mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 09:34:08 +00:00
call nlsat
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
151397a067
commit
e32a6714a5
|
@ -74,6 +74,9 @@ public:
|
|||
void reset_rfields() { m_rsign = false; m_rvars.reset(); SASSERT(m_rvars.size() == 0); }
|
||||
void push_rvar(signed_var sv) { m_rsign ^= sv.sign(); m_rvars.push_back(sv.var()); }
|
||||
void sort_rvars() { std::sort(m_rvars.begin(), m_rvars.end()); }
|
||||
|
||||
svector<lpvar>::const_iterator begin() const { return vars().begin(); }
|
||||
svector<lpvar>::const_iterator end() const { return vars().end(); }
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, monic const& m) {
|
||||
|
|
|
@ -359,8 +359,7 @@ bool basics::basic_lemma_for_mon_neutral_derived(const monic& rm, const factoriz
|
|||
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void basics::proportion_lemma_model_based(const monic& rm, const factorization& factorization) {
|
||||
if (c().has_real(factorization)) // todo: handle the situaiton when all factors are greater than 1,
|
||||
return; // or smaller than 1
|
||||
if (c().factorization_has_real(factorization)) // todo: handle the situaiton when all factors are greater than 1, return; // or smaller than 1
|
||||
rational rmv = abs(var_val(rm));
|
||||
if (rmv.is_zero()) {
|
||||
SASSERT(c().has_zero_factor(factorization));
|
||||
|
@ -486,8 +485,6 @@ bool basics::is_separated_from_zero(const factorization& f) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// here we use the fact xy = 0 -> x = 0 or y = 0
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
|
|
|
@ -1895,4 +1895,23 @@ bool core::influences_nl_var(lpvar j) const {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool core::factorization_has_real(const factorization& f) const {
|
||||
for (const factor& fc: f) {
|
||||
lpvar j = var(fc);
|
||||
if (!var_is_int(j))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool core::monic_has_real(const monic& m) const {
|
||||
if (!var_is_int(m.var()))
|
||||
return true;
|
||||
for (lpvar j : m) {
|
||||
if (!var_is_int(j))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // end of nla
|
||||
|
|
|
@ -153,7 +153,7 @@ public:
|
|||
|
||||
void insert_to_refine(lpvar j);
|
||||
void erase_from_to_refine(lpvar j);
|
||||
|
||||
const lp::u_set& to_refine() const { return m_to_refine; }
|
||||
const lp::u_set& active_var_set () const { return m_active_var_set;}
|
||||
bool active_var_set_contains(unsigned j) const { return m_active_var_set.contains(j); }
|
||||
|
||||
|
@ -441,9 +441,8 @@ public:
|
|||
bool patch_blocker(lpvar u, const monic& m) const;
|
||||
bool has_big_num(const monic&) const;
|
||||
bool var_is_big(lpvar) const;
|
||||
bool has_real(const factorization&) const;
|
||||
bool has_real(const monic& m) const;
|
||||
|
||||
bool factorization_has_real(const factorization&) const;
|
||||
bool monic_has_real(const monic&) const;
|
||||
}; // end of core
|
||||
|
||||
struct pp_mon {
|
||||
|
|
|
@ -11,13 +11,25 @@ namespace nla {
|
|||
|
||||
monotone::monotone(core * c) : common(c) {}
|
||||
|
||||
// return false if at least one variable, including the monic var, is real,
|
||||
// or one of the variable from m.vars() is zero
|
||||
bool monotone::monotonicity_lemma_candidate(const monic & m) const {
|
||||
if (!c().var_is_int(m.var()))
|
||||
return false;
|
||||
for (lpvar j : m) {
|
||||
if (!c().var_is_int(j) || val(j).is_zero())
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void monotone::monotonicity_lemma() {
|
||||
unsigned shift = random();
|
||||
unsigned size = c().m_to_refine.size();
|
||||
for (unsigned i = 0; i < size && !done(); i++) {
|
||||
lpvar v = c().m_to_refine[(i + shift) % size];
|
||||
monotonicity_lemma(c().emons()[v]);
|
||||
if (monotonicity_lemma_candidate(c().emons()[v]))
|
||||
monotonicity_lemma(c().emons()[v]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -33,6 +45,9 @@ void monotone::monotonicity_lemma(monic const& m) {
|
|||
monotonicity_lemma_lt(m, prod_val);
|
||||
else if (m_val > prod_val)
|
||||
monotonicity_lemma_gt(m, prod_val);
|
||||
else {
|
||||
