3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

revise bv-bounds-tactic

- share common functionality
- rename propagate-bv-bounds-new to propagate-bv-bound2 for now
- expose configuration options in bounds propagation
This commit is contained in:
Nikolaj Bjorner 2023-01-22 14:41:53 -08:00
parent e2a6376ddf
commit dbc299efbb
4 changed files with 341 additions and 421 deletions

View file

@ -32,39 +32,35 @@ static uint64_t uMaxInt(unsigned sz) {
namespace {
struct interval {
// l < h: [l, h]
// l > h: [0, h] U [l, UMAX_INT]
uint64_t l = 0, h = 0;
template<typename T, typename Base>
struct interval_tpl : public Base {
T l, h;
unsigned sz = 0;
bool tight = true;
interval() {}
interval(uint64_t l, uint64_t h, unsigned sz, bool tight = false) : l(l), h(h), sz(sz), tight(tight) {
// canonicalize full set
if (is_wrapped() && l == h + 1) {
this->l = 0;
this->h = uMaxInt(sz);
}
SASSERT(invariant());
}
interval_tpl(T const& l, T const& h, unsigned sz, bool tight = false): l(l), h(h), sz(sz), tight(tight) {}
interval_tpl() {}
bool invariant() const {
return l <= uMaxInt(sz) && h <= uMaxInt(sz) && (!is_wrapped() || l != h+1);
return
0 <= l && (l <= Base::bound(sz)) &&
0 <= h && (h <= Base::bound(sz)) &&
(!is_wrapped() || l != h + 1);
}
bool is_full() const { return l == 0 && h == uMaxInt(sz); }
bool is_full() const {
return l == 0 && h == Base::bound(sz);
}
bool is_wrapped() const { return l > h; }
bool is_singleton() const { return l == h; }
bool operator==(const interval& b) const {
bool operator==(const interval_tpl<T, Base>& b) const {
SASSERT(sz == b.sz);
return l == b.l && h == b.h && tight == b.tight;
}
bool operator!=(const interval& b) const { return !(*this == b); }
bool operator!=(const interval_tpl& b) const { return !(*this == b); }
bool implies(const interval& b) const {
bool implies(const interval_tpl<T, Base>& b) const {
if (b.is_full())
return true;
else if (is_full())
@ -81,7 +77,7 @@ namespace {
}
/// return false if intersection is unsat
bool intersect(const interval& b, interval& result) const {
bool intersect(const interval_tpl<T, Base>& b, interval_tpl& result) const {
if (is_full() || *this == b) {
result = b;
return true;
@ -98,7 +94,7 @@ namespace {
else if (b.h >= l)
result = *this;
else
result = interval(std::max(l, b.l), std::min(h, b.h), sz);
result = interval_tpl(std::max(l, b.l), std::min(h, b.h), sz);
}
else
return b.intersect(*this, result);
@ -111,45 +107,145 @@ namespace {
if (h >= b.l && l <= b.h)
result = b;
else if (h >= b.l)
result = interval(b.l, h, sz);
result = interval_tpl(b.l, h, sz);
else {
// ... l .. b.h .. h .. b.l ...
