mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
- share common functionality - rename propagate-bv-bounds-new to propagate-bv-bound2 for now - expose configuration options in bounds propagation
639 lines
20 KiB
C++
639 lines
20 KiB
C++
/*++
|
|
Copyright (c) 2016 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
bv_bounds_tactic.cpp
|
|
|
|
Abstract:
|
|
|
|
Contextual bounds simplification tactic.
|
|
|
|
Author:
|
|
|
|
Nuno Lopes (nlopes) 2016-2-12
|
|
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
|
|
--*/
|
|
|
|
#include "tactic/bv/bv_bounds_tactic.h"
|
|
#include "tactic/core/ctx_simplify_tactic.h"
|
|
#include "tactic/core/dom_simplify_tactic.h"
|
|
#include "ast/bv_decl_plugin.h"
|
|
#include "ast/ast_pp.h"
|
|
#include <climits>
|
|
|
|
static uint64_t uMaxInt(unsigned sz) {
|
|
SASSERT(sz <= 64);
|
|
return ULLONG_MAX >> (64u - sz);
|
|
}
|
|
|
|
namespace {
|
|
|
|
template<typename T, typename Base>
|
|
struct interval_tpl : public Base {
|
|
T l, h;
|
|
unsigned sz = 0;
|
|
bool tight = true;
|
|
|
|
interval_tpl(T const& l, T const& h, unsigned sz, bool tight = false): l(l), h(h), sz(sz), tight(tight) {}
|
|
interval_tpl() {}
|
|
|
|
bool invariant() const {
|
|
return
|
|
0 <= l && (l <= Base::bound(sz)) &&
|
|
0 <= h && (h <= Base::bound(sz)) &&
|
|
(!is_wrapped() || l != h + 1);
|
|
}
|
|
|
|
bool is_full() const {
|
|
return l == 0 && h == Base::bound(sz);
|
|
}
|
|
bool is_wrapped() const { return l > h; }
|
|
bool is_singleton() const { return l == h; }
|
|
|
|
bool operator==(const interval_tpl<T, Base>& b) const {
|
|
SASSERT(sz == b.sz);
|
|
return l == b.l && h == b.h && tight == b.tight;
|
|
}
|
|
bool operator!=(const interval_tpl& b) const { return !(*this == b); }
|
|
|
|
bool implies(const interval_tpl<T, Base>& b) const {
|
|
if (b.is_full())
|
|
return true;
|
|
else if (is_full())
|
|
return false;
|
|
else if (is_wrapped())
|
|
// l >= b.l >= b.h >= h
|
|
return b.is_wrapped() && h <= b.h && l >= b.l;
|
|
else if (b.is_wrapped())
|
|
// b.l > b.h >= h >= l
|
|
// h >= l >= b.l > b.h
|
|
return h <= b.h || l >= b.l;
|
|
else
|
|
return l >= b.l && h <= b.h;
|
|
}
|
|
|
|
/// return false if intersection is unsat
|
|
bool intersect(const interval_tpl<T, Base>& b, interval_tpl& result) const {
|
|
if (is_full() || *this == b) {
|
|
result = b;
|
|
return true;
|
|
}
|
|
if (b.is_full()) {
|
|
result = *this;
|
|
return true;
|
|
}
|
|
|
|
if (is_wrapped()) {
|
|
if (b.is_wrapped()) {
|
|
if (h >= b.l)
|
|
result = b;
|
|
else if (b.h >= l)
|
|
result = *this;
|
|
else
|
|
result = interval_tpl(std::max(l, b.l), std::min(h, b.h), sz);
|
|
}
|
|
else
|
|
return b.intersect(*this, result);
|
|
}
|
|
else if (b.is_wrapped()) {
|
|
// ... b.h ... l ... h ... b.l ..
|
|
if (h < b.l && l > b.h)
|
|
return false;
|
|
// ... l ... b.l ... h ...
|
|
if (h >= b.l && l <= b.h)
|
|
result = b;
|
|
else if (h >= b.l)
|
|
result = interval_tpl(b.l, h, sz);
|
|
else {
|
|
// ... l .. b.h .. h .. b.l ...
