(v0);
|
|
}
|
|
|
|
nex_sum* mk_sum(const ptr_vector<nex>& v) {
|
|
auto r = alloc(nex_sum, v);
|
|
add_to_allocated(r);
|
|
return r;
|
|
}
|
|
|
|
template <typename K, typename...Args>
|
|
nex_sum* mk_sum(K e, Args... es) {
|
|
sum_factory sf(*this);
|
|
sf += e;
|
|
add_sum(sf, es...);
|
|
return sf.mk();
|
|
}
|
|
|
|
nex_var* mk_var(lpvar j) {
|
|
auto r = alloc(nex_var, j);
|
|
add_to_allocated(r);
|
|
return r;
|
|
}
|
|
|
|
nex_mul* mk_mul() {
|
|
auto r = alloc(nex_mul);
|
|
add_to_allocated(r);
|
|
return r;
|
|
}
|
|
|
|
template <typename K, typename...Args>
|
|
nex_mul* mk_mul(K e, Args... es) {
|
|
m_mk_mul.reset();
|
|
m_mk_mul *= e;
|
|
mul_args(es...);
|
|
return m_mk_mul.mk();
|
|
}
|
|
|
|
nex_scalar* mk_scalar(const rational& v) {
|
|
auto r = alloc(nex_scalar, v);
|
|
add_to_allocated(r);
|
|
return r;
|
|
}
|
|
|
|
nex * mk_div(const nex& a, lpvar j);
|
|
nex * mk_div(const nex& a, const nex& b);
|
|
nex * mk_div_by_mul(const nex& a, const nex_mul& b);
|
|
nex * mk_div_sum_by_mul(const nex_sum& a, const nex_mul& b);
|
|
nex * mk_div_mul_by_mul(const nex_mul& a, const nex_mul& b);
|
|
|
|
nex * simplify_mul(nex_mul *e);
|
|
bool is_sorted(const nex_mul & e) const;
|
|
|
|
nex* simplify_sum(nex_sum *e);
|
|
|
|
bool is_simplified(const nex &e) const;
|
|
bool sum_is_simplified(const nex_sum& e) const;
|
|
bool mul_is_simplified(const nex_mul& e) const;
|
|
|
|
void mul_to_powers(vector<nex_pow>& children);
|
|
|
|
void sort_join_sum(nex_sum & sum);
|
|
bool fill_join_map_for_sum(nex_sum & sum,
|
|
std::map<nex const*, rational, nex_lt>& map,
|
|
std::unordered_set<nex const*>& existing_nex,
|
|
rational& common_scalar);
|
|
bool register_in_join_map(std::map<nex const*, rational, nex_lt>&, nex const*, const rational&) const;
|
|
|
|
void simplify_children_of_sum(nex_sum & sum);
|
|
|
|
bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned);
|
|
bool gt(const nex& a, const nex& b) const;
|
|
bool gt(const nex* a, const nex* b) const { return gt(*a, *b); }
|
|
template <typename T>
|
|
bool gt_on_powers_mul_same_degree(const T&, const nex_mul& b) const;
|
|
bool gt_for_sort_join_sum(const nex* a, const nex* b) const;
|
|
bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
|
|
bool gt_on_sum_sum(const nex_sum& a, const nex_sum& b) const;
|
|
bool gt_on_var_nex(const nex_var& a, const nex& b) const;
|
|
bool gt_on_mul_nex(nex_mul const&, const nex& b) const;
|
|
// just compare the underlying expressions
|
|
bool gt_on_nex_pow(const nex_pow& a, const nex_pow& b) const {
|
|
return gt(a.e(), b.e());
|
|
}
|
|
void process_map_pair(nex*e, const rational& coeff, nex_sum & sum, std::unordered_set<nex const*>&);
|
|
static bool equal(const nex*, const nex* );
|
|
nex* canonize(const nex*);
|
|
nex* canonize_mul(nex_mul*);
|
|
unsigned find_sum_in_mul(const nex_mul* a) const;
|
|
};
|
|
}
|