SASSERT(l <= b.h);
result = interval(l, std::min(h, b.h), sz);
result = interval_tpl(l, std::min(h, b.h), sz);
}
} else {
if (l > b.h || h < b.l)
return false;
// 0 .. l.. l' ... h ... h'
result = interval(std::max(l, b.l), std::min(h, b.h), sz, tight && b.tight);
result = interval_tpl(std::max(l, b.l), std::min(h, b.h), sz, tight && b.tight);
}
return true;
}
/// return false if negation is empty
bool negate(interval& result) const {
bool negate(interval_tpl<T, Base>& result) const {
if (!tight)
result = interval(0, uMaxInt(sz), true);
result = interval_tpl(Base::zero(), Base::bound(sz), sz, true);
else if (is_full())
return false;
else if (l == 0)
result = interval(h + 1, uMaxInt(sz), sz);
else if (uMaxInt(sz) == h)
result = interval(0, l - 1, sz);
else if (l == 0 && Base::bound(sz) == h)
result = interval_tpl(Base::zero(), Base::bound(sz), sz);
else if (l == 0)
result = interval_tpl(h + 1, Base::bound(sz), sz);
else if (Base::bound(sz) == h)
result = interval_tpl(Base::zero(), l - 1, sz);
else
result = interval(h + 1, l - 1, sz);
result = interval_tpl(h + 1, l - 1, sz);
return true;
}
};
#ifdef _TRACE
std::ostream& operator<<(std::ostream& o, const interval& I) {
o << "[" << I.l << ", " << I.h << "]";
return o;
}
#endif
struct rinterval_base {
static rational bound(unsigned sz) {
return rational::power_of_two(sz) - 1;
}
static rational zero() { return rational::zero(); }
};
struct rinterval : public interval_tpl<rational, rinterval_base> {
rinterval(rational const& l, rational const& h, unsigned sz, bool tight = false) {
this->l = l; this->h = h; this->sz = sz; this->tight = tight;
}
rinterval() { l = 0; h = 0; tight = true; }
};
struct iinterval_base {
static uint64_t bound(unsigned sz) { return uMaxInt(sz); }
static uint64_t zero() { return 0; }
};
struct iinterval : public interval_tpl<uint64_t, iinterval_base> {
iinterval(uint64_t l, uint64_t h, unsigned sz, bool tight = false) {
this->l = l; this->h = h; this->sz = sz; this->tight = tight;
}
iinterval() { l = 0; h = 0; sz = 0; tight = true; }
};
struct interval {
bool is_small = true;
iinterval i;
rinterval r;
interval() {}
interval(rational const& l, rational const& h, unsigned sz, bool tight = false) {
if (sz <= 64) {
is_small = true;
i.l = l.get_uint64();
i.h = h.get_uint64();
i.tight = tight;
i.sz = sz;
}
else {
is_small = false;
r.l = l;
r.h = h;
r.tight = tight;
r.sz = sz;
}
}
unsigned size() const {
return is_small ? i.sz : r.sz;
}
bool negate(interval& result) const {
result.is_small = is_small;
if (is_small)
return i.negate(result.i);
else
return r.negate(result.r);
}
bool intersect(interval const& b, interval & result) const {
result.is_small = is_small;
SASSERT(b.is_small == is_small);
if (is_small)
return i.intersect(b.i, result.i);
else
return r.intersect(b.r, result.r);
}
bool operator==(interval const& other) const {
SASSERT(is_small == other.is_small);
return is_small ? i == other.i : r == other.r;
}
bool operator!=(interval const& other) const {
return !(*this == other);
}
bool is_singleton() const { return is_small ? i.is_singleton() : r.is_singleton(); }
bool is_full() const { return is_small ? i.is_full() : r.is_full(); }
bool tight() const { return is_small ? i.tight : r.tight; }
bool implies(const interval& b) const {
SASSERT(is_small == b.is_small);
return is_small ? i.implies(b.i) : r.implies(b.r);
}
rational lo() const { return is_small ? rational(i.l, rational::ui64()) : r.l; }
rational hi() const { return is_small ? rational(i.h, rational::ui64()) : r.h; }