TRACE("nla_solver", tout << "equal\n";);
|
||||
}
|
||||
}
|
||||
|
||||
void monotone::monotonicity_lemma_gt(const monic& m, const rational& prod_val) {
|
||||
|
|
|
@ -18,5 +18,6 @@ private:
|
|||
void monotonicity_lemma_lt(const monic& m, const rational& prod_val);
|
||||
std::vector<rational> get_sorted_key(const monic& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_rvars(const monic& a) const;
|
||||
bool monotonicity_lemma_candidate(const monic& m) const;
|
||||
};
|
||||
}
|
||||
|
|
|
@ -40,7 +40,6 @@ void order::order_lemma() {
|
|||
void order::order_lemma_on_monic(const monic& m) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "m = " << pp_mon(c(), m););
|
||||
|
||||
if (c().has_real(m))
|
||||
return;
|
||||
for (auto ac : factorization_factory_imp(m, _())) {
|
||||
|
|
|
@ -28,10 +28,23 @@ bool solver::is_monic_var(lpvar v) const {
|
|||
|
||||
bool solver::need_check() { return true; }
|
||||
|
||||
lbool solver::check(vector<lemma>& l) {
|
||||
return m_core->check(l);
|
||||
lbool solver::run_nra(lp::explanation & expl) {
|
||||
return m_nra.check(expl);
|
||||
}
|
||||
|
||||
|
||||
lbool solver::check(vector<lemma>& l, lp::explanation& expl) {
|
||||
set_use_nra_model(false);
|
||||
lbool ret = m_core->check(l);
|
||||
if (ret == l_undef) {
|
||||
ret = run_nra(expl);
|
||||
if (ret == l_true) {
|
||||
set_use_nra_model(true);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void solver::push(){
|
||||
m_core->push();
|
||||
}
|
||||
|
|
|
@ -26,6 +26,9 @@ class solver {
|
|||
reslimit m_res_limit;
|
||||
core* m_core;
|
||||
nra::solver m_nra;
|
||||
bool m_use_nra_model;
|
||||
lbool run_nra(lp::explanation&);
|
||||
void set_use_nra_model(bool m) { m_use_nra_model = m; }
|
||||
public:
|
||||
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
|
||||
|
||||
|
@ -35,11 +38,11 @@ public:
|
|||
void push();
|
||||
void pop(unsigned scopes);
|
||||
bool need_check();
|
||||
lbool check(vector<lemma>&);
|
||||
lbool check(vector<lemma>&, lp::explanation& lp);
|
||||
bool is_monic_var(lpvar) const;
|
||||
bool influences_nl_var(lpvar) const;
|
||||
std::ostream& display(std::ostream& out) const;
|
||||
|
||||
bool use_nra_model() const { return m_use_nra_model; }
|
||||
core& get_core() { return *m_core; }
|
||||
};
|
||||
}
|
||||
|
|
|
@ -24,8 +24,6 @@ struct solver::imp {
|
|||
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
|
||||
scoped_ptr<nlsat::solver> m_nlsat;
|
||||
scoped_ptr<scoped_anum> m_zero;
|
||||
vector<mon_eq> m_monics;
|
||||
unsigned_vector m_monics_lim;
|
||||
mutable variable_map_type m_variable_values; // current model
|
||||
nla::core& m_nla_core;
|
||||
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
|
||||
|
@ -35,22 +33,9 @@ struct solver::imp {
|
|||
m_nla_core(nla_core) {}
|
||||
|
||||
bool need_check() {
|
||||
return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
|
||||
return m_nla_core.to_refine().size() != 0;
|
||||
}
|
||||
|
||||
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
m_monics.push_back(mon_eq(v, sz, vs));
|
||||
}
|
||||
|
||||
void push() {
|
||||
m_monics_lim.push_back(m_monics.size());
|
||||
}
|
||||
|
||||
void pop(unsigned n) {
|
||||
if (n == 0) return;
|
||||
m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
|
||||
m_monics_lim.shrink(m_monics_lim.size() - n);
|
||||
}
|
||||
|
||||
/*
|
||||
\brief Check if polynomials are well defined.
|
||||
|
@ -85,8 +70,8 @@ struct solver::imp {
|
|||
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
|
||||
TBD: explore more incremental ways of applying nlsat (using assumptions)
|
||||
*/
|
||||
lbool check(lp::explanation& ex) {
|
||||
SASSERT(need_check());
|
||||
lbool check(lp::explanation& ex) {
|
||||
SASSERT(need_check() && ex.size() == 0);
|
||||
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
|
||||
m_zero = alloc(scoped_anum, am());
|
||||
m_lp2nl.reset();
|
||||
|
@ -97,10 +82,10 @@ struct solver::imp {
|
|||
add_constraint(ci);
|
||||
}
|
||||
|
||||
// add polynomial definitions.
|
||||
for (auto const& m : m_monics) {
|
||||
add_monic_eq(m);
|
||||
}
|
||||
// // add polynomial definitions.
