mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
357 lines
13 KiB
C++
357 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Author:
|
|
Nikolaj Bjorner (nbjorner)
|
|
Lev Nachmanson (levnach)
|
|
--*/
|
|
|
|
#include "math/lp/nla_order_lemmas.h"
|
|
#include "math/lp/nla_core.h"
|
|
#include "math/lp/nla_common.h"
|
|
#include "math/lp/factorization_factory_imp.h"
|
|
|
|
namespace nla {
|
|
|
|
typedef lp::lar_term term;
|
|
|
|
// The order lemma is
|
|
// a > b && c > 0 => ac > bc
|
|
void order::order_lemma() {
|
|
TRACE("nla_solver", );
|
|
if (!c().m_nla_settings.run_order()) {
|
|
TRACE("nla_solver", tout << "not generating order lemmas\n";);
|
|
return;
|
|
}
|
|
|
|
const auto& to_ref = c().m_to_refine;
|
|
unsigned r = random();
|
|
unsigned sz = to_ref.size();
|
|
for (unsigned i = 0; i < sz && !done(); ++i) {
|
|
lpvar j = to_ref[(i + r) % sz];
|
|
order_lemma_on_monic(c().emons()[j]);
|
|
}
|
|
}
|
|
|
|
// The order lemma is
|
|
// a > b && c > 0 => ac > bc
|
|
// Consider here some binary factorizations of m=ac and
|
|
// try create order lemmas with either factor playing the role of c.
|
|
void order::order_lemma_on_monic(const monic& m) {
|
|
TRACE("nla_solver_details",
|
|
tout << "m = " << pp_mon(c(), m););
|
|
if (c().has_real(m))
|
|
return;
|
|
for (auto ac : factorization_factory_imp(m, _())) {
|
|
if (ac.size() != 2)
|
|
continue;
|
|
if (ac.is_mon())
|
|
order_lemma_on_binomial(ac.mon());
|
|
else
|
|
order_lemma_on_factorization(m, ac);
|
|
if (done())
|
|
break;
|
|
}
|
|
}
|
|
// Here ac is a monic of size 2
|
|
// Trying to get an order lemma is
|
|
// a > b && c > 0 => ac > bc,
|
|
// with either variable of ac playing the role of c
|
|
void order::order_lemma_on_binomial(const monic& ac) {
|
|
TRACE("nla_solver", tout << pp_mon_with_vars(c(), ac););
|
|
SASSERT(!check_monic(ac) && ac.size() == 2);
|
|
const rational mult_val = mul_val(ac);
|
|
const rational acv = var_val(ac);
|
|
bool gt = acv > mult_val;
|
|
bool k = false;
|
|
do {
|
|
order_lemma_on_binomial_sign(ac, ac.vars()[k], ac.vars()[!k], gt? 1: -1);
|
|
order_lemma_on_factor_binomial_explore(ac, k);
|
|
k = !k;
|
|
} while (k);
|
|
}
|
|
|
|
|
|
/**
|
|
\brief
|
|
sign = the sign of val(xy) - val(x) * val(y) != 0
|
|
y <= 0 or x < a or xy >= ay
|
|
y <= 0 or x > a or xy <= ay
|
|
y >= 0 or x < a or xy <= ay
|
|
y >= 0 or x > a or xy >= ay
|
|
|
|
*/
|
|
void order::order_lemma_on_binomial_sign(const monic& xy, lpvar x, lpvar y, int sign) {
|
|
SASSERT(!_().mon_has_zero(xy.vars()));
|
|
int sy = rat_sign(val(y));
|
|
new_lemma lemma(c(), __FUNCTION__);
|
|
lemma |= ineq(y, sy == 1 ? llc::LE : llc::GE, 0); // negate sy
|
|
lemma |= ineq(x, sy*sign == 1 ? llc::GT : llc::LT , val(x));
|
|
lemma |= ineq(term(xy.var(), - val(x), y), sign == 1 ? llc::LE : llc::GE, 0);
|
|
}
|
|
|
|
// We look for monics e = m.rvars()[k]*d and see if we can create an order lemma for m and e
|
|
void order::order_lemma_on_factor_binomial_explore(const monic& ac, bool k) {
|
|
TRACE("nla_solver", tout << "ac = " << pp_mon_with_vars(c(), ac););
|
|
SASSERT(ac.size() == 2);
|
|
lpvar c = ac.vars()[k];
|
|
|
|
for (monic const& bd : _().emons().get_products_of(c)) {
|
|
if (bd.var() == ac.var())
|
|
continue;
|
|
TRACE("nla_solver", tout << "bd = " << pp_mon_with_vars(_(), bd););
|
|
order_lemma_on_factor_binomial_rm(ac, k, bd);
|
|
if (done()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ac is a binomial
|
|
// create order lemma on monics bd where d is equivalent to ac[k]
