/*++ Copyright (c) 2017 Microsoft Corporation Author: Lev Nachmanson (levnach) Nikolaj Bjorner (nbjorner) --*/ #pragma once #include #include #include "util/map.h" #include "math/lp/nex.h" namespace nla { struct occ { unsigned m_occs; // number of occurences unsigned m_power; // min power in occurences occ() : m_occs(0), m_power(0) {} occ(unsigned k, unsigned p) : m_occs(k), m_power(p) {} // use the "name injection rule here" friend std::ostream& operator<<(std::ostream& out, const occ& c) { return out << "(occs:" << c.m_occs <<", pow:" << c.m_power << ")"; } }; // the purpose of this class is to create nex objects, keep them, // sort them, and delete them class nex_creator { ptr_vector m_allocated; std::unordered_map m_occurences_map; std::unordered_map m_powers; unsigned_vector m_active_vars_weights; public: static std::string ch(unsigned j) { std::stringstream s; s << "j" << j; return s.str(); } // assuming that every lpvar is less than this number void set_number_of_vars(unsigned k) { m_active_vars_weights.resize(k); } unsigned get_number_of_vars() const { return m_active_vars_weights.size(); } void set_var_weight(unsigned j, unsigned weight) { m_active_vars_weights[j] = weight; } private: svector& active_vars_weights() { return m_active_vars_weights; } const svector& active_vars_weights() const { return m_active_vars_weights; } nex_mul* mk_mul(const vector& v) { auto r = alloc(nex_mul, rational::zero(), v); add_to_allocated(r); return r; } void mul_args() { } template void mul_args(K e) { m_mk_mul *= e; } template void mul_args(K e, Args ... es) { m_mk_mul *= e; mul_args(es...); } template void add_sum(T) { } template void add_sum(T& r, K e, Args ... es) { r += e; add_sum(r, es ...); } public: nex* simplify(nex* e); bool gt(lpvar j, lpvar k) const { unsigned wj = m_active_vars_weights[j]; unsigned wk = m_active_vars_weights[k]; return wj != wk ? wj > wk : j > k; } void simplify_children_of_mul(vector& children, rational&); nex* clone(const nex* a) { switch (a->type()) { case expr_type::VAR: return mk_var(to_var(a)->var()); case expr_type::SCALAR: return mk_scalar(to_scalar(a)->value()); case expr_type::MUL: { mul_factory mf(*this); for (const auto& p : a->to_mul()) { mf *= nex_pow(clone(p.e()), p.pow()); } mf *= a->to_mul().coeff(); return mf.mk(); } case expr_type::SUM: { sum_factory sf(*this); for (nex const* e : a->to_sum()) { sf += clone(e); } return sf.mk(); } default: UNREACHABLE(); break; } return nullptr; } const std::unordered_map& occurences_map() const { return m_occurences_map; } std::unordered_map& occurences_map() { return m_occurences_map; } const std::unordered_map& powers() const { return m_powers; } std::unordered_map& powers() { return m_powers; } void add_to_allocated(nex* r) { m_allocated.push_back(r); CTRACE("grobner_stats_d", m_allocated.size() % 1000 == 0, tout << "m_allocated.size() = " << m_allocated.size() << "\n";); } // NSB: we can use region allocation, but still need to invoke destructor // because of 'rational' (and m_children in nex_mul unless we get rid of this) void pop(unsigned sz) { for (unsigned j = sz; j < m_allocated.size(); j++) dealloc(m_allocated[j]); m_allocated.resize(sz); TRACE("grobner_stats_d", tout << "m_allocated.size() = " << m_allocated.size() << "\n";); } void clear() { for (auto e : m_allocated) dealloc(e); m_allocated.clear(); } nex_creator() : m_mk_mul(*this) {} ~nex_creator() { clear(); } unsigned size() const { return