|
||||
// for (auto const& m : m_monics) {
|
||||
// add_monic_eq(m);
|
||||
// }
|
||||
// TBD: add variable bounds?
|
||||
|
||||
lbool r = l_undef;
|
||||
|
@ -227,7 +212,7 @@ struct solver::imp {
|
|||
}
|
||||
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
for (auto m : m_monics) {
|
||||
for (auto m : m_nla_core.emons()) {
|
||||
out << "j" << m.var() << " = ";
|
||||
for (auto v : m.vars()) {
|
||||
out << "j" << v << " ";
|
||||
|
@ -246,9 +231,6 @@ solver::~solver() {
|
|||
dealloc(m_imp);
|
||||
}
|
||||
|
||||
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
m_imp->add(v, sz, vs);
|
||||
}
|
||||
|
||||
lbool solver::check(lp::explanation& ex) {
|
||||
return m_imp->check(ex);
|
||||
|
@ -258,14 +240,6 @@ bool solver::need_check() {
|
|||
return m_imp->need_check();
|
||||
}
|
||||
|
||||
void solver::push() {
|
||||
m_imp->push();
|
||||
}
|
||||
|
||||
void solver::pop(unsigned n) {
|
||||
m_imp->pop(n);
|
||||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream& out) const {
|
||||
return m_imp->display(out);
|
||||
}
|
||||
|
|
|
@ -29,11 +29,6 @@ namespace nra {
|
|||
|
||||
~solver();
|
||||
|
||||
/*
|
||||
\brief Add a definition v = vs[0]*vs[1]*...*vs[sz-1]
|
||||
The variable v is equal to the product of variables vs.
|
||||
*/
|
||||
void add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs);
|
||||
|
||||
/*
|
||||
\brief Check feasiblity of linear constraints augmented by polynomial definitions
|
||||
|
@ -53,13 +48,6 @@ namespace nra {
|
|||
|
||||
nlsat::anum_manager& am();
|
||||
|
||||
/*
|
||||
\brief push and pop scope.
|
||||
Monomial definitions are retraced when popping scope.
|
||||
*/
|
||||
void push();
|
||||
|
||||
void pop(unsigned n);
|
||||
|
||||
/*
|
||||
\brief display state
|
||||
|
|
|
@ -632,7 +632,8 @@ class theory_lra::imp {
|
|||
vars.push_back(register_theory_var_in_lar_solver(v));
|
||||
}
|
||||
TRACE("arith", tout << "v" << v << " := " << mk_pp(t, m) << "\n" << vars << "\n";);
|
||||
m_solver->register_existing_terms();
|
||||
m_solver->register_existing_terms();
|
||||
ensure_nla();
|
||||
m_nla->add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
|
||||
}
|
||||
return v;
|
||||
|
@ -2138,7 +2139,11 @@ public:
|
|||
lbool check_nla_continue() {
|
||||
m_a1 = nullptr; m_a2 = nullptr;
|
||||
auto & lv = m_nla_lemma_vector;
|
||||
lbool r = m_nla->check(lv);
|
||||
lbool r = m_nla->check(lv, m_explanation);
|
||||
if (m_explanation.size()) {
|
||||
NOT_IMPLEMENTED_YET(); // the nra_solver worked
|
||||
}
|
||||
|
||||
switch (r) {
|
||||
case l_false: {
|
||||
m_stats.m_nla_lemmas += lv.size();
|
||||
|
|
|
@ -44,12 +44,14 @@ tactic * mk_qfnra_tactic(ast_manager & m, params_ref const& p) {
|
|||
|
||||
return and_then(mk_simplify_tactic(m, p),
|
||||
mk_propagate_values_tactic(m, p),
|
||||
or_else(try_for(mk_qfnra_nlsat_tactic(m, p0), 5000),
|
||||
try_for(mk_qfnra_nlsat_tactic(m, p1), 10000),
|
||||
mk_qfnra_sat_solver(m, p, 4),
|
||||
and_then(try_for(mk_smt_tactic(m), 5000), mk_fail_if_undecided_tactic()),
|
||||
mk_qfnra_sat_solver(m, p, 6),
|
||||
mk_qfnra_nlsat_tactic(m, p2)));
|
||||
//or_else(//try_for(mk_qfnra_nlsat_tactic(m, p0), 5000),
|
||||
//try_for(mk_qfnra_nlsat_tactic(m, p1), 10000),
|
||||
//mk_qfnra_sat_solver(m, p, 4),
|
||||
//and_then(try_for(mk_smt_tactic(m), 5000), mk_fail_if_undecided_tactic()),
|
||||
mk_qfnra_sat_solver(m, p, 6)
|
||||
//mk_qfnra_nlsat_tactic(m, p2)
|
||||
//)
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue