3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-31 03:32:28 +00:00
z3/src/ast/finite_set_decl_plugin.cpp
Nikolaj Bjorner d847a28589 bug fixes
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-10-27 05:51:42 +01:00

310 lines
11 KiB
C++

/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
finite_set_decl_plugin.cpp
Abstract:
Declaration plugin for finite sets
Author:
GitHub Copilot Agent 2025
Revision History:
--*/
#include<sstream>
#include "ast/finite_set_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/array_decl_plugin.h"
#include "ast/polymorphism_util.h"
#include "ast/ast_pp.h"
#include "util/warning.h"
finite_set_decl_plugin::finite_set_decl_plugin():
m_init(false) {
}
finite_set_decl_plugin::~finite_set_decl_plugin() {
for (polymorphism::psig* s : m_sigs)
dealloc(s);
}
void finite_set_decl_plugin::init() {
if (m_init) return;
ast_manager& m = *m_manager;
array_util autil(m);
m_init = true;
sort* A = m.mk_type_var(symbol("A"));
sort* B = m.mk_type_var(symbol("B"));
parameter paramA(A);
parameter paramB(B);
sort* setA = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, &paramA);
sort* setB = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, &paramB);
sort* boolT = m.mk_bool_sort();
sort* intT = arith_util(m).mk_int();
parameter paramInt(intT);
sort* setInt = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, &paramInt);
sort* arrAB = autil.mk_array_sort(A, B);
sort* arrABool = autil.mk_array_sort(A, boolT);
sort* setAsetA[2] = { setA, setA };
sort* AsetA[2] = { A, setA };
sort* arrABsetA[2] = { arrAB, setA };
sort* arrABoolsetA[2] = { arrABool, setA };
sort* intintT[2] = { intT, intT };
m_sigs.resize(LAST_FINITE_SET_OP);
m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, "set.empty", 1, 0, nullptr, setA);
m_sigs[OP_FINITE_SET_SINGLETON] = alloc(polymorphism::psig, m, "set.singleton", 1, 1, &A, setA);
m_sigs[OP_FINITE_SET_UNION] = alloc(polymorphism::psig, m, "set.union", 1, 2, setAsetA, setA);
m_sigs[OP_FINITE_SET_INTERSECT] = alloc(polymorphism::psig, m, "set.intersect", 1, 2, setAsetA, setA);
m_sigs[OP_FINITE_SET_DIFFERENCE] = alloc(polymorphism::psig, m, "set.difference", 1, 2, setAsetA, setA);
m_sigs[OP_FINITE_SET_IN] = alloc(polymorphism::psig, m, "set.in", 1, 2, AsetA, boolT);
m_sigs[OP_FINITE_SET_SIZE] = alloc(polymorphism::psig, m, "set.size", 1, 1, &setA, intT);
m_sigs[OP_FINITE_SET_SUBSET] = alloc(polymorphism::psig, m, "set.subset", 1, 2, setAsetA, boolT);
m_sigs[OP_FINITE_SET_MAP] = alloc(polymorphism::psig, m, "set.map", 2, 2, arrABsetA, setB);
m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, "set.filter", 1, 2, arrABoolsetA, setA);
m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, "set.range", 0, 2, intintT, setInt);
m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, "set.diff", 1, 2, setAsetA, A);
// m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
}
sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
if (k == FINITE_SET_SORT) {
if (num_parameters != 1) {
m_manager->raise_exception("FiniteSet sort expects exactly one parameter (element sort)");
return nullptr;
}
if (!parameters[0].is_ast() || !is_sort(parameters[0].get_ast())) {
m_manager->raise_exception("FiniteSet sort parameter must be a sort");
return nullptr;
}
sort * element_sort = to_sort(parameters[0].get_ast());
sort_size sz;
// Compute the size of the finite_set sort based on the element sort
sort_size const& elem_sz = element_sort->get_num_elements();
if (elem_sz.is_finite() && !elem_sz.is_very_big()) {
uint64_t elem_size = elem_sz.size();
// If elem_size > 30, the powerset would be > 2^30, so mark as very_big
if (elem_size > 30) {
sz = sort_size::mk_very_big();
}
else {
// Compute 2^elem_size
sz = sort_size(rational::power_of_two(static_cast<unsigned>(elem_size)));
}
}
else {
// If element sort is infinite or very_big, the finite_set has the same size
sz = elem_sz;
}
sort_info info(m_family_id, FINITE_SET_SORT, sz, num_parameters, parameters);
return m_manager->mk_sort(symbol("FiniteSet"), info);
}
m_manager->raise_exception("unknown finite set sort");
return nullptr;
}
bool finite_set_decl_plugin::is_finite_set(sort* s) const {
return s->get_family_id() == m_family_id && s->get_decl_kind() == FINITE_SET_SORT;
}
sort * finite_set_decl_plugin::get_element_sort(sort* finite_set_sort) const {
if (!is_finite_set(finite_set_sort)) {
return nullptr;
}
if (finite_set_sort->get_num_parameters() != 1) {
return nullptr;
}
parameter const* params = finite_set_sort->get_parameters();
if (!params[0].is_ast() || !is_sort(params[0].get_ast())) {
return nullptr;
}
return to_sort(params[0].get_ast());
}
func_decl * finite_set_decl_plugin::mk_empty(sort* finite_set_sort) {
parameter param(finite_set_sort);
if (!is_finite_set(finite_set_sort))
m_manager->raise_exception("set.empty range must be a finite set sort");
