mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
679 lines
22 KiB
C++
679 lines
22 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
--*/
|
|
|
|
#include "math/lp/nla_basics_lemmas.h"
|
|
#include "math/lp/nla_core.h"
|
|
#include "math/lp/factorization_factory_imp.h"
|
|
namespace nla {
|
|
|
|
typedef lp::lar_term term;
|
|
|
|
basics::basics(core * c) : common(c) {}
|
|
|
|
// Monomials m and n vars have the same values, up to "sign"
|
|
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
|
|
bool basics::basic_sign_lemma_on_two_monics(const monic& m, const monic& n) {
|
|
const rational sign = sign_to_rat(m.rsign() ^ n.rsign());
|
|
if (var_val(m) == var_val(n) * sign)
|
|
return false;
|
|
TRACE("nla_solver", tout << "sign contradiction:\nm = " << pp_mon(c(), m) << "n= " << pp_mon(c(), n) << "sign: " << sign << "\n";);
|
|
generate_sign_lemma(m, n, sign);
|
|
return true;
|
|
}
|
|
|
|
void basics::generate_zero_lemmas(const monic& m) {
|
|
SASSERT(!var_val(m).is_zero() && c().product_value(m).is_zero());
|
|
int sign = nla::rat_sign(var_val(m));
|
|
unsigned_vector fixed_zeros;
|
|
lpvar zero_j = find_best_zero(m, fixed_zeros);
|
|
SASSERT(is_set(zero_j));
|
|
unsigned zero_power = 0;
|
|
for (lpvar j : m.vars()) {
|
|
if (j == zero_j) {
|
|
zero_power++;
|
|
continue;
|
|
}
|
|
get_non_strict_sign(j, sign);
|
|
if (sign == 0)
|
|
break;
|
|
}
|
|
if (sign && is_even(zero_power)) {
|
|
sign = 0;
|
|
}
|
|
TRACE("nla_solver_details", tout << "zero_j = " << zero_j << ", sign = " << sign << "\n";);
|
|
if (sign == 0) { // have to generate a non-convex lemma
|
|
add_trivial_zero_lemma(zero_j, m);
|
|
} else { // here we know the sign of zero_j
|
|
generate_strict_case_zero_lemma(m, zero_j, sign);
|
|
}
|
|
for (lpvar j : fixed_zeros)
|
|
add_fixed_zero_lemma(m, j);
|
|
}
|
|
|
|
bool basics::try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const {
|
|
SASSERT(sign);
|
|
if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0))
|
|
return true;
|
|
if (c().has_upper_bound(j) && c().get_upper_bound(j) <= rational(0)) {
|
|
sign = -sign;
|
|
return true;
|
|
}
|
|
sign = 0;
|
|
return false;
|
|
}
|
|
|
|
void basics::get_non_strict_sign(lpvar j, int& sign) const {
|
|
const rational v = val(j);
|
|
if (v.is_zero()) {
|
|
try_get_non_strict_sign_from_bounds(j, sign);
|
|
} else {
|
|
sign *= nla::rat_sign(v);
|
|
}
|
|
}
|
|
|
|
|
|
void basics::basic_sign_lemma_model_based_one_mon(const monic& m, int product_sign) {
|
|
if (product_sign == 0) {
|
|
TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n";);
|
|
generate_zero_lemmas(m);
|
|
} else {
|
|
new_lemma lemma(c(), __FUNCTION__);
|
|
for (lpvar j: m.vars()) {
|
|
negate_strict_sign(lemma, j);
|
|
}
|
|
lemma |= ineq(m.var(), product_sign == 1? llc::GT : llc::LT, 0);
|
|
}