|
|
void order::order_lemma_on_factor_binomial_rm(const monic& ac, bool k, const monic& bd) {
|
|
TRACE("nla_solver",
|
|
tout << "ac=" << pp_mon_with_vars(_(), ac) << "\n";
|
|
tout << "k=" << k << "\n";
|
|
tout << "bd=" << pp_mon_with_vars(_(), bd) << "\n";
|
|
);
|
|
factor d(_().m_evars.find(ac.vars()[k]).var(), factor_type::VAR);
|
|
factor b(false);
|
|
if (c().divide(bd, d, b)) {
|
|
order_lemma_on_binomial_ac_bd(ac, k, bd, b, d.var());
|
|
}
|
|
}
|
|
|
|
// ac >= bd && |c| = |d| => ac/|c| >= bd/|d|
|
|
void order::order_lemma_on_binomial_ac_bd(const monic& ac, bool k, const monic& bd, const factor& b, lpvar d) {
|
|
lpvar a = ac.vars()[!k];
|
|
lpvar c = ac.vars()[k];
|
|
TRACE("nla_solver",
|
|
tout << "ac = " << pp_mon(_(), ac) << "a = " << pp_var(_(), a) << "c = " << pp_var(_(), c) << "\nbd = " << pp_mon(_(), bd) << "b = " << pp_fac(_(), b) << "d = " << pp_var(_(), d) << "\n";
|
|
);
|
|
SASSERT(_().m_evars.find(c).var() == d);
|
|
rational acv = var_val(ac);
|
|
rational av = val(a);
|
|
rational c_sign = rrat_sign(val(c));
|
|
rational d_sign = rrat_sign(val(d));
|
|
rational bdv = var_val(bd);
|
|
rational bv = val(b);
|
|
// Notice that ac/|c| = a*c_sign , and bd/|d| = b*d_sign
|
|
auto av_c_s = av*c_sign; auto bv_d_s = bv*d_sign;
|
|
TRACE("nla_solver",
|
|
tout << "acv = " << acv << ", av = " << av << ", c_sign = " << c_sign << ", d_sign = " << d_sign << ", bdv = " << bdv <<
|
|
"\nbv = " << bv << ", av_c_s = " << av_c_s << ", bv_d_s = " << bv_d_s << "\n";);
|
|
|
|
if (acv >= bdv && av_c_s < bv_d_s)
|
|
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT);
|
|
else if (acv <= bdv && av_c_s > bv_d_s)
|
|
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT);
|
|
|
|
}
|
|
|
|
// |c_sign| = 1, and c*c_sign > 0
|
|
// |d_sign| = 1, and d*d_sign > 0
|
|
// c and d are equivalent |c| == |d|
|
|
// ac > bd => ac/|c| > bd/|d| => a*c_sign > b*d_sign
|
|
// but the last inequality does not hold
|
|
void order::generate_mon_ol(const monic& ac,
|
|
lpvar a,
|
|
const rational& c_sign,
|
|
lpvar c,
|
|
const monic& bd,
|
|
const factor& b,
|
|
const rational& d_sign,
|
|
lpvar d,
|
|
llc ab_cmp) {
|
|
SASSERT(ab_cmp == llc::LT || ab_cmp == llc::GT);
|
|
SASSERT(ab_cmp != llc::LT || (var_val(ac) >= var_val(bd) && val(a)*c_sign < val(b)*d_sign));
|
|
SASSERT(ab_cmp != llc::GT || (var_val(ac) <= var_val(bd) && val(a)*c_sign > val(b)*d_sign));
|
|
|
|
new_lemma lemma(_(), __FUNCTION__);
|
|
lemma |= ineq(term(c_sign, c), llc::LE, 0);
|
|
lemma &= c; // this explains c == +- d
|
|
lemma |= ineq(term(c_sign, a, -d_sign * b.rat_sign(), b.var()), negate(ab_cmp), 0);
|
|
lemma |= ineq(term(ac.var(), rational(-1), var(bd)), ab_cmp, 0);
|
|
lemma &= bd;
|
|
lemma &= b;
|
|
lemma &= d;
|
|
}
|
|
|
|
|
|
// a > b && c > 0 => ac > bc
|
|
// a >< b && c > 0 => ac >< bc
|
|
// a >< b && c < 0 => ac <> bc
|
|
// ac[k] plays the role of c
|
|
|
|
bool order::order_lemma_on_ac_and_bc(const monic& rm_ac,
|
|
const factorization& ac_f,
|
|
bool k,
|
|
const monic& rm_bd) {
|
|
TRACE("nla_solver",
|
|
tout << "rm_ac = " << pp_mon_with_vars(_(), rm_ac) << "\n";
|
|
tout << "rm_bd = " << pp_mon_with_vars(_(), rm_bd) << "\n";
|
|
tout << "ac_f[k] = ";
|
|
c().print_factor_with_vars(ac_f[k], tout););
|
|
factor b(false);
|
|
return
|
|
c().divide(rm_bd, ac_f[k], b) &&
|
|
order_lemma_on_ac_and_bc_and_factors(rm_ac, ac_f[!k], ac_f[k], rm_bd, b);
|
|
}
|
|
|
|
|
|
// Here ab is a binary factorization of m.