sort * const * no_domain = nullptr;
return m_manager->mk_func_decl(m_sigs[OP_FINITE_SET_EMPTY]->m_name, 0u, no_domain, finite_set_sort,
func_decl_info(m_family_id, OP_FINITE_SET_EMPTY, 1, &param));
}
func_decl * finite_set_decl_plugin::mk_finite_set_op(decl_kind k, unsigned arity, sort * const * domain, sort* range) {
ast_manager& m = *m_manager;
polymorphism::util poly_util(m);
sort_ref rng(m);
poly_util.match(*m_sigs[k], arity, domain, range, rng);
func_decl_info info(m_family_id, k);
if (k == OP_FINITE_SET_UNION || k == OP_FINITE_SET_INTERSECT) {
info.set_commutative(true);
info.set_associative(true);
}
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, info);
}
func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
parameter const * parameters,
unsigned arity, sort * const * domain,
sort * range) {
init();
switch (k) {
case OP_FINITE_SET_EMPTY:
if (!range) {
if ((num_parameters != 1 || !parameters[0].is_ast() || !is_sort(parameters[0].get_ast()))) {
m_manager->raise_exception("set.empty requires one sort parameter");
return nullptr;
}
range = to_sort(parameters[0].get_ast());
}
return mk_empty(range);
case OP_FINITE_SET_UNION:
case OP_FINITE_SET_INTERSECT:
return mk_finite_set_op(k, 2, domain, range);
case OP_FINITE_SET_SINGLETON:
case OP_FINITE_SET_DIFFERENCE:
case OP_FINITE_SET_IN:
case OP_FINITE_SET_SIZE:
case OP_FINITE_SET_SUBSET:
case OP_FINITE_SET_MAP:
case OP_FINITE_SET_FILTER:
case OP_FINITE_SET_RANGE:
case OP_FINITE_SET_EXT:
return mk_finite_set_op(k, arity, domain, range);
default:
return nullptr;
}
}
void finite_set_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol const & logic) {
init();
for (unsigned i = 0; i < m_sigs.size(); ++i) {
if (m_sigs[i])
op_names.push_back(builtin_name(m_sigs[i]->m_name.str(), i));
}
}
void finite_set_decl_plugin::get_sort_names(svector<builtin_name>& sort_names, symbol const & logic) {
sort_names.push_back(builtin_name("FiniteSet", FINITE_SET_SORT));
}
expr * finite_set_decl_plugin::get_some_value(sort * s) {
if (is_finite_set(s)) {
// Return empty set for the given sort
parameter param(s);
return m_manager->mk_app(m_family_id, OP_FINITE_SET_EMPTY, 1, &param, 0, nullptr);
}
return nullptr;
}
bool finite_set_decl_plugin::is_fully_interp(sort * s) const {
SASSERT(is_finite_set(s));
sort* element_sort = get_element_sort(s);
return element_sort && m_manager->is_fully_interp(element_sort);
}
bool finite_set_decl_plugin::is_value(app * e) const {
// Check if e is a union of either empty sets or singleton sets,
// where the singleton member is a value.
// Use ptr_buffer and expr_fast_mark1 to avoid exponential overhead.
ptr_buffer<expr> todo;
expr_fast_mark1 visited;
todo.push_back(e);
while (!todo.empty()) {
expr* current = todo.back();
todo.pop_back();
// Skip if already visited
if (visited.is_marked(current))
continue;
visited.mark(current);
// Check if current is an app
if (!is_app(current))
return false;
app* a = to_app(current);
// Check if it's an empty set
if (is_app_of(a, m_family_id, OP_FINITE_SET_EMPTY))
continue;
// Check if it's a singleton with a value element
if (is_app_of(a, m_family_id, OP_FINITE_SET_SINGLETON)) {
if (a->get_num_args() != 1)
return false;
expr* elem = a->get_arg(0);
if (!m_manager->is_value(elem))
return false;
continue;
}
bool is_setop =
is_app_of(a, m_family_id, OP_FINITE_SET_UNION)
|| is_app_of(a, m_family_id, OP_FINITE_SET_INTERSECT)
|| is_app_of(a, m_family_id, OP_FINITE_SET_DIFFERENCE);
// Check if it's a union
if (is_setop) {
// Add arguments to todo list
for (auto arg : *a)
todo.push_back(arg);
continue;
}
if (is_app_of(a, m_family_id, OP_FINITE_SET_RANGE)) {
for (auto arg : *a)
if (!m_manager->is_value(arg))
return false;
continue;
}
// can add also ranges where lo and hi are values.
// If it's none of the above, it's not a value
return false;
}
return true;
}
bool finite_set_decl_plugin::is_unique_value(app* e) const {
// Empty set is a value
return is_app_of(e, m_family_id, OP_FINITE_SET_EMPTY) ||
(is_app_of(e, m_family_id, OP_FINITE_SET_SINGLETON) && is_unique_value(to_app(e->get_arg(0))));
}
bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const {
if (is_unique_value(e1) && is_unique_value(e2))
return e1 != e2;
finite_set_recognizers r(get_family_id());
if (r.is_empty(e1) && r.is_singleton(e2))
return true;
if (r.is_singleton(e1) && r.is_empty(e2))
return true;
if(r.is_singleton(e1) && r.is_singleton(e2))
return m_manager->are_distinct(e1, e2);
// TODO: could be extended to cases where we can prove the sets are different by containing one element
// that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
return false;
}
func_decl *finite_set_util::mk_range_decl() {
arith_util a(m_manager);
sort *i = a.mk_int();
sort *domain[2] = {i, i};
return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr);
}