|
|
}
|
|
|
|
bool basics::basic_sign_lemma_model_based() {
|
|
unsigned start = c().random();
|
|
unsigned sz = c().m_to_refine.size();
|
|
for (unsigned i = sz; i-- > 0;) {
|
|
monic const& m = c().emons()[c().m_to_refine[(start + i) % sz]];
|
|
int mon_sign = nla::rat_sign(var_val(m));
|
|
int product_sign = c().rat_sign(m);
|
|
if (mon_sign != product_sign) {
|
|
basic_sign_lemma_model_based_one_mon(m, product_sign);
|
|
if (c().done())
|
|
return true;
|
|
}
|
|
}
|
|
return c().m_lemmas.size() > 0;
|
|
}
|
|
|
|
|
|
bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set<unsigned> & explored) {
|
|
if (!try_insert(v, explored)) {
|
|
return false;
|
|
}
|
|
const monic& m_v = c().emons()[v];
|
|
TRACE("nla_solver", tout << "m_v = " << pp_mon_with_vars(c(), m_v););
|
|
CTRACE("nla_solver", !c().emons().is_canonized(m_v),
|
|
c().emons().display(c(), tout);
|
|
c().m_evars.display(tout);
|
|
);
|
|
SASSERT(c().emons().is_canonized(m_v));
|
|
|
|
for (auto const& m : c().emons().enum_sign_equiv_monics(v)) {
|
|
TRACE("nla_solver_details", tout << "m = " << pp_mon_with_vars(c(), m););
|
|
SASSERT(m.rvars() == m_v.rvars());
|
|
if (m_v.var() != m.var() && basic_sign_lemma_on_two_monics(m_v, m) && done())
|
|
return true;
|
|
}
|
|
|
|
TRACE("nla_solver_details", tout << "return false\n";);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* \brief <generate lemma by using the fact that -ab = (-a)b) and
|
|
-ab = a(-b)
|
|
*/
|
|
bool basics::basic_sign_lemma(bool derived) {
|
|
if (!derived)
|
|
return basic_sign_lemma_model_based();
|
|
|
|
std::unordered_set<unsigned> explored;
|
|
for (lpvar j : c().m_to_refine) {
|
|
if (basic_sign_lemma_on_mon(j, explored))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
// the value of the i-th monic has to be equal to the value of the k-th monic modulo sign
|
|
// but it is not the case in the model
|
|
void basics::generate_sign_lemma(const monic& m, const monic& n, const rational& sign) {
|
|
new_lemma lemma(c(), "sign lemma");
|
|
TRACE("nla_solver",
|
|
tout << "m = " << pp_mon_with_vars(_(), m);
|
|
tout << "n = " << pp_mon_with_vars(_(), n);
|
|
);
|
|
lemma |= ineq(term(m.var(), -sign, n.var()), llc::EQ, 0);
|
|
lemma &= m;
|
|
lemma &= n;
|
|
}
|
|
// try to find a variable j such that val(j) = 0
|
|
// and the bounds on j contain 0 as an inner point
|
|
lpvar basics::find_best_zero(const monic& m, unsigned_vector & fixed_zeros) const {
|
|
lpvar zero_j = null_lpvar;
|
|
for (unsigned j : m.vars()) {
|
|
if (val(j).is_zero()) {
|
|
if (c().var_is_fixed_to_zero(j))
|
|
fixed_zeros.push_back(j);
|
|
|
|
if (!is_set(zero_j) || c().zero_is_an_inner_point_of_bounds(j))
|
|
zero_j = j;
|
|
}
|
|
}
|
|
return zero_j;
|
|
}
|
|
|
|
void basics::add_trivial_zero_lemma(lpvar zero_j, const monic& m) {
|