m_allocated.size(); } class mul_factory { nex_creator& c; rational m_coeff; vector m_args; public: mul_factory(nex_creator& c) :c(c), m_coeff(1) {} void reset() { m_coeff = rational::one(); m_args.reset(); } void operator*=(rational const& coeff) { m_coeff *= coeff; } void operator*=(nex_pow const& p) { m_args.push_back(p); } void operator*=(nex const* n) { m_args.push_back(nex_pow(n, 1)); } bool empty() const { return m_args.empty(); } nex_mul* mk() { auto r = alloc(nex_mul, m_coeff, m_args); c.add_to_allocated(r); return r; } nex* mk_reduced() { if (m_args.empty()) return c.mk_scalar(m_coeff); if (m_coeff.is_one() && m_args.size() == 1 && m_args[0].pow() == 1) return m_args[0].e(); return mk(); } }; class sum_factory { nex_creator& c; ptr_vector m_args; public: sum_factory(nex_creator& c) :c(c) {} void reset() { m_args.reset(); } void operator+=(nex const* n) { m_args.push_back(const_cast(n)); } void operator+=(nex* n) { m_args.push_back(n); } bool empty() const { return m_args.empty(); } nex_sum* mk() { return c.mk_sum(m_args); } }; mul_factory m_mk_mul; nex_sum* mk_sum() { ptr_vector v0; return mk_sum(v0); } nex_sum* mk_sum(const ptr_vector& v) { auto r = alloc(nex_sum, v); add_to_allocated(r); return r; } template nex_sum* mk_sum(K e, Args... es) { sum_factory sf(*this); sf += e; add_sum(sf, es...); return sf.mk(); } nex_var* mk_var(lpvar j) { auto r = alloc(nex_var, j); add_to_allocated(r); return r; } nex_mul* mk_mul() { auto r = alloc(nex_mul); add_to_allocated(r); return r; } template nex_mul* mk_mul(K e, Args... es) { m_mk_mul.reset(); m_mk_mul *= e; mul_args(es...); return m_mk_mul.mk(); } nex_scalar* mk_scalar(const rational& v) { auto r = alloc(nex_scalar, v); add_to_allocated(r); return r; } nex * mk_div(const nex& a, lpvar j); nex * mk_div(const nex& a, const nex& b); nex * mk_div_by_mul(const nex& a, const nex_mul& b); nex * mk_div_sum_by_mul(const nex_sum& a, const nex_mul& b); nex * mk_div_mul_by_mul(const nex_mul& a, const nex_mul& b); nex * simplify_mul(nex_mul *e); bool is_sorted(const nex_mul & e) const; nex* simplify_sum(nex_sum *e); bool is_simplified(const nex &e) const; bool sum_is_simplified(const nex_sum& e) const; bool mul_is_simplified(const nex_mul& e) const; void mul_to_powers(vector& children); void sort_join_sum(nex_sum & sum); bool fill_join_map_for_sum(nex_sum & sum, std::map& map, std::unordered_set& existing_nex, rational& common_scalar); bool register_in_join_map(std::map&, nex const*, const rational&) const; void simplify_children_of_sum(nex_sum & sum); bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned); bool gt(const nex& a, const nex& b) const; bool gt(const nex* a, const nex* b) const { return gt(*a, *b); } template bool gt_on_powers_mul_same_degree(const T&, const nex_mul& b) const; bool gt_for_sort_join_sum(const nex* a, const nex* b) const; bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const; bool gt_on_sum_sum(const nex_sum& a, const nex_sum& b) const; bool gt_on_var_nex(const nex_var& a, const nex& b) const; bool gt_on_mul_nex(nex_mul const&, const nex& b) const; // just compare the underlying expressions bool gt_on_nex_pow(const nex_pow& a, const nex_pow& b) const { return gt(a.e(), b.e()); } void process_map_pair(nex*e, const rational& coeff, nex_sum & sum, std::unordered_set&); static bool equal(const nex*, const nex* ); nex* canonize(const nex*); nex* canonize_mul(nex_mul*); unsigned find_sum_in_mul(const nex_mul* a) const; }; }