|
|
// We try to find a monic n = cd, such that |b| = |d|
|
|
// and get a lemma m R n & |b| = |d| => ab/|b| R cd /|d|, where R is a relation
|
|
void order::order_lemma_on_factorization(const monic& m, const factorization& ab) {
|
|
bool sign = m.rsign();
|
|
for (factor f: ab)
|
|
sign ^= _().canonize_sign(f);
|
|
const rational rsign = sign_to_rat(sign);
|
|
const rational fv = val(var(ab[0])) * val(var(ab[1]));
|
|
const rational mv = rsign * var_val(m);
|
|
TRACE("nla_solver",
|
|
tout << "ab.size()=" << ab.size() << "\n";
|
|
tout << "we should have sign*var_val(m):" << mv << "=(" << rsign << ")*(" << var_val(m) <<") to be equal to " << " val(var(ab[0]))*val(var(ab[1])):" << fv << "\n";);
|
|
TRACE("nla_solver", tout << "m="; _().print_monic_with_vars(m, tout); tout << "\nfactorization="; _().print_factorization(ab, tout););
|
|
if (mv != fv) {
|
|
bool gt = mv > fv;
|
|
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
|
new_lemma lemma(_(), __FUNCTION__);
|
|
order_lemma_on_ab(lemma, m, rsign, var(ab[k]), var(ab[j]), gt);
|
|
lemma &= ab;
|
|
lemma &= m;
|
|
}
|
|
}
|
|
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
|
order_lemma_on_ac_explore(m, ab, j == 1);
|
|
}
|
|
}
|
|
|
|
bool order::order_lemma_on_ac_explore(const monic& rm, const factorization& ac, bool k) {
|
|
const factor c = ac[k];
|
|
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
|
|
if (c.is_var()) {
|
|
TRACE("nla_solver", tout << "var(c) = " << var(c););
|
|
for (monic const& bc : _().emons().get_use_list(c.var())) {
|
|
if (order_lemma_on_ac_and_bc(rm, ac, k, bc)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (monic const& bc : _().emons().get_products_of(c.var())) {
|
|
if (order_lemma_on_ac_and_bc(rm, ac, k, bc)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void order::generate_ol_eq(const monic& ac,
|
|
const factor& a,
|
|
const factor& c,
|
|
const monic& bc,
|
|
const factor& b) {
|
|
|
|
new_lemma lemma(_(), __FUNCTION__);
|
|
IF_VERBOSE(100,
|
|
verbose_stream()
|
|
<< var_val(ac) << "(" << mul_val(ac) << "): " << ac
|
|
<< " " << var_val(bc) << "(" << mul_val(bc) << "): " << bc << "\n"
|
|
<< " a " << "*v" << var(a) << " " << val(a) << "\n"
|
|
<< " b " << "*v" << var(b) << " " << val(b) << "\n"
|
|
<< " c " << "*v" << var(c) << " " << val(c) << "\n");
|
|
// ac == bc
|
|
lemma |= ineq(c.var(), llc::EQ, 0); // c is not equal to zero
|
|
lemma |= ineq(term(ac.var(), -rational(1), bc.var()), llc::NE, 0);
|
|
lemma |= ineq(term(sign_to_rat(canonize_sign(a)), a.var(), sign_to_rat(!canonize_sign(b)), b.var()), llc::EQ, 0);
|
|
lemma &= ac;
|
|
lemma &= a;
|
|
lemma &= bc;
|
|
lemma &= b;
|
|
lemma &= c;
|
|
}
|
|
|
|
void order::generate_ol(const monic& ac,
|
|
const factor& a,
|
|
const factor& c,
|
|
const monic& bc,
|
|
const factor& b) {
