/*++ Copyright (c) 2017 Microsoft Corporation Author: Lev Nachmanson (levnach) Nikolaj Bjorner (nbjorner) --*/ #include "math/lp/nla_basics_lemmas.h" #include "math/lp/nla_core.h" #include "math/lp/factorization_factory_imp.h" namespace nla { typedef lp::lar_term term; basics::basics(core * c) : common(c) {} // Monomials m and n vars have the same values, up to "sign" // Generate a lemma if values of m.var() and n.var() are not the same up to sign bool basics::basic_sign_lemma_on_two_monics(const monic& m, const monic& n) { const rational sign = sign_to_rat(m.rsign() ^ n.rsign()); if (var_val(m) == var_val(n) * sign) return false; TRACE("nla_solver", tout << "sign contradiction:\nm = " << pp_mon(c(), m) << "n= " << pp_mon(c(), n) << "sign: " << sign << "\n";); generate_sign_lemma(m, n, sign); return true; } void basics::generate_zero_lemmas(const monic& m) { SASSERT(!var_val(m).is_zero() && c().product_value(m).is_zero()); int sign = nla::rat_sign(var_val(m)); unsigned_vector fixed_zeros; lpvar zero_j = find_best_zero(m, fixed_zeros); SASSERT(is_set(zero_j)); unsigned zero_power = 0; for (lpvar j : m.vars()) { if (j == zero_j) { zero_power++; continue; } get_non_strict_sign(j, sign); if (sign == 0) break; } if (sign && is_even(zero_power)) { sign = 0; } TRACE("nla_solver_details", tout << "zero_j = " << zero_j << ", sign = " << sign << "\n";); if (sign == 0) { // have to generate a non-convex lemma add_trivial_zero_lemma(zero_j, m); } else { // here we know the sign of zero_j generate_strict_case_zero_lemma(m, zero_j, sign); } for (lpvar j : fixed_zeros) add_fixed_zero_lemma(m, j); } bool basics::try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const { SASSERT(sign); if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0)) return true; if (c().has_upper_bound(j) && c().get_upper_bound(j) <= rational(0)) { sign = -sign; return true; } sign = 0; return false; } void basics::get_non_strict_sign(lpvar j, int& sign) const { const rational v = val(j); if (v.is_zero()) { try_get_non_strict_sign_from_bounds(j, sign); } else { sign *= nla::rat_sign(v); } } void basics::basic_sign_lemma_model_based_one_mon(const monic& m, int product_sign) { if (product_sign == 0) { TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n";); generate_zero_lemmas(m); } else { new_lemma lemma(c(), __FUNCTION__); for (lpvar j: m.vars()) { negate_strict_sign(lemma, j); } lemma |= ineq(m.var(), product_sign == 1? llc::GT : llc::LT, 0); } } bool basics::basic_sign_lemma_model_based() { unsigned start = c().random(); unsigned sz = c().m_to_refine.size(); for (unsigned i = sz; i-- > 0;) { monic const& m = c().emons()[c().m_to_refine[(start + i) % sz]]; int mon_sign = nla::rat_sign(var_val(m)); int product_sign = c().rat_sign(m); if (mon_sign != product_sign) { basic_sign_lemma_model_based_one_mon(m, product_sign); if (c().done()) return true; } } return c().m_lemmas.size() > 0; } bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set & explored) { if (!try_insert(v, explored)) { return false; } const monic& m_v = c().emons()[v]; TRACE("nla_solver", tout << "m_v = " << pp_mon_with_vars(c(), m_v);); CTRACE("nla_solver", !c().emons().is_canonized(m_v), c().emons().display(c(), tout); c().m_evars.display(tout); ); SASSERT(c().emons().is_canonized(m_v)); for (auto const& m : c().emons().enum_sign_equiv_monics(v)) { TRACE("nla_solver_details", tout << "m = " << pp_mon_with_vars(c(), m);); SASSERT(m.rvars() == m_v.rvars()); if (m_v.var() != m.var() && basic_sign_lemma_on_two_monics(m_v, m) && done()) return true; } TRACE("nla_solver_details", tout << "return false\n";); return false; } /** * \brief explored; for (lpvar j : c().m_to_refine) { if (basic_sign_lemma_on_mon(j, explored)) return true; } return false; } // the value of the i-th monic has to be equal to the value of the k-th monic modulo sign // but it is not the case in the model void basics::generate_sign_lemma(const monic& m, const monic& n, const rational& sign) { new_lemma lemma(c(), "sign lemma"); TRACE("nla_solver", tout << "m = " << pp_mon_with_vars(_(), m); tout << "n = " << pp_mon_with_vars(_(), n); ); lemma |= ineq(term(m.var(), -sign, n.var()), llc::EQ, 0); lemma &= m; lemma &= n; } // try to find a variable j such that val(j) = 0 // and the bounds on j contain 0 as an inner point lpvar basics::find_best_zero(const monic& m, unsigned_vector & fixed_zeros) const { lpvar zero_j = null_lpvar; for (unsigned j : m.vars()) { if (val(j).is_zero()) { if (c().var_is_fixed_to_zero(j)) fixed_zeros.push_back(j); if (!is_set(zero_j) || c().zero_is_an_inner_point_of_bounds(j)) zero_j = j; } } return zero_j; } void basics::add_trivial_zero_lemma(lpvar zero_j, const monic& m) { new_lemma lemma(c(), "x = 0 => x*y = 0"); lemma |= ineq(zero_j, llc::NE, 0); lemma |= ineq(m.var(), llc::EQ, 0); } void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj) { TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";); // we know all the signs new_lemma lemma(c(), "strict case 0"); lemma |= ineq(zero_j, sign_of_zj == 1? llc::GT : llc::LT, 0); for (unsigned j : m.vars()) { if (j != zero_j) { negate_strict_sign(lemma, j); } } negate_strict_sign(lemma, m.var()); } void basics::add_fixed_zero_lemma(const monic& m, lpvar j) { new_lemma lemma(c(), "fixed zero"); lemma.explain_fixed(j); lemma |= ineq(m.var(), llc::EQ, 0); } void basics::negate_strict_sign(new_lemma& lemma, lpvar j) { TRACE("nla_solver_details", tout << pp_var(c(), j) << " " << val(j).is_zero() << "\n";); if (!val(j).is_zero()) { int sign = nla::rat_sign(val(j)); lemma |= ineq(j, (sign == 1? llc::LE : llc::GE), 0); } else { // val(j).is_zero() if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0)) { lemma.explain_existing_lower_bound(j); lemma |= ineq(j, llc::GT, 0); } else { SASSERT(c().has_upper_bound(j) && c().get_upper_bound(j) <= rational(0)); lemma.explain_existing_upper_bound(j); lemma |= ineq(j, llc::LT, 0); } } } // here we use the fact // xy = 0 -> x = 0 or y = 0 bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) { // it seems this code is never exercised for (auto j : f) { if (val(j).is_zero()) return false; } TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout);); new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0"); lemma.explain_fixed(var(rm)); std::unordered_set processed; for (auto j : f) { if (try_insert(var(j), processed)) lemma |= ineq(var(j), llc::EQ, 0); } lemma &= rm; lemma &= f; return true; } // use basic multiplication properties to create a lemma bool basics::basic_lemma(bool derived) { if (basic_sign_lemma(derived)) return true; if (derived) return false; const auto& mon_inds_to_ref = c().m_to_refine; TRACE("nla_solver", tout << "mon_inds_to_ref = "; print_vector(mon_inds_to_ref, tout) << "\n";); unsigned start = c().random(); unsigned sz = mon_inds_to_ref.size(); for (unsigned j = 0; j < sz; ++j) { lpvar v = mon_inds_to_ref[(j + start) % mon_inds_to_ref.size()]; const monic& r = c().emons()[v]; SASSERT (!c().check_monic(c().emons()[v])); basic_lemma_for_mon(r, derived); } return false; } // Use basic multiplication properties to create a lemma // for the given monic. // "derived" means derived from constraints - the alternative is model based void basics::basic_lemma_for_mon(const monic& rm, bool derived) { if (derived) basic_lemma_for_mon_derived(rm); else basic_lemma_for_mon_model_based(rm); } bool basics::basic_lemma_for_mon_derived(const