|
|
SASSERT(l <= b.h);
|
|
result = interval_tpl(l, std::min(h, b.h), sz);
|
|
}
|
|
} else {
|
|
if (l > b.h || h < b.l)
|
|
return false;
|
|
|
|
// 0 .. l.. l' ... h ... h'
|
|
result = interval_tpl(std::max(l, b.l), std::min(h, b.h), sz, tight && b.tight);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// return false if negation is empty
|
|
bool negate(interval_tpl<T, Base>& result) const {
|
|
if (!tight)
|
|
result = interval_tpl(Base::zero(), Base::bound(sz), sz, true);
|
|
else if (is_full())
|
|
return false;
|
|
else if (l == 0 && Base::bound(sz) == h)
|
|
result = interval_tpl(Base::zero(), Base::bound(sz), sz);
|
|
else if (l == 0)
|
|
result = interval_tpl(h + 1, Base::bound(sz), sz);
|
|
else if (Base::bound(sz) == h)
|
|
result = interval_tpl(Base::zero(), l - 1, sz);
|
|
else
|
|
result = interval_tpl(h + 1, l - 1, sz);
|
|
return true;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
struct rinterval_base {
|
|
static rational bound(unsigned sz) {
|
|
return rational::power_of_two(sz) - 1;
|
|
}
|
|
|
|
static rational zero() { return rational::zero(); }
|
|
};
|
|
|
|
struct rinterval : public interval_tpl<rational, rinterval_base> {
|
|
rinterval(rational const& l, rational const& h, unsigned sz, bool tight = false) {
|
|
this->l = l; this->h = h; this->sz = sz; this->tight = tight;
|
|
}
|
|
rinterval() { l = 0; h = 0; tight = true; }
|
|
};
|
|
|
|
struct iinterval_base {
|
|
static uint64_t bound(unsigned sz) { return uMaxInt(sz); }
|
|
static uint64_t zero() { return 0; }
|
|
};
|
|
|
|
struct iinterval : public interval_tpl<uint64_t, iinterval_base> {
|
|
iinterval(uint64_t l, uint64_t h, unsigned sz, bool tight = false) {
|
|
this->l = l; this->h = h; this->sz = sz; this->tight = tight;
|
|
}
|
|
iinterval() { l = 0; h = 0; sz = 0; tight = true; }
|
|
};
|
|
|
|
struct interval {
|
|
bool is_small = true;
|
|
iinterval i;
|
|
rinterval r;
|
|
|
|
interval() {}
|
|
|
|
interval(rational const& l, rational const& h, unsigned sz, bool tight = false) {
|
|
if (sz <= 64) {
|
|
is_small = true;
|
|
i.l = l.get_uint64();
|
|
i.h = h.get_uint64();
|
|
i.tight = tight;
|
|
i.sz = sz;
|
|
}
|
|
else {
|
|
is_small = false;
|
|
r.l = l;
|
|
r.h = h;
|
|
r.tight = tight;
|
|
r.sz = sz;
|
|
}
|
|
}
|
|
|
|
unsigned size() const {
|
|
return is_small ? i.sz : r.sz;
|
|
}
|
|
|
|
bool negate(interval& result) const {
|
|
result.is_small = is_small;
|
|
if (is_small)
|
|
return i.negate(result.i);
|
|
else
|
|
return r.negate(result.r);
|
|
}
|
|
|
|
bool intersect(interval const& b, interval & result) const {
|
|
result.is_small = is_small;
|
|
SASSERT(b.is_small == is_small);
|
|
if (is_small)
|
|
return i.intersect(b.i, result.i);
|
|
else
|
|
return r.intersect(b.r, result.r);
|
|
}
|
|
|
|
bool operator==(interval const& other) const {
|
|
SASSERT(is_small == other.is_small);
|
|
return is_small ? i == other.i : r == other.r;
|
|
}
|
|
|
|
bool operator!=(interval const& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
bool is_singleton() const { return is_small ? i.is_singleton() : r.is_singleton(); }
|
|
|
|
bool is_full() const { return is_small ? i.is_full() : r.is_full(); }
|
|
|
|
bool tight() const { return is_small ? i.tight : r.tight; }
|
|
|
|
bool implies(const interval& b) const {
|
|
SASSERT(is_small == b.is_small);
|
|
return is_small ? i.implies(b.i) : r.implies(b.r);
|
|
}
|
|
|
|