|
|
|
|
new_lemma lemma(_(), __FUNCTION__);
|
|
IF_VERBOSE(100, verbose_stream() << var_val(ac) << "(" << mul_val(ac) << "): " << ac
|
|
<< " " << var_val(bc) << "(" << mul_val(bc) << "): " << bc << "\n"
|
|
<< " a " << "*v" << var(a) << " " << val(a) << "\n"
|
|
<< " b " << "*v" << var(b) << " " << val(b) << "\n"
|
|
<< " c " << "*v" << var(c) << " " << val(c) << "\n");
|
|
// fix the sign of c
|
|
lemma |= ineq(c.var(), val(c.var()).is_neg() ? llc::GE : llc::LE, 0);
|
|
_().negate_var_relation_strictly(lemma, ac.var(), bc.var());
|
|
_().negate_var_relation_strictly(lemma, a.var(), b.var());
|
|
lemma &= ac;
|
|
lemma &= a;
|
|
lemma &= bc;
|
|
lemma &= b;
|
|
lemma &= c;
|
|
}
|
|
|
|
// We have ac = a*c and bc = b*c.
|
|
// Suppose ac >= bc, then ac/|c| >= bc/|b|
|
|
// Notice that ac/|c| = a*rat_sign(val(c)|, and similar fo bc/|c|.//
|
|
bool order::order_lemma_on_ac_and_bc_and_factors(const monic& ac,
|
|
const factor& a,
|
|
const factor& c,
|
|
const monic& bc,
|
|
const factor& b) {
|
|
SASSERT(!val(c).is_zero());
|
|
rational c_sign = rational(nla::rat_sign(val(c)));
|
|
auto av_c_s = val(a) * c_sign;
|
|
auto bv_c_s = val(b) * c_sign;
|
|
if ((var_val(ac) > var_val(bc) && av_c_s < bv_c_s)
|
|
||
|
|
(var_val(ac) < var_val(bc) && av_c_s > bv_c_s)) {
|
|
TRACE("nla_solver", _().trace_print_ol(ac, a, c, bc, b, tout););
|
|
generate_ol(ac, a, c, bc, b);
|
|
return true;
|
|
} else {
|
|
if ((var_val(ac) == var_val(bc)) && (av_c_s != bv_c_s)) {
|
|
generate_ol_eq(ac, a, c, bc, b);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
/*
|
|
given: sign * m = ab
|
|
lemma b != val(b) || sign 0 m <= a*val(b)
|
|
*/
|
|
void order::order_lemma_on_ab_gt(new_lemma& lemma, const monic& m, const rational& sign, lpvar a, lpvar b) {
|
|
SASSERT(sign * var_val(m) > val(a) * val(b));
|
|
// negate b == val(b)
|
|
lemma |= ineq(b, llc::NE, val(b));
|
|
// ab <= val(b)a
|
|
lemma |= ineq(term(sign, m.var(), -val(b), a), llc::LE, 0);
|
|
}
|
|
/*
|
|
given: sign * m = ab
|
|
lemma b != val(b) || sign*m >= a*val(b)
|
|
*/
|
|
void order::order_lemma_on_ab_lt(new_lemma& lemma, const monic& m, const rational& sign, lpvar a, lpvar b) {
|
|
TRACE("nla_solver", tout << "sign = " << sign << ", m = "; c().print_monic(m, tout) << ", a = "; c().print_var(a, tout) <<
|
|
", b = "; c().print_var(b, tout) << "\n";);
|
|
SASSERT(sign * var_val(m) < val(a) * val(b));
|
|
// negate b == val(b)
|
|
lemma |= ineq(b, llc::NE, val(b));
|
|
// ab >= val(b)a
|
|
lemma |= ineq(term(sign, m.var(), -val(b), a), llc::GE, 0);
|
|
}
|
|
|
|
void order::order_lemma_on_ab(new_lemma& lemma, const monic& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
|
if (gt)
|
|
order_lemma_on_ab_gt(lemma, m, sign, a, b);
|
|
else
|
|
order_lemma_on_ab_lt(lemma, m, sign, a, b);
|
|
}
|
|
|
|
}
|