|
new_lemma lemma(c(), "x = 0 => x*y = 0");
|
|
lemma |= ineq(zero_j, llc::NE, 0);
|
|
lemma |= ineq(m.var(), llc::EQ, 0);
|
|
}
|
|
|
|
void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj) {
|
|
TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";);
|
|
// we know all the signs
|
|
new_lemma lemma(c(), "strict case 0");
|
|
lemma |= ineq(zero_j, sign_of_zj == 1? llc::GT : llc::LT, 0);
|
|
for (unsigned j : m.vars()) {
|
|
if (j != zero_j) {
|
|
negate_strict_sign(lemma, j);
|
|
}
|
|
}
|
|
negate_strict_sign(lemma, m.var());
|
|
}
|
|
|
|
void basics::add_fixed_zero_lemma(const monic& m, lpvar j) {
|
|
new_lemma lemma(c(), "fixed zero");
|
|
lemma.explain_fixed(j);
|
|
lemma |= ineq(m.var(), llc::EQ, 0);
|
|
}
|
|
|
|
void basics::negate_strict_sign(new_lemma& lemma, lpvar j) {
|
|
TRACE("nla_solver_details", tout << pp_var(c(), j) << " " << val(j).is_zero() << "\n";);
|
|
if (!val(j).is_zero()) {
|
|
int sign = nla::rat_sign(val(j));
|
|
lemma |= ineq(j, (sign == 1? llc::LE : llc::GE), 0);
|
|
}
|
|
else { // val(j).is_zero()
|
|
if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0)) {
|
|
lemma.explain_existing_lower_bound(j);
|
|
lemma |= ineq(j, llc::GT, 0);
|
|
} else {
|
|
SASSERT(c().has_upper_bound(j) && c().get_upper_bound(j) <= rational(0));
|
|
lemma.explain_existing_upper_bound(j);
|
|
lemma |= ineq(j, llc::LT, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// here we use the fact
|
|
// xy = 0 -> x = 0 or y = 0
|
|
bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
|
|
// it seems this code is never exercised
|
|
for (auto j : f) {
|
|
if (val(j).is_zero())
|
|
return false;
|
|
}
|
|
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
|
new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0");
|
|
lemma.explain_fixed(var(rm));
|
|
std::unordered_set<lpvar> processed;
|
|
for (auto j : f) {
|
|
if (try_insert(var(j), processed))
|
|
lemma |= ineq(var(j), llc::EQ, 0);
|
|
}
|
|
lemma &= rm;
|
|
lemma &= f;
|
|
return true;
|
|
}
|
|
|
|
// use basic multiplication properties to create a lemma
|
|
bool basics::basic_lemma(bool derived) {
|
|
if (basic_sign_lemma(derived))
|
|
return true;
|
|
if (derived)
|
|
return false;
|
|
const auto& mon_inds_to_ref = c().m_to_refine;
|
|
TRACE("nla_solver", tout << "mon_inds_to_ref = "; print_vector(mon_inds_to_ref, tout) << "\n";);
|
|
unsigned start = c().random();
|
|
unsigned sz = mon_inds_to_ref.size();
|
|
for (unsigned j = 0; j < sz; ++j) {
|
|
lpvar v = mon_inds_to_ref[(j + start) % mon_inds_to_ref.size()];
|
|
const monic& r = c().emons()[v];
|
|
SASSERT (!c().check_monic(c().emons()[v]));
|
|
basic_lemma_for_mon(r, derived);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
// Use basic multiplication properties to create a lemma
|
|
// for the given monic.