};
std::ostream& operator<<(std::ostream& o, const interval& I) {
if (I.is_small)
return o << "[" << I.i.l << ", " << I.i.h << "]";
else
return o << "[" << I.r.l << ", " << I.r.h << "]";
}
struct undo_bound {
expr* e = nullptr;
@ -158,113 +254,100 @@ namespace {
undo_bound(expr* e, const interval& b, bool fresh) : e(e), b(b), fresh(fresh) {}
};
class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier {
struct bv_bounds_base {
typedef obj_map<expr, interval> map;
typedef obj_map<expr, bool> expr_set;
typedef obj_map<expr, unsigned> expr_cnt;
ast_manager& m;
params_ref m_params;
bool m_propagate_eq = false;
bv_util m_bv;
vector<undo_bound> m_scopes;
map m_bound;
svector<expr_set*> m_expr_vars;
svector<expr_cnt*> m_bound_exprs;
map m_bound;
bool m_propagate_eq = false;
bool is_number(expr *e, uint64_t& n, unsigned& sz) const {
rational r;
if (m_bv.is_numeral(e, r, sz) && sz <= 64) {
n = r.get_uint64();
return true;
}
return false;
bv_bounds_base(ast_manager& m):m(m), m_bv(m) {}
virtual ~bv_bounds_base() {
for (auto* e : m_expr_vars)
dealloc(e);
for (auto* b : m_bound_exprs)
dealloc(b);
}
bool is_bound(expr *e, expr*& v, interval& b) const {
uint64_t n;
rational r;
expr *lhs = nullptr, *rhs = nullptr;
unsigned sz;
if (m_bv.is_bv_ule(e, lhs, rhs)) {
if (is_number(lhs, n, sz)) { // C ule x <=> x uge C
if (m_bv.is_numeral(lhs, r, sz)) { // C ule x <=> x uge C
if (m_bv.is_numeral(rhs))
return false;
b = interval(n, uMaxInt(sz), sz, true);
b = interval(r, rational::power_of_two(sz) - 1, sz, true);
v = rhs;
return true;
return true;
}
if (is_number(rhs, n, sz)) { // x ule C
b = interval(0, n, sz, true);
if (m_bv.is_numeral(rhs, r, sz)) { // x ule C
b = interval(rational::zero(), r, sz, true);
v = lhs;
return true;
}
// TBD: x + s <= x + q
// x + s <= x
// x <= x + q
}
else if (m_bv.is_bv_sle(e, lhs, rhs)) {
if (is_number(lhs, n, sz)) { // C sle x <=> x sge C
if (m_bv.is_numeral(lhs, r, sz)) { // C sle x <=> x sge C
if (m_bv.is_numeral(rhs))
return false;
b = interval(n, (1ull << (sz-1)) - 1, sz, true);
b = interval(r, rational::power_of_two(sz-1) - 1, sz, true);
v = rhs;
return true;
}
if (is_number(rhs, n, sz)) { // x sle C
b = interval(1ull << (sz-1), n, sz, true);
if (m_bv.is_numeral(rhs, r, sz)) { // x sle C
b = interval(rational::power_of_two(sz-1), r, sz, true);
v = lhs;
return true;
}
// TBD: other cases for forbidden intervals
}
else if (m.is_eq(e, lhs, rhs)) {
if (is_number(lhs, n, sz)) {
if (m_bv.is_numeral(rhs))
return false;
b = interval(n, n, sz, true);
if (m_bv.is_numeral(rhs))
std::swap(lhs, rhs);
if (m_bv.is_numeral(rhs))
return false;
if (m_bv.is_numeral(lhs, r, sz)) {
unsigned lo, hi;
expr* rhs2;
if (m_bv.is_extract(rhs, lo, hi, rhs2) && r == 0) {
unsigned sz2 = m_bv.get_bv_size(rhs2);
if (sz2 - 1 == hi) {
b = interval(rational::zero(), rational::power_of_two(lo) - 1, sz2, false);
v = rhs2;
return true;
}
}
b = interval(r, r, sz, true);
v = rhs;
return true;
}
if (is_number(rhs, n, sz)) {
b = interval(n, n, sz, true);
v = lhs;
return true;
}
}
return false;
}
public:
bv_bounds_simplifier(ast_manager& m, params_ref const& p) : m(m), m_params(p), m_bv(m) {
updt_params(p);
}
void updt_params(params_ref const & p) override {
m_propagate_eq = p.get_bool("propagate_eq", false);
}
static void get_param_descrs(param_descrs& r) {
r.insert("propagate-eq", CPK_BOOL, "propagate equalities from inequalities", "false");
}
~bv_bounds_simplifier() override {
for (auto* v : m_expr_vars) dealloc(v);