monic& rm) { if (c().var_is_fixed_to_zero(var(rm))) { for (auto factorization : factorization_factory_imp(rm, c())) { if (factorization.is_empty()) continue; if (basic_lemma_for_mon_zero(rm, factorization)) return true; if (basic_lemma_for_mon_neutral_derived(rm, factorization)) return true; } } else { for (auto factorization : factorization_factory_imp(rm, c())) { if (factorization.is_empty()) continue; if (basic_lemma_for_mon_non_zero_derived(rm, factorization)) return true; if (basic_lemma_for_mon_neutral_derived(rm, factorization)) return true; } } return false; } // x = 0 or y = 0 -> xy = 0 bool basics::basic_lemma_for_mon_non_zero_derived(const monic& rm, const factorization& f) { TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout);); if (!c().var_is_separated_from_zero(var(rm))) return false; for (auto fc : f) { if (!c().var_is_fixed_to_zero(var(fc))) continue; new_lemma lemma(c(), "x = 0 or y = 0 -> xy = 0"); lemma.explain_fixed(var(fc)); lemma.explain_var_separated_from_zero(var(rm)); lemma &= rm; lemma &= f; return true; } return false; } // use the fact that // |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1 // it holds for integers, and for reals for a pair of factors // |x*a| = |x| & x != 0 -> |a| = 1 bool basics::basic_lemma_for_mon_neutral_derived(const monic& rm, const factorization& f) { TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout);); lpvar mon_var = c().emons()[rm.var()].var(); TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";); const auto mv = val(mon_var); const auto abs_mv = abs(mv); if (abs_mv == rational::zero()) { return false; } bool mon_var_is_sep_from_zero = c().var_is_separated_from_zero(mon_var); lpvar u = null_lpvar, v = null_lpvar; bool all_int = true; for (auto fc : f) { lpvar j = var(fc); all_int &= c().var_is_int(j); if (u == null_lpvar && abs(val(j)) == abs_mv && c().vars_are_equiv(j, mon_var) && (mon_var_is_sep_from_zero || c().var_is_separated_from_zero(j))) u = j; else if (abs(val(j)) != rational(1)) v = j; } if (u == null_lpvar || v == null_lpvar) return false; if (!all_int && f.size() > 2) return false; // (mon_var != 0 || u != 0) & mon_var = +/- u => // v = 1 or v = -1 new_lemma lemma(c(), "|xa| = |x| & x != 0 -> |a| = 1"); lemma.explain_var_separated_from_zero(mon_var_is_sep_from_zero ? mon_var : u); lemma.explain_equiv(mon_var, u); lemma |= ineq(v, llc::EQ, 1); lemma |= ineq(v, llc::EQ, -1); lemma &= rm; lemma &= f; return true; } // x != 0 or y = 0 => |xy| >= |y| void basics::proportion_lemma_model_based(const monic& rm, const factorization& factorization) { if (c().has_real(factorization)) // todo: handle the situaiton when all factors are greater than 1, return; // or smaller than 1 rational rmv = abs(var_val(rm)); if (rmv.is_zero()) { SASSERT(c().has_zero_factor(factorization)); return; } int factor_index = 0; for (factor f : factorization) { if (abs(val(f)) > rmv) { generate_pl(rm, factorization, factor_index); return; } factor_index++; } } /** m := f_1*...*f_n k is the index of such that |m| < |val(m[k]| If for all 1 <= j <= n, j != k we have f_j != 0 then |m| >= |f_k| The lemma looks like sign_m*m < 0 or \/_{i != k} f_i = 0 or sign_m*m >= sign_k*f_k */ void basics::generate_pl_on_mon(const monic& m, unsigned k) { SASSERT(!c().has_real(m)); new_lemma lemma(c(), "generate_pl_on_mon"); unsigned mon_var = m.var(); rational mv = val(mon_var); SASSERT(abs(mv) < abs(val(m.vars()[k]))); rational sm = rational(nla::rat_sign(mv)); lemma |= ineq(term(sm, mon_var), llc::LT, 0); for (unsigned fi = 0; fi < m.size(); fi ++) { lpvar j = m.vars()[fi]; if (fi != k) { lemma |= ineq(j, llc::EQ, 0); } else { rational sj = rational(nla::rat_sign(val(j))); lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0); } } // lemma &= m; // no need to "explain" monomial m here } /** none of the factors is zero and the product is not zero -> |fc[factor_index]| <= |rm| m := f1 * .. * f_n sign_m*m < 0 or f_i = 0 or \/_{j != i} sign_m*m >= sign_j*f_j */ void basics::generate_pl(const monic& m, const factorization& fc, int factor_index) { SASSERT(!c().has_real(fc)); TRACE("nla_solver", tout << "factor_index = " << factor_index << ", m = " << pp_mon(c(), m); tout << ", fc = " << c().pp(fc); tout << "orig mon = "; c().print_monic(c().emons()[m.var()], tout);); if (fc.is_mon()) { generate_pl_on_mon(m, factor_index); return; } new_lemma lemma(c(), "generate_pl"); int fi = 0; rational mv = var_val(m); rational sm = rational(nla::rat_sign(mv)); unsigned mon_var = var(m); lemma |= ineq(term(sm, mon_var), llc::LT, 0); for (factor f : fc) { if (fi++ != factor_index) { lemma |= ineq(var(f), llc::EQ, 0); } else { lpvar j = var(f); rational jv = val(j); rational sj = rational(nla::rat_sign(jv)); lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0); } } lemma &= fc; lemma &= m; } bool basics::is_separated_from_zero(const factorization& f) const { for (const factor& fc: f) { lpvar j = var(fc); if (!(c().var_has_positive_lower_bound(j) || c().var_has_negative_upper_bound(j))) { return false; } } return true; } // here we use the fact xy = 0 -> x = 0 or y = 0 void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) { TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout);); SASSERT(var_val(rm).is_zero() && !c().rm_check(rm)); new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0"); if (!is_separated_from_zero(f)) { lemma |= ineq(var(rm), llc::NE, 0); for (auto j : f) { lemma |= ineq(var(j), llc::EQ, 0); } } else { lemma |= ineq(var(rm), llc::NE, 0); for (auto j : f) { lemma.explain_var_separated_from_zero(var(j)); } } lemma &= f; } void basics::basic_lemma_for_mon_model_based(const monic& rm) { TRACE("nla_solver_bl", tout << "rm = " << pp_mon(_(), rm) << "\n";); if (var_val(rm).is_zero()) { for (auto factorization : factorization_factory_imp(rm, c())) { if (factorization.is_empty()) continue; basic_lemma_for_mon_zero_model_based(rm, factorization); basic_lemma_for_mon_neutral_model_based(rm, factorization); // todo - the same call is made in the else branch } } else { for (auto factorization : factorization_factory_imp(rm, c())) { if (factorization.is_empty()) continue; basic_lemma_for_mon_non_zero_model_based(rm, factorization); basic_lemma_for_mon_neutral_model_based(rm, factorization); proportion_lemma_model_based(rm, factorization) ; } } } /** m = f1 * f2 * .. * fn where - at most one fi evaluates to something different from +1 or -1 - sign = f1 * ... f_{i-1} * f_{i+1} * .. - sign = +1 or -1 - add lemma - /\_{j != i} f_j = val(f_j) => m = sign * f_i or - /\_j f_j = val(f_j) => m = sign */ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m) { lpvar not_one; rational sign; if (!can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(m, m, not_one, sign)) return false; new_lemma lemma(c(), __FUNCTION__); for (auto j : m.vars()) { if (not_one != j) lemma |= ineq(j, llc::NE, val(j)); } if (not_one == null_lpvar) lemma |= ineq(m.var(), llc::EQ, sign); else lemma |= ineq(term(m.var(), -sign, not_one), llc::EQ, 0); return true; } // use the fact that // |uvw| = |u| and uvw != 0 -> |v| = 1 bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic& rm, const factorization& f) { lpvar mon_var = c().emons()[rm.var()].var(); TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";); const auto mv = val(mon_var); const auto abs_mv = abs(mv); if (abs_mv == rational::zero()) { return false; } lpvar u = null_lpvar, v = null_lpvar; bool all_int = true; for (auto fc : f) { lpvar j = var(fc); all_int &= c().var_is_int(j); if (j == null_lpvar && abs(val(fc)) == abs_mv) u = j; else if (abs(val(fc)) != rational(1)) v = j; } if (u == null_lpvar || v == null_lpvar) return false; if (!all_int && f.size() > 2) return false; // mon_var = 0 // abs(u) != abs(mon_var) // v = 1 // v = -1 new_lemma lemma(c(), __FUNCTION__); lemma |= ineq(mon_var, llc::EQ, 0); lemma |= ineq(term(u, rational(val(u) == -val(mon_var) ? 