|
|
// "derived" means derived from constraints - the alternative is model based
|
|
void basics::basic_lemma_for_mon(const monic& rm, bool derived) {
|
|
if (derived)
|
|
basic_lemma_for_mon_derived(rm);
|
|
else
|
|
basic_lemma_for_mon_model_based(rm);
|
|
}
|
|
bool basics::basic_lemma_for_mon_derived(const monic& rm) {
|
|
if (c().var_is_fixed_to_zero(var(rm))) {
|
|
for (auto factorization : factorization_factory_imp(rm, c())) {
|
|
if (factorization.is_empty())
|
|
continue;
|
|
if (basic_lemma_for_mon_zero(rm, factorization))
|
|
return true;
|
|
if (basic_lemma_for_mon_neutral_derived(rm, factorization))
|
|
return true;
|
|
}
|
|
}
|
|
else {
|
|
for (auto factorization : factorization_factory_imp(rm, c())) {
|
|
if (factorization.is_empty())
|
|
continue;
|
|
if (basic_lemma_for_mon_non_zero_derived(rm, factorization))
|
|
return true;
|
|
if (basic_lemma_for_mon_neutral_derived(rm, factorization))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// x = 0 or y = 0 -> xy = 0
|
|
bool basics::basic_lemma_for_mon_non_zero_derived(const monic& rm, const factorization& f) {
|
|
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
|
if (!c().var_is_separated_from_zero(var(rm)))
|
|
return false;
|
|
for (auto fc : f) {
|
|
if (!c().var_is_fixed_to_zero(var(fc)))
|
|
continue;
|
|
new_lemma lemma(c(), "x = 0 or y = 0 -> xy = 0");
|
|
lemma.explain_fixed(var(fc));
|
|
lemma.explain_var_separated_from_zero(var(rm));
|
|
lemma &= rm;
|
|
lemma &= f;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// use the fact that
|
|
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
|
// it holds for integers, and for reals for a pair of factors
|
|
// |x*a| = |x| & x != 0 -> |a| = 1
|
|
|
|
bool basics::basic_lemma_for_mon_neutral_derived(const monic& rm, const factorization& f) {
|
|
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
|
|
|
lpvar mon_var = c().emons()[rm.var()].var();
|
|
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
|
|
|
|
const auto mv = val(mon_var);
|
|
const auto abs_mv = abs(mv);
|
|
|
|
if (abs_mv == rational::zero()) {
|
|
return false;
|
|
}
|
|
bool mon_var_is_sep_from_zero = c().var_is_separated_from_zero(mon_var);
|
|
lpvar u = null_lpvar, v = null_lpvar;
|
|
bool all_int = true;
|
|
for (auto fc : f) {
|
|
lpvar j = var(fc);
|
|
all_int &= c().var_is_int(j);
|
|
if (u == null_lpvar && abs(val(j)) == abs_mv &&
|
|
c().vars_are_equiv(j, mon_var) &&
|
|
(mon_var_is_sep_from_zero || c().var_is_separated_from_zero(j)))
|
|
u = j;
|
|
else if (abs(val(j)) != rational(1))
|
|
v = j;
|
|
}
|
|
if (u == null_lpvar || v == null_lpvar)
|
|
return false;
|
|
if (!all_int && f.size() > 2)
|
|
return false;
|
|
|
|
// (mon_var != 0 || u != 0) & mon_var = +/- u =>
|
|
// v = 1 or v = -1
|
|
new_lemma lemma(c(), "|xa| = |x| & x != 0 -> |a| = 1");
|
|
lemma.explain_var_separated_from_zero(mon_var_is_sep_from_zero ? mon_var : u);
|
|
lemma.explain_equiv(mon_var, u);
|
|
lemma |= ineq(v, llc::EQ, 1);
|
|
lemma |= ineq(v, llc::EQ, -1);
|
|
lemma &= rm;
|
|
lemma &= f;
|
|
return true;
|
|
}
|
|
|
|
// x != 0 or y = 0 => |xy| >= |y|
|
|
void basics::proportion_lemma_model_based(const monic& rm, const factorization& factorization) {
|
|
if (c().has_real(factorization)) // todo: handle the situaiton when all factors are greater than 1,
|
|
return; // or smaller than 1
|
|
rational rmv = abs(var_val(rm));
|
|
if (rmv.is_zero()) {
|
|
SASSERT(c().has_zero_factor(factorization));
|
|
return;
|
|
}
|
|
int factor_index = 0;
|
|
for (factor f : factorization) {
|
|
if (abs(val(f)) > rmv) {
|
|
generate_pl(rm, factorization, factor_index);
|
|
return;
|
|
}
|
|
factor_index++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
m := f_1*...*f_n
|
|
|
|
k is the index of such that |m| < |val(m[k]|
|
|
|
|
If for all 1 <= j <= n, j != k we have f_j != 0 then |m| >= |f_k|