for (auto* b : m_bound_exprs) dealloc(b);
}
bool assert_expr(expr * t, bool sign) override {
TRACE("bv", tout << expr_ref(t, m) << "\n";);
while (m.is_not(t, t)) {
sign = !sign;
}
bool assert_expr_core(expr * t, bool sign) {
while (m.is_not(t, t))
sign = !sign;
interval b;
expr* t1;
if (is_bound(t, t1, b)) {
SASSERT(!m_bv.is_numeral(t1));
if (sign) {
if (!b.negate(b)) {
return false;
}
}
SASSERT(m_bv.get_bv_size(t1) == b.size());
SASSERT(!m_bv.is_numeral(t1));
if (sign && !b.negate(b))
return false;
TRACE("bv", tout << (sign?"(not ":"") << mk_pp(t, m) << (sign ? ")" : "") << ": " << mk_pp(t1, m) << " in " << b << "\n";);
map::obj_map_entry* e = m_bound.find_core(t1);
@ -275,22 +358,44 @@ namespace {
return false;
if (old == intr)
return true;
m_scopes.insert(undo_bound(t1, old, false));
m_scopes.push_back(undo_bound(t1, old, false));
old = intr;
} else {
SASSERT(old.size() == m_bv.get_bv_size(t1));
}
else {
SASSERT(b.size() == m_bv.get_bv_size(t1));
m_bound.insert(t1, b);
m_scopes.insert(undo_bound(t1, interval(), true));
m_scopes.push_back(undo_bound(t1, interval(), true));
}
}
return true;
}
bool simplify(expr* t, expr_ref& result) override {
//
// x + q <= s <=> x not in [s - q + 1, -q[
// <=> x in [-q, s - q], s != -1
//
// x in [lo, hi]
// q = -lo
// hi = s + lo => s = hi - lo
// hi - lo != -1
//
expr_ref mk_bound(expr* t, rational const& lo, rational const& hi) {
sort* s = t->get_sort();
if (lo == hi + 1)
return expr_ref(m.mk_true(), m);
else
return expr_ref(m_bv.mk_ule(m_bv.mk_bv_add(t, m_bv.mk_numeral(-lo, s)), m_bv.mk_numeral(hi - lo, s)), m);
}
bool simplify_core(expr* t, expr_ref& result) {
expr* t1;
interval b;
if (m_bound.find(t, b) && b.is_singleton()) {
result = m_bv.mk_numeral(b.l, m_bv.get_bv_size(t));
result = m_bv.mk_numeral(b.lo(), m_bv.get_bv_size(t));
return true;
}
@ -298,14 +403,13 @@ namespace {
return false;
bool sign = false;
while (m.is_not(t, t)) {
while (m.is_not(t, t))
sign = !sign;
}
if (!is_bound(t, t1, b))
return false;
if (sign && b.tight) {
if (sign && b.tight()) {
sign = false;
if (!b.negate(b)) {
result = m.mk_false();
@ -316,24 +420,26 @@ namespace {
interval ctx, intr;
result = nullptr;
if (b.is_full() && b.tight) {
if (b.is_full() && b.tight())
result = m.mk_true();
} else if (m_bound.find(t1, ctx)) {
if (ctx.implies(b)) {
result = m.mk_true();
}
else if (!b.intersect(ctx, intr)) {
result = m.mk_false();
}
else if (m_propagate_eq && intr.is_singleton()) {
result = m.mk_eq(t1, m_bv.mk_numeral(rational(intr.l, rational::ui64()), t1->get_sort()));
}
else if (!m_bound.find(t1, ctx)) {
}
else if (ctx.implies(b))
result = m.mk_true();
else if (!b.intersect(ctx, intr))
result = m.mk_false();
else if (m_propagate_eq && intr.is_singleton())
result = m.mk_eq(t1, m_bv.mk_numeral(intr.lo(), t1->get_sort()));
else if (false && intr != b)
result = mk_bound(t1, intr.lo(), intr.hi());
else {
TRACE("bv", tout << mk_pp(t, m) << " b: " << b << " ctx: " << ctx << " intr " << intr << "\n");
}
CTRACE("bv", result != 0, tout << mk_pp(t, m) << " " << b << " (ctx: " << ctx << ") (intr: " << intr << "): " << result << "\n";);
if (sign && result != 0)
CTRACE("bv", result, tout << mk_pp(t, m) << " " << b << " (ctx: " << ctx << ") (intr: " << intr << "): " << result << "\n";);
if (sign && result)
result = m.mk_not(result);
return result != 0;
return result != nullptr;
}
// check if t contains v
@ -344,18 +450,16 @@ namespace {
while (!todo.empty()) {
t = todo.back();
todo.pop_back();