1 : -1), mon_var), llc::NE, 0); lemma |= ineq(v, llc::EQ, 1); lemma |= ineq(v, llc::EQ, -1); lemma &= rm; // NSB review: is this dependency required? - it does because it explains how monomial is equivalent // to the rooted monomial lemma &= f; return true; } void basics::basic_lemma_for_mon_neutral_model_based(const monic& rm, const factorization& f) { if (f.is_mon()) { basic_lemma_for_mon_neutral_monic_to_factor_model_based(rm, f); basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(f.mon()); } else { basic_lemma_for_mon_neutral_monic_to_factor_model_based(rm, f); basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(rm, f); } } template bool basics::can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const T& f, lpvar ¬_one, rational& sign) { sign = rational(1); // TRACE("nla_solver_bl", tout << pp_mon_with_vars(_(), m) <<"\nf = " << c().pp(f) << "sign = " << sign << '\n';); not_one = null_lpvar; for (auto j : f) { TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout);); auto v = val(j); if (v.is_one()) continue; if (v.is_minus_one()) { sign = -sign; continue; } if (not_one == null_lpvar) { not_one = var(j); continue; } // if we are here then there are at least two factors with absolute values different from one : cannot create the lemma return false; } if (not_one == null_lpvar && var_val(m) == sign) { // we have +-ones only in the factorization return false; } if (not_one != null_lpvar && var_val(m) == val(not_one) * sign) { TRACE("nla_solver", tout << "the whole is equal to the factor" << std::endl;); return false; } return true; } /** - m := f1*f2*.. - f_i are factors of m - at most one variable among f_i evaluates to something else than -1, +1. - m = sign * f_i - sign = sign of f_1 * .. * f_{i-1} * f_{i+1} ... = +/- 1 - lemma: /\_{j != i} f_j = val(f_j) => m = sign * f_i or /\ f_j = val(f_j) => m = sign if all factors evaluate to +/- 1 Note: The routine can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based does not check the signs of factors. Factors have signs. It works assuming all factors have positive signs. */ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const factorization& f) { lpvar not_one; rational sign; if (!can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(m, f, not_one, sign)) return false; for (auto j : f) if (j.sign()) return false; TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";); new_lemma lemma(c(), __FUNCTION__); for (auto j : f) { lpvar var_j = var(j); if (not_one == var_j) continue; TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout);); lemma |= ineq(var_j, llc::NE, val(var_j)); } if (not_one == null_lpvar) lemma |= ineq(m.var(), llc::EQ, sign); else lemma |= ineq(term(m.var(), -sign, not_one), llc::EQ, 0); lemma &= m; lemma &= f; TRACE("nla_solver", tout << "m = " << pp_mon_with_vars(c(), m);); return true; } // x = 0 or y = 0 -> xy = 0 void basics::basic_lemma_for_mon_non_zero_model_based(const monic& rm, const factorization& f) { TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout);); for (auto j : f) { if (val(j).is_zero()) { new_lemma lemma(c(), "x = 0 => x*... = 0"); lemma |= ineq(var(j), llc::NE, 0); lemma |= ineq(f.mon().var(), llc::EQ, 0); lemma &= f; return; } } } }