|
|
|
|
The lemma looks like
|
|
sign_m*m < 0 or \/_{i != k} f_i = 0 or sign_m*m >= sign_k*f_k
|
|
|
|
*/
|
|
void basics::generate_pl_on_mon(const monic& m, unsigned k) {
|
|
SASSERT(!c().has_real(m));
|
|
new_lemma lemma(c(), "generate_pl_on_mon");
|
|
unsigned mon_var = m.var();
|
|
rational mv = val(mon_var);
|
|
SASSERT(abs(mv) < abs(val(m.vars()[k])));
|
|
rational sm = rational(nla::rat_sign(mv));
|
|
lemma |= ineq(term(sm, mon_var), llc::LT, 0);
|
|
for (unsigned fi = 0; fi < m.size(); fi ++) {
|
|
lpvar j = m.vars()[fi];
|
|
if (fi != k) {
|
|
lemma |= ineq(j, llc::EQ, 0);
|
|
} else {
|
|
rational sj = rational(nla::rat_sign(val(j)));
|
|
lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0);
|
|
}
|
|
}
|
|
// lemma &= m; // no need to "explain" monomial m here
|
|
}
|
|
|
|
/**
|
|
none of the factors is zero and the product is not zero
|
|
-> |fc[factor_index]| <= |rm|
|
|
|
|
m := f1 * .. * f_n
|
|
|
|
sign_m*m < 0 or f_i = 0 or \/_{j != i} sign_m*m >= sign_j*f_j
|
|
*/
|
|
void basics::generate_pl(const monic& m, const factorization& fc, int factor_index) {
|
|
SASSERT(!c().has_real(fc));
|
|
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", m = "
|
|
<< pp_mon(c(), m);
|
|
tout << ", fc = " << c().pp(fc);
|
|
tout << "orig mon = "; c().print_monic(c().emons()[m.var()], tout););
|
|
if (fc.is_mon()) {
|
|
generate_pl_on_mon(m, factor_index);
|
|
return;
|
|
}
|
|
new_lemma lemma(c(), "generate_pl");
|
|
int fi = 0;
|
|
rational mv = var_val(m);
|
|
rational sm = rational(nla::rat_sign(mv));
|
|
unsigned mon_var = var(m);
|
|
lemma |= ineq(term(sm, mon_var), llc::LT, 0);
|
|
for (factor f : fc) {
|
|
if (fi++ != factor_index) {
|
|
lemma |= ineq(var(f), llc::EQ, 0);
|
|
} else {
|
|
lpvar j = var(f);
|
|
rational jv = val(j);
|
|
rational sj = rational(nla::rat_sign(jv));
|
|
lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0);
|
|
}
|
|
}
|
|
lemma &= fc;
|
|
lemma &= m;
|
|
}
|
|
|
|
bool basics::is_separated_from_zero(const factorization& f) const {
|
|
for (const factor& fc: f) {
|
|
lpvar j = var(fc);
|
|
if (!(c().var_has_positive_lower_bound(j) || c().var_has_negative_upper_bound(j))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// here we use the fact xy = 0 -> x = 0 or y = 0
|
|
void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) {
|
|
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
|
SASSERT(var_val(rm).is_zero() && !c().rm_check(rm));
|
|
new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0");
|
|
if (!is_separated_from_zero(f)) {
|
|
lemma |= ineq(var(rm), llc::NE, 0);
|
|
for (auto j : f) {
|
|
lemma |= ineq(var(j), llc::EQ, 0);
|
|
}
|
|
} else {
|
|
lemma |= ineq(var(rm), llc::NE, 0);
|
|
for (auto j : f) {
|
|
lemma.explain_var_separated_from_zero(var(j));
|
|
}
|
|
}
|
|
lemma &= f;
|
|
}
|
|
|
|
void basics::basic_lemma_for_mon_model_based(const monic& rm) {
|
|
TRACE("nla_solver_bl", tout << "rm = " << pp_mon(_(), rm) << "\n";);
|
|
if (var_val(rm).is_zero()) {
|
|
for (auto factorization : factorization_factory_imp(rm, c())) {
|
|
if (factorization.is_empty())
|
|
continue;
|
|
basic_lemma_for_mon_zero_model_based(rm, factorization);
|
|
basic_lemma_for_mon_neutral_model_based(rm, factorization); // todo - the same call is made in the else branch
|
|
}
|
|
} else {
|
|
for (auto factorization : factorization_factory_imp(rm, c())) {
|
|
if (factorization.is_empty())
|
|
continue;
|
|
basic_lemma_for_mon_non_zero_model_based(rm, factorization);
|
|
basic_lemma_for_mon_neutral_model_based(rm, factorization);
|
|
proportion_lemma_model_based(rm, factorization) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
m = f1 * f2 * .. * fn
|
|
where
|
|
- at most one fi evaluates to something different from +1 or -1
|
|
- sign = f1 * ... f_{i-1} * f_{i+1} * ..