if (mark.is_marked(t)) {
continue;
}
if (mark.is_marked(t))
continue;
if (t == v) {
todo.reset();
return true;
}
mark.mark(t);
if (!is_app(t)) {
continue;
}
if (!is_app(t))
continue;
app* a = to_app(t);
todo.append(a->get_num_args(), a->get_args());
}
@ -398,293 +502,7 @@ namespace {
return false;
}
bool may_simplify(expr* t) override {
if (m_bv.is_numeral(t))
return false;
while (m.is_not(t, t));
for (auto & v : m_bound) {
if (contains(t, v.m_key)) return true;
}
expr* t1;
interval b;
// skip common case: single bound constraint without any context for simplification
if (is_bound(t, t1, b)) {
return b.is_full() || m_bound.contains(t1);
}
if (contains_bound(t)) {
return true;
}
return false;
}
void pop(unsigned num_scopes) override {
TRACE("bv", tout << "pop: " << num_scopes << "\n";);
if (m_scopes.empty())
return;
unsigned target = m_scopes.size() - num_scopes;
if (target == 0) {
m_bound.reset();
m_scopes.reset();
return;
}
for (unsigned i = m_scopes.size()-1; i >= target; --i) {
undo_bound& undo = m_scopes[i];
SASSERT(m_bound.contains(undo.e));
if (undo.fresh) {
m_bound.erase(undo.e);
} else {
m_bound.insert(undo.e, undo.b);
}
}
m_scopes.shrink(target);
}
simplifier * translate(ast_manager & m) override {
return alloc(bv_bounds_simplifier, m, m_params);
}
unsigned scope_level() const override {
return m_scopes.size();
}
};
class dom_bv_bounds_simplifier : public dom_simplifier {
typedef obj_map<expr, interval> map;
typedef obj_map<expr, bool> expr_set;
typedef obj_map<expr, unsigned> expr_cnt;
ast_manager& m;
params_ref m_params;
bool m_propagate_eq;
bv_util m_bv;
vector<undo_bound> m_scopes;
map m_bound;
svector<expr_set*> m_expr_vars;
svector<expr_cnt*> m_bound_exprs;
bool is_number(expr *e, uint64_t& n, unsigned& sz) const {
rational r;
if (m_bv.is_numeral(e, r, sz) && sz <= 64) {
n = r.get_uint64();
return true;
}
return false;
}
bool is_bound(expr *e, expr*& v, interval& b) const {
uint64_t n;
expr *lhs = nullptr, *rhs = nullptr;
unsigned sz = 0;
if (m_bv.is_bv_ule(e, lhs, rhs)) {
if (is_number(lhs, n, sz)) { // C ule x <=> x uge C
if (m_bv.is_numeral(rhs))
return false;
b = interval(n, uMaxInt(sz), sz, true);
v = rhs;
return true;
}
if (is_number(rhs, n, sz)) { // x ule C
b = interval(0, n, sz, true);
v = lhs;
return true;
}
}
else if (m_bv.is_bv_sle(e, lhs, rhs)) {
if (is_number(lhs, n, sz)) { // C sle x <=> x sge C
if (m_bv.is_numeral(rhs))
return false;
b = interval(n, (1ull << (sz-1)) - 1, sz, true);
v = rhs;
return true;
}
if (is_number(rhs, n, sz)) { // x sle C
b = interval(1ull << (sz-1), n, sz, true);
v = lhs;
return true;
}
} else if (m.is_eq(e, lhs, rhs)) {
if (is_number(lhs, n, sz)) {
if (m_bv.is_numeral(rhs))
return false;
b = interval(n, n, sz, true);
v = rhs;
return true;
}
if (is_number(rhs, n, sz)) {
b = interval(n, n, sz, true);
v = lhs;
return true;
}
}
return false;
}
public:
dom_bv_bounds_simplifier(ast_manager& m, params_ref const& p) : m(m), m_params(p), m_bv(m) {
updt_params(p);
}
virtual void updt_params(params_ref const & p) {
m_propagate_eq = p.get_bool("propagate_eq", false);
}
static void get_param_descrs(param_descrs& r) {
r.insert("propagate-eq", CPK_BOOL, "propagate equalities from inequalities", "false");
}
~dom_bv_bounds_simplifier() override {
for (auto* e : m_expr_vars)
dealloc(e);
for (auto* b : m_bound_exprs)
dealloc(b);
}
bool assert_expr(expr * t, bool sign) override {
while (m.is_not(t, t))
sign = !sign;
interval b;
expr* t1;
if (is_bound(t, t1, b)) {