rational lo() const { return is_small ? rational(i.l, rational::ui64()) : r.l; }
|
|
rational hi() const { return is_small ? rational(i.h, rational::ui64()) : r.h; }
|
|
};
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& o, const interval& I) {
|
|
if (I.is_small)
|
|
return o << "[" << I.i.l << ", " << I.i.h << "]";
|
|
else
|
|
return o << "[" << I.r.l << ", " << I.r.h << "]";
|
|
}
|
|
|
|
struct undo_bound {
|
|
expr* e = nullptr;
|
|
interval b;
|
|
bool fresh = false;
|
|
undo_bound(expr* e, const interval& b, bool fresh) : e(e), b(b), fresh(fresh) {}
|
|
};
|
|
|
|
struct bv_bounds_base {
|
|
typedef obj_map<expr, interval> map;
|
|
typedef obj_map<expr, bool> expr_set;
|
|
typedef obj_map<expr, unsigned> expr_cnt;
|
|
|
|
ast_manager& m;
|
|
bv_util m_bv;
|
|
vector<undo_bound> m_scopes;
|
|
svector<expr_set*> m_expr_vars;
|
|
svector<expr_cnt*> m_bound_exprs;
|
|
map m_bound;
|
|
bool m_propagate_eq = false;
|
|
|
|
bv_bounds_base(ast_manager& m):m(m), m_bv(m) {}
|
|
|
|
virtual ~bv_bounds_base() {
|
|
for (auto* e : m_expr_vars)
|
|
dealloc(e);
|
|
for (auto* b : m_bound_exprs)
|
|
dealloc(b);
|
|
}
|
|
|
|
bool is_bound(expr *e, expr*& v, interval& b) const {
|
|
rational r;
|
|
expr *lhs = nullptr, *rhs = nullptr;
|
|
unsigned sz;
|
|
|
|
if (m_bv.is_bv_ule(e, lhs, rhs)) {
|
|
if (m_bv.is_numeral(lhs, r, sz)) { // C ule x <=> x uge C
|
|
if (m_bv.is_numeral(rhs))
|
|
return false;
|
|
b = interval(r, rational::power_of_two(sz) - 1, sz, true);
|
|
v = rhs;
|
|
return true;
|
|
}
|
|
if (m_bv.is_numeral(rhs, r, sz)) { // x ule C
|
|
b = interval(rational::zero(), r, sz, true);
|
|
v = lhs;
|
|
return true;
|
|
}
|
|
// TBD: x + s <= x + q
|
|
// x + s <= x
|
|
// x <= x + q
|
|
}
|
|
else if (m_bv.is_bv_sle(e, lhs, rhs)) {
|
|
if (m_bv.is_numeral(lhs, r, sz)) { // C sle x <=> x sge C
|
|
if (m_bv.is_numeral(rhs))
|
|
return false;
|
|
b = interval(r, rational::power_of_two(sz-1) - 1, sz, true);
|
|
v = rhs;
|
|
return true;
|
|
}
|
|
if (m_bv.is_numeral(rhs, r, sz)) { // x sle C
|
|
b = interval(rational::power_of_two(sz-1), r, sz, true);
|
|
v = lhs;
|
|
return true;
|
|
}
|
|
// TBD: other cases for forbidden intervals
|
|
}
|
|
else if (m.is_eq(e, lhs, rhs)) {
|
|
if (m_bv.is_numeral(rhs))
|
|
std::swap(lhs, rhs);
|
|
if (m_bv.is_numeral(rhs))
|
|
return false;
|
|
if (m_bv.is_numeral(lhs, r, sz)) {
|
|
unsigned lo, hi;
|
|
expr* rhs2;
|
|
if (m_bv.is_extract(rhs, lo, hi, rhs2) && r == 0) {
|
|
unsigned sz2 = m_bv.get_bv_size(rhs2);
|
|
if (sz2 - 1 == hi) {
|
|
b = interval(rational::zero(), rational::power_of_two(lo) - 1, sz2, false);
|
|
v = rhs2;
|
|
return true;
|
|
}
|
|
}
|
|
b = interval(r, r, sz, true);
|
|
v = rhs;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool assert_expr_core(expr * t, bool sign) {
|
|
while (m.is_not(t, t))
|
|
sign = !sign;
|
|
|
|
interval b;
|
|
expr* t1;
|
|
if (is_bound(t, t1, b)) {
|
|
SASSERT(m_bv.get_bv_size(t1) == b.size());
|
|
SASSERT(!m_bv.is_numeral(t1));
|
|
if (sign && !b.negate(b))
|
|
return false;
|
|
|
|
TRACE("bv", tout << (sign?"(not ":"") << mk_pp(t, m) << (sign ? ")" : "") << ": " << mk_pp(t1, m) << " in " << b << "\n";);
|
|
map::obj_map_entry* e = m_bound.find_core(t1);
|
|
if (e) {
|
|
interval& old = e->get_data().m_value;
|
|
interval intr;
|
|
if (!old.intersect(b, intr))
|
|
return false;
|
|
if (old == intr)
|
|
return true;
|
|
m_scopes.push_back(undo_bound(t1, old, false));
|
|
old = intr;