|
|
- sign = +1 or -1
|
|
- add lemma
|
|
- /\_{j != i} f_j = val(f_j) => m = sign * f_i
|
|
or
|
|
- /\_j f_j = val(f_j) => m = sign
|
|
*/
|
|
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m) {
|
|
lpvar not_one; rational sign;
|
|
if (!can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(m, m, not_one, sign))
|
|
return false;
|
|
|
|
new_lemma lemma(c(), __FUNCTION__);
|
|
for (auto j : m.vars()) {
|
|
if (not_one != j)
|
|
lemma |= ineq(j, llc::NE, val(j));
|
|
}
|
|
|
|
if (not_one == null_lpvar)
|
|
lemma |= ineq(m.var(), llc::EQ, sign);
|
|
else
|
|
lemma |= ineq(term(m.var(), -sign, not_one), llc::EQ, 0);
|
|
return true;
|
|
}
|
|
|
|
// use the fact that
|
|
// |uvw| = |u| and uvw != 0 -> |v| = 1
|
|
bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic& rm, const factorization& f) {
|
|
lpvar mon_var = c().emons()[rm.var()].var();
|
|
TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
|
|
|
|
const auto mv = val(mon_var);
|
|
const auto abs_mv = abs(mv);
|
|
|
|
if (abs_mv == rational::zero()) {
|
|
return false;
|
|
}
|
|
lpvar u = null_lpvar, v = null_lpvar;
|
|
bool all_int = true;
|
|
for (auto fc : f) {
|
|
lpvar j = var(fc);
|
|
all_int &= c().var_is_int(j);
|
|
if (j == null_lpvar && abs(val(fc)) == abs_mv)
|
|
u = j;
|
|
else if (abs(val(fc)) != rational(1))
|
|
v = j;
|
|
}
|
|
if (u == null_lpvar || v == null_lpvar)
|
|
return false;
|
|
if (!all_int && f.size() > 2)
|
|
return false;
|
|
|
|
// mon_var = 0
|
|
// abs(u) != abs(mon_var)
|
|
// v = 1
|
|
// v = -1
|
|
|
|
new_lemma lemma(c(), __FUNCTION__);
|
|
lemma |= ineq(mon_var, llc::EQ, 0);
|
|
lemma |= ineq(term(u, rational(val(u) == -val(mon_var) ? 1 : -1), mon_var), llc::NE, 0);
|
|
lemma |= ineq(v, llc::EQ, 1);
|
|
lemma |= ineq(v, llc::EQ, -1);
|
|
lemma &= rm; // NSB review: is this dependency required? - it does because it explains how monomial is equivalent
|
|
// to the rooted monomial
|
|
lemma &= f;
|
|
|
|
return true;
|
|
}
|
|
|
|
void basics::basic_lemma_for_mon_neutral_model_based(const monic& rm, const factorization& f) {
|
|
if (f.is_mon()) {
|
|
basic_lemma_for_mon_neutral_monic_to_factor_model_based(rm, f);
|
|
basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(f.mon());
|
|
}
|
|
else {
|
|
basic_lemma_for_mon_neutral_monic_to_factor_model_based(rm, f);
|
|
basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(rm, f);
|
|
}
|
|
}
|
|
template <typename T>
|
|
bool basics::can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const T& f, lpvar ¬_one, rational& sign) {
|
|
sign = rational(1);
|
|
// TRACE("nla_solver_bl", tout << pp_mon_with_vars(_(), m) <<"\nf = " << c().pp(f) << "sign = " << sign << '\n';);
|
|