SASSERT(!m_bv.is_numeral(t1));
if (sign)
VERIFY(b.negate(b));
TRACE("bv", tout << (sign?"(not ":"") << mk_pp(t, m) << (sign ? ")" : "") << ": " << mk_pp(t1, m) << " in " << b << "\n";);
map::obj_map_entry* e = m_bound.find_core(t1);
if (e) {
interval& old = e->get_data().m_value;
interval intr;
if (!old.intersect(b, intr))
return false;
if (old == intr)
return true;
m_scopes.push_back(undo_bound(t1, old, false));
old = intr;
}
else {
m_bound.insert(t1, b);
m_scopes.push_back(undo_bound(t1, interval(), true));
}
}
return true;
}
void operator()(expr_ref& r) override {
expr* t1, * t = r;
interval b;
if (m_bound.find(t, b) && b.is_singleton()) {
r = m_bv.mk_numeral(b.l, m_bv.get_bv_size(t));
return;
}
if (!m.is_bool(t))
return;
bool sign = false;
while (m.is_not(t, t))
sign = !sign;
if (!is_bound(t, t1, b))
return;
if (sign && b.tight) {
sign = false;
if (!b.negate(b)) {
r = m.mk_false();
return;
}
}
interval ctx, intr;
bool was_updated = true;
if (b.is_full() && b.tight)
r = m.mk_true();
else if (m_bound.find(t1, ctx)) {
if (ctx.implies(b))
r = m.mk_true();
else if (!b.intersect(ctx, intr))
r = m.mk_false();
else if (m_propagate_eq && intr.is_singleton())
r = m.mk_eq(t1, m_bv.mk_numeral(rational(intr.l, rational::ui64()),
t1->get_sort()));
else
was_updated = false;
}
else
was_updated = false;
TRACE("bv", tout << mk_pp(t, m) << " " << b << " (ctx: " << ctx << ") (intr: " << intr << "): " << r << "\n";);
if (sign && was_updated)
r = m.mk_not(r);
}
// check if t contains v
ptr_vector<expr> todo;
bool contains(expr* t, expr* v) {
ast_fast_mark1 mark;
todo.push_back(t);
while (!todo.empty()) {
t = todo.back();
todo.pop_back();
if (mark.is_marked(t))
continue;
if (t == v) {
todo.reset();
return true;
}
mark.mark(t);
if (!is_app(t))
continue;
app* a = to_app(t);
todo.append(a->get_num_args(), a->get_args());
}
return false;
}
bool contains_bound(expr* t) {
ast_fast_mark1 mark1;
ast_fast_mark2 mark2;
todo.push_back(t);
while (!todo.empty()) {
t = todo.back();
todo.pop_back();
if (mark1.is_marked(t))
continue;
mark1.mark(t);
if (!is_app(t))
continue;
interval b;
expr* e;
if (is_bound(t, e, b)) {
if (mark2.is_marked(e)) {
todo.reset();
return true;
}
mark2.mark(e);
if (m_bound.contains(e)) {
todo.reset();
return true;
}
}
app* a = to_app(t);
todo.append(a->get_num_args(), a->get_args());
}
return false;
}
void pop(unsigned num_scopes) override {
void pop_core(unsigned num_scopes) {
TRACE("bv", tout << "pop: " << num_scopes << "\n";);
if (m_scopes.empty())
return;
@ -705,16 +523,110 @@ namespace {
m_scopes.shrink(target);
}
dom_simplifier * translate(ast_manager & m) override {
return alloc(dom_bv_bounds_simplifier, m, m_params);
};
class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier, public bv_bounds_base {
params_ref m_params;
public:
bv_bounds_simplifier(ast_manager& m, params_ref const& p) : bv_bounds_base(m), m_params(p) {
updt_params(p);
}
void updt_params(params_ref const & p) override {
m_propagate_eq = p.get_bool("propagate_eq", false);
}
static void get_param_descrs(param_descrs& r) {
r.insert("propagate-eq", CPK_BOOL, "propagate equalities from inequalities", "false");
}
~bv_bounds_simplifier() override {}
bool assert_expr(expr * t, bool sign) override {
return assert_expr_core(t, sign);
}
bool simplify(expr* t, expr_ref& result) override {
return simplify_core(t, result);
}
bool may_simplify(expr* t) override {
if (m_bv.is_numeral(t))
return false;
while (m.is_not(t, t));
for (auto & v : m_bound)
if (contains(t, v.m_key))