|
|
SASSERT(old.size() == m_bv.get_bv_size(t1));
|
|
}
|
|
else {
|
|
SASSERT(b.size() == m_bv.get_bv_size(t1));
|
|
m_bound.insert(t1, b);
|
|
m_scopes.push_back(undo_bound(t1, interval(), true));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// x + q <= s <=> x not in [s - q + 1, -q[
|
|
// <=> x in [-q, s - q], s != -1
|
|
//
|
|
// x in [lo, hi]
|
|
// q = -lo
|
|
// hi = s + lo => s = hi - lo
|
|
// hi - lo != -1
|
|
//
|
|
|
|
expr_ref mk_bound(expr* t, rational const& lo, rational const& hi) {
|
|
sort* s = t->get_sort();
|
|
|
|
if (lo == hi + 1)
|
|
return expr_ref(m.mk_true(), m);
|
|
else
|
|
return expr_ref(m_bv.mk_ule(m_bv.mk_bv_add(t, m_bv.mk_numeral(-lo, s)), m_bv.mk_numeral(hi - lo, s)), m);
|
|
}
|
|
|
|
bool simplify_core(expr* t, expr_ref& result) {
|
|
expr* t1;
|
|
interval b;
|
|
|
|
if (m_bound.find(t, b) && b.is_singleton()) {
|
|
result = m_bv.mk_numeral(b.lo(), m_bv.get_bv_size(t));
|
|
return true;
|
|
}
|
|
|
|
if (!m.is_bool(t))
|
|
return false;
|
|
|
|
bool sign = false;
|
|
while (m.is_not(t, t))
|
|
sign = !sign;
|
|
|
|
if (!is_bound(t, t1, b))
|
|
return false;
|
|
|
|
if (sign && b.tight()) {
|
|
sign = false;
|
|
if (!b.negate(b)) {
|
|
result = m.mk_false();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
interval ctx, intr;
|
|
result = nullptr;
|
|
|
|
if (b.is_full() && b.tight())
|
|
result = m.mk_true();
|
|
else if (!m_bound.find(t1, ctx)) {
|
|
}
|
|
else if (ctx.implies(b))
|
|
result = m.mk_true();
|
|
else if (!b.intersect(ctx, intr))
|
|
result = m.mk_false();
|
|
else if (m_propagate_eq && intr.is_singleton())
|
|
result = m.mk_eq(t1, m_bv.mk_numeral(intr.lo(), t1->get_sort()));
|
|
else if (false && intr != b)
|
|
result = mk_bound(t1, intr.lo(), intr.hi());
|
|
else {
|
|
TRACE("bv", tout << mk_pp(t, m) << " b: " << b << " ctx: " << ctx << " intr " << intr << "\n");
|
|
}
|
|
|
|
CTRACE("bv", result, tout << mk_pp(t, m) << " " << b << " (ctx: " << ctx << ") (intr: " << intr << "): " << result << "\n";);
|
|
if (sign && result)
|
|
result = m.mk_not(result);
|
|
return result != nullptr;
|
|
}
|
|
|
|
// check if t contains v
|
|
ptr_vector<expr> todo;
|
|
bool contains(expr* t, expr* v) {
|
|
ast_fast_mark1 mark;
|
|
todo.push_back(t);
|
|
while (!todo.empty()) {
|
|
t = todo.back();
|
|
todo.pop_back();
|
|
if (mark.is_marked(t))
|
|
continue;
|
|
if (t == v) {
|
|
todo.reset();
|
|
return true;
|
|
}
|
|
mark.mark(t);
|
|
|
|
if (!is_app(t))
|
|
continue;
|
|
app* a = to_app(t);
|
|
todo.append(a->get_num_args(), a->get_args());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool contains_bound(expr* t) {
|
|
ast_fast_mark1 mark1;
|
|
ast_fast_mark2 mark2;
|
|
|
|
todo.push_back(t);
|
|
while (!todo.empty()) {
|
|
t = todo.back();
|
|
todo.pop_back();
|
|
if (mark1.is_marked(t)) {
|
|
continue;
|
|
}
|
|
mark1.mark(t);
|
|
|
|
if (!is_app(t)) {
|
|
continue;
|
|
}
|
|
interval b;
|
|
expr* e;
|
|
if (is_bound(t, e, b)) {
|
|
if (mark2.is_marked(e)) {
|
|
todo.reset();
|
|
return true;
|
|
}
|
|
mark2.mark(e);
|
|
if (m_bound.contains(e)) {
|
|
todo.reset();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
app* a = to_app(t);
|
|
todo.append(a->get_num_args(), a->get_args());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void pop_core(unsigned num_scopes) {
|
|
TRACE("bv", tout << "pop: " << num_scopes << "\n";);
|
|
if (m_scopes.empty())
|
|
return;
|
|
unsigned target = m_scopes.size() - num_scopes;
|
|
if (target == 0) {
|
|
m_bound.reset();
|
|
m_scopes.reset();
|
|
return;
|
|
}
|
|
for (unsigned i = m_scopes.size(); i-- > target; ) {
|
|
undo_bound& undo = m_scopes[i];
|
|
SASSERT(m_bound.contains(undo.e));
|
|
if (undo.fresh)
|
|
m_bound.erase(undo.e);
|
|
else
|
|
m_bound.insert(undo.e, undo.b);
|
|
}
|
|
m_scopes.shrink(target);
|
|
}
|
|
|
|
};
|
|
|
|
class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier, public bv_bounds_base {
|
|
params_ref m_params;
|
|
|
|
public:
|
|
bv_bounds_simplifier(ast_manager& m, params_ref const& p) : bv_bounds_base(m), m_params(p) {
|
|
updt_params(p);
|
|
}
|
|
|
|
void updt_params(params_ref const & p) override {
|
|
m_propagate_eq = p.get_bool("propagate_eq", false);
|
|
}
|
|
|
|
static void get_param_descrs(param_descrs& r) {
|
|
r.insert("propagate-eq", CPK_BOOL, "propagate equalities from inequalities", "false");
|
|
}
|
|
|
|
~bv_bounds_simplifier() override {}
|
|
|
|
bool assert_expr(expr * t, bool sign) override {
|
|
return assert_expr_core(t, sign);
|
|
}
|
|
|
|
bool simplify(expr* t, expr_ref& result) override {
|
|
return simplify_core(t, result);
|
|
}
|
|
|
|
bool may_simplify(expr* t) override {
|
|
if (m_bv.is_numeral(t))
|
|
return false;
|
|
|
|
while (m.is_not(t, t));
|
|
|
|
for (auto & v : m_bound)
|
|
if (contains(t, v.m_key))
|
|
return true;
|
|
|
|
expr* t1;
|
|
interval b;
|
|
// skip common case: single bound constraint without any context for simplification
|
|
if (is_bound(t, t1, b))
|
|
return b.is_full() || m_bound.contains(t1);
|
|
|
|
return contains_bound(t);
|
|
}
|
|
|
|
void pop(unsigned num_scopes) override {
|
|
pop_core(num_scopes);
|
|
}
|
|
|
|
simplifier * translate(ast_manager & m) override {
|
|
return alloc(bv_bounds_simplifier, m, m_params);
|
|
}
|
|
|
|
unsigned scope_level() const override {
|
|
return m_scopes.size();
|
|
}
|
|
};
|
|
|
|
|
|
class dom_bv_bounds_simplifier : public dom_simplifier, public bv_bounds_base {
|
|
params_ref m_params;
|
|
|
|
public:
|
|
dom_bv_bounds_simplifier(ast_manager& m, params_ref const& p) : bv_bounds_base(m), m_params(p) {
|
|
updt_params(p);
|
|
}
|
|
|
|
~dom_bv_bounds_simplifier() override {
|
|
}
|
|
|
|
void updt_params(params_ref const & p) override {
|
|
m_propagate_eq = p.get_bool("propagate_eq", false);
|
|
}
|
|
|
|
void collect_param_descrs(param_descrs& r) override {
|
|
r.insert("propagate-eq", CPK_BOOL, "propagate equalities from inequalities", "false");
|
|
}
|
|
|
|
bool assert_expr(expr * t, bool sign) override {
|
|
return assert_expr_core(t, sign);
|
|
}
|
|
|
|
void operator()(expr_ref& r) override {
|
|
expr_ref result(m);
|
|
simplify_core(r, result);
|
|
if (result)
|
|
r = result;
|
|
}
|
|
|
|
void pop(unsigned num_scopes) override {
|
|
pop_core(num_scopes);
|
|
}
|
|
|
|
dom_simplifier * translate(ast_manager & m) override {
|
|
return alloc(dom_bv_bounds_simplifier, m, m_params);
|
|
}
|
|
|
|
unsigned scope_level() const override {
|
|
return m_scopes.size();
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
tactic * mk_bv_bounds_tactic(ast_manager & m, params_ref const & p) {
|
|
return clean(alloc(ctx_simplify_tactic, m, alloc(bv_bounds_simplifier, m, p), p));
|
|
}
|
|
|
|
tactic * mk_dom_bv_bounds_tactic(ast_manager & m, params_ref const & p) {
|
|
return clean(alloc(dom_simplify_tactic, m, alloc(dom_bv_bounds_simplifier, m, p), p));
|
|
}
|