not_one = null_lpvar;
|
|
for (auto j : f) {
|
|
TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout););
|
|
auto v = val(j);
|
|
|
|
if (v.is_one())
|
|
continue;
|
|
|
|
if (v.is_minus_one()) {
|
|
sign = -sign;
|
|
continue;
|
|
}
|
|
|
|
if (not_one == null_lpvar) {
|
|
not_one = var(j);
|
|
continue;
|
|
}
|
|
|
|
// if we are here then there are at least two factors with absolute values different from one : cannot create the lemma
|
|
return false;
|
|
}
|
|
|
|
if (not_one == null_lpvar && var_val(m) == sign) {
|
|
// we have +-ones only in the factorization
|
|
return false;
|
|
}
|
|
if (not_one != null_lpvar && var_val(m) == val(not_one) * sign) {
|
|
TRACE("nla_solver", tout << "the whole is equal to the factor" << std::endl;);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
- m := f1*f2*..
|
|
- f_i are factors of m
|
|
- at most one variable among f_i evaluates to something else than -1, +1.
|
|
- m = sign * f_i
|
|
- sign = sign of f_1 * .. * f_{i-1} * f_{i+1} ... = +/- 1
|
|
- lemma:
|
|
/\_{j != i} f_j = val(f_j) => m = sign * f_i
|
|
or
|
|
/\ f_j = val(f_j) => m = sign if all factors evaluate to +/- 1
|
|
|
|
Note:
|
|
The routine can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based does
|
|
not check the signs of factors. Factors have signs. It works assuming all factors have
|
|
positive signs.
|
|
*/
|
|
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const factorization& f) {
|
|
lpvar not_one; rational sign;
|
|
if (!can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(m, f, not_one, sign))
|
|
return false;
|
|
for (auto j : f)
|
|
if (j.sign())
|
|
return false;
|
|
TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";);
|
|
|
|
new_lemma lemma(c(), __FUNCTION__);
|
|
|
|
for (auto j : f) {
|
|
lpvar var_j = var(j);
|
|
if (not_one == var_j) continue;
|
|
TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout););
|
|
lemma |= ineq(var_j, llc::NE, val(var_j));
|
|
}
|
|
|
|
if (not_one == null_lpvar)
|
|
lemma |= ineq(m.var(), llc::EQ, sign);
|
|
else
|
|
lemma |= ineq(term(m.var(), -sign, not_one), llc::EQ, 0);
|
|
lemma &= m;
|
|
lemma &= f;
|
|
TRACE("nla_solver", tout << "m = " << pp_mon_with_vars(c(), m););
|
|
return true;
|
|
}
|
|
|
|
// x = 0 or y = 0 -> xy = 0
|
|
void basics::basic_lemma_for_mon_non_zero_model_based(const monic& rm, const factorization& f) {
|
|
TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout););
|
|
for (auto j : f) {
|
|
if (val(j).is_zero()) {
|
|
new_lemma lemma(c(), "x = 0 => x*... = 0");
|
|
lemma |= ineq(var(j), llc::NE, 0);
|
|
lemma |= ineq(f.mon().var(), llc::EQ, 0);
|
|
lemma &= f;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|