return true;
expr* t1;
interval b;
// skip common case: single bound constraint without any context for simplification
if (is_bound(t, t1, b))
return b.is_full() || m_bound.contains(t1);
return contains_bound(t);
}
void pop(unsigned num_scopes) override {
pop_core(num_scopes);
}
simplifier * translate(ast_manager & m) override {
return alloc(bv_bounds_simplifier, m, m_params);
}
unsigned scope_level() const override {
return m_scopes.size();
}
};
class dom_bv_bounds_simplifier : public dom_simplifier, public bv_bounds_base {
params_ref m_params;
public:
dom_bv_bounds_simplifier(ast_manager& m, params_ref const& p) : bv_bounds_base(m), m_params(p) {
updt_params(p);
}
~dom_bv_bounds_simplifier() override {
}
void updt_params(params_ref const & p) override {
m_propagate_eq = p.get_bool("propagate_eq", false);
}
void collect_param_descrs(param_descrs& r) override {
r.insert("propagate-eq", CPK_BOOL, "propagate equalities from inequalities", "false");
}
bool assert_expr(expr * t, bool sign) override {
return assert_expr_core(t, sign);
}
void operator()(expr_ref& r) override {
expr_ref result(m);
simplify_core(r, result);
if (result)
r = result;
}
void pop(unsigned num_scopes) override {
pop_core(num_scopes);
}
dom_simplifier * translate(ast_manager & m) override {
return alloc(dom_bv_bounds_simplifier, m, m_params);
}
unsigned scope_level() const override {
return m_scopes.size();
}
};
}
tactic * mk_bv_bounds_tactic(ast_manager & m, params_ref const & p) {

View file

@ -46,7 +46,7 @@ tactic * mk_dom_bv_bounds_tactic(ast_manager & m, params_ref const & p = params_
ADD_TACTIC("propagate-bv-bounds", "propagate bit-vector bounds by simplifying implied or contradictory bounds.", "mk_bv_bounds_tactic(m, p)")
ADD_TACTIC("propagate-bv-bounds-new", "propagate bit-vector bounds by simplifying implied or contradictory bounds.", "mk_dom_bv_bounds_tactic(m, p)")
ADD_TACTIC("propagate-bv-bounds2", "propagate bit-vector bounds by simplifying implied or contradictory bounds.", "mk_dom_bv_bounds_tactic(m, p)")
*/

View file

@ -542,6 +542,10 @@ class expr_substitution_simplifier : public dom_simplifier {
public:
expr_substitution_simplifier(ast_manager& m): m(m), m_subst(m), m_scoped_substitution(m_subst), m_trail(m) {}
void updt_params(params_ref const & p) override {}
void collect_param_descrs(param_descrs& r) override {}
bool assert_expr(expr * t, bool sign) override {
expr* tt;
if (m.is_not(t, tt))

View file

@ -105,9 +105,13 @@ class dom_simplifier {
virtual dom_simplifier * translate(ast_manager & m) = 0;
virtual unsigned scope_level() const = 0;
virtual void updt_params(params_ref const & p) = 0;
virtual void collect_param_descrs(param_descrs& r) = 0;
};
class dom_simplify_tactic : public tactic {
ast_manager& m;
dom_simplifier* m_simplifier;
@ -156,13 +160,13 @@ public:
char const* name() const override { return "dom_simplify"; }
tactic * translate(ast_manager & m) override;
void updt_params(params_ref const & p) override {}
static void get_param_descrs(param_descrs & r) {}
void collect_param_descrs(param_descrs & r) override { get_param_descrs(r); }
void updt_params(params_ref const & p) override { m_simplifier->updt_params(p); }
void collect_param_descrs(param_descrs & r) override { m_simplifier->collect_param_descrs(r); }
void operator()(goal_ref const & in, goal_ref_buffer & result) override;
void cleanup() override;
};
tactic * mk_dom_simplify_tactic(ast_manager & m, params_ref const & p = params_ref());
/*