/*++ Copyright (c) 2025 Microsoft Corporation Module Name: finite_set_decl_plugin.cpp Abstract: Declaration plugin for finite sets Author: GitHub Copilot Agent 2025 Revision History: --*/ #include #include "ast/finite_set_decl_plugin.h" #include "ast/arith_decl_plugin.h" #include "ast/array_decl_plugin.h" #include "ast/polymorphism_util.h" #include "ast/ast_pp.h" #include "util/warning.h" finite_set_decl_plugin::finite_set_decl_plugin(): m_init(false) { } finite_set_decl_plugin::~finite_set_decl_plugin() { for (polymorphism::psig* s : m_sigs) dealloc(s); } void finite_set_decl_plugin::init() { if (m_init) return; ast_manager& m = *m_manager; array_util autil(m); m_init = true; sort* A = m.mk_type_var(symbol("A")); sort* B = m.mk_type_var(symbol("B")); parameter paramA(A); parameter paramB(B); sort* setA = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, ¶mA); sort* setB = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, ¶mB); sort* boolT = m.mk_bool_sort(); sort* intT = arith_util(m).mk_int(); parameter paramInt(intT); sort* setInt = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, ¶mInt); sort* arrAB = autil.mk_array_sort(A, B); sort* arrABool = autil.mk_array_sort(A, boolT); sort* setAsetA[2] = { setA, setA }; sort* AsetA[2] = { A, setA }; sort* arrABsetA[2] = { arrAB, setA }; sort* arrABoolsetA[2] = { arrABool, setA }; sort* intintT[2] = { intT, intT }; m_sigs.resize(LAST_FINITE_SET_OP); m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, "set.empty", 1, 0, nullptr, setA); m_sigs[OP_FINITE_SET_SINGLETON] = alloc(polymorphism::psig, m, "set.singleton", 1, 1, &A, setA); m_sigs[OP_FINITE_SET_UNION] = alloc(polymorphism::psig, m, "set.union", 1, 2, setAsetA, setA); m_sigs[OP_FINITE_SET_INTERSECT] = alloc(polymorphism::psig, m, "set.intersect", 1, 2, setAsetA, setA); m_sigs[OP_FINITE_SET_DIFFERENCE] = alloc(polymorphism::psig, m, "set.difference", 1, 2, setAsetA, setA); m_sigs[OP_FINITE_SET_IN] = alloc(polymorphism::psig, m, "set.in", 1, 2, AsetA, boolT); m_sigs[OP_FINITE_SET_SIZE] = alloc(polymorphism::psig, m, "set.size", 1, 1, &setA, intT); m_sigs[OP_FINITE_SET_SUBSET] = alloc(polymorphism::psig, m, "set.subset", 1, 2, setAsetA, boolT); m_sigs[OP_FINITE_SET_MAP] = alloc(polymorphism::psig, m, "set.map", 2, 2, arrABsetA, setB); m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, "set.filter", 1, 2, arrABoolsetA, setA); m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, "set.range", 0, 2, intintT, setInt); m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, "set.diff", 1, 2, setAsetA, A); // m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A); } sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) { if (k == FINITE_SET_SORT) { if (num_parameters != 1) { m_manager->raise_exception("FiniteSet sort expects exactly one parameter (element sort)"); return nullptr; } if (!parameters[0].is_ast() || !is_sort(parameters[0].get_ast())) { m_manager->raise_exception("FiniteSet sort parameter must be a sort"); return nullptr; } sort * element_sort = to_sort(parameters[0].get_ast()); sort_size sz; // Compute the size of the finite_set sort based on the element sort sort_size const& elem_sz = element_sort->get_num_elements(); if (elem_sz.is_finite() && !elem_sz.is_very_big()) { uint64_t elem_size = elem_sz.size(); // If elem_size > 30, the powerset would be > 2^30, so mark as very_big if (elem_size > 30) { sz = sort_size::mk_very_big(); } else { // Compute 2^elem_size sz = sort_size(rational::power_of_two(static_cast(elem_size))); } } else { // If element sort is infinite or very_big, the finite_set has the same size sz = elem_sz; } sort_info info(m_family_id, FINITE_SET_SORT, sz, num_parameters, parameters); return m_manager->mk_sort(symbol("FiniteSet"), info); } m_manager->raise_exception("unknown finite set sort"); return nullptr; } bool finite_set_decl_plugin::is_finite_set(sort* s) const { return s->get_family_id() == m_family_id && s->get_decl_kind() == FINITE_SET_SORT; } sort * finite_set_decl_plugin::get_element_sort(sort* finite_set_sort) const { if (!is_finite_set(finite_set_sort)) { return nullptr; } if (finite_set_sort->get_num_parameters() != 1) { return nullptr; } parameter const* params = finite_set_sort->get_parameters(); if (!params[0].is_ast() || !is_sort(params[0].get_ast())) { return nullptr; } return to_sort(params[0].get_ast()); } func_decl * finite_set_decl_plugin::mk_empty(sort* finite_set_sort) { parameter param(finite_set_sort); if (!is_finite_set(finite_set_sort)) m_manager->raise_exception("set.empty range must be a finite set sort"); sort * const * no_domain = nullptr; return m_manager->mk_func_decl(m_sigs[OP_FINITE_SET_EMPTY]->m_name, 0u, no_domain, finite_set_sort, func_decl_info(m_family_id, OP_FINITE_SET_EMPTY, 1, ¶m)); } func_decl * finite_set_decl_plugin::mk_finite_set_op(decl_kind k, unsigned arity, sort * const * domain, sort* range) { ast_manager& m = *m_manager; polymorphism::util poly_util(m); sort_ref rng(m); poly_util.match(*m_sigs[k], arity, domain, range, rng); func_decl_info info(m_family_id, k); if (k == OP_FINITE_SET_UNION || k == OP_FINITE_SET_INTERSECT) { info.set_commutative(true); info.set_associative(true); } return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, info); } func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters, unsigned arity, sort * const * domain, sort * range) { init(); switch (k) { case OP_FINITE_SET_EMPTY: if (!range) { if ((num_parameters != 1 || !parameters[0].is_ast() || !is_sort(parameters[0].get_ast()))) { m_manager->raise_exception("set.empty requires one sort parameter"); return nullptr; } range = to_sort(parameters[0].get_ast()); } return mk_empty(range); case OP_FINITE_SET_UNION: case OP_FINITE_SET_INTERSECT: return mk_finite_set_op(k, 2, domain, range); case OP_FINITE_SET_SINGLETON: case OP_FINITE_SET_DIFFERENCE: case OP_FINITE_SET_IN: case OP_FINITE_SET_SIZE: case OP_FINITE_SET_SUBSET: case OP_FINITE_SET_MAP: case OP_FINITE_SET_FILTER: case OP_FINITE_SET_RANGE: case OP_FINITE_SET_EXT: return mk_finite_set_op(k, arity, domain, range); default: return nullptr; } } void finite_set_decl_plugin::get_op_names(svector& op_names, symbol const & logic) { init(); for (unsigned i = 0; i < m_sigs.size(); ++i) { if (m_sigs[i]) op_names.push_back(builtin_name(m_sigs[i]->m_name.str(), i)); } } void finite_set_decl_plugin::get_sort_names(svector& sort_names, symbol const & logic) { sort_names.push_back(builtin_name("FiniteSet", FINITE_SET_SORT)); } expr * finite_set_decl_plugin::get_some_value(sort * s) { if (is_finite_set(s)) { // Return empty set for the given sort parameter param(s); return m_manager->mk_app(m_family_id, OP_FINITE_SET_EMPTY, 1, ¶m, 0, nullptr); } return nullptr; } bool finite_set_decl_plugin::is_fully_interp(sort * s) const { SASSERT(is_finite_set(s)); sort* element_sort = get_element_sort(s); return element_sort && m_manager->is_fully_interp(element_sort); } bool finite_set_decl_plugin::is_value(app * e) const { // Check if e is a union of either empty sets or singleton sets, // where the singleton member is a value. // Use ptr_buffer and expr_fast_mark1 to avoid exponential overhead. ptr_buffer todo; expr_fast_mark1 visited; todo.push_back(e); while (!todo.empty()) { expr* current = todo.back(); todo.pop_back(); // Skip if already visited if (visited.is_marked(current)) continue; visited.mark(current); // Check if current is an app if (!is_app(current)) return false; app* a = to_app(current); // Check if it's an empty set if (is_app_of(a, m_family_id, OP_FINITE_SET_EMPTY)) continue; // Check if it's a singleton with a value element if (is_app_of(a, m_family_id, OP_FINITE_SET_SINGLETON)) { if (a->get_num_args() != 1) return false; expr* elem = a->get_arg(0); if (!m_manager->is_value(elem)) return false; continue; } bool is_setop = is_app_of(a, m_family_id, OP_FINITE_SET_UNION) || is_app_of(a, m_family_id, OP_FINITE_SET_INTERSECT) || is_app_of(a, m_family_id, OP_FINITE_SET_DIFFERENCE); // Check if it's a union if (is_setop) { // Add arguments to todo list for (auto arg : *a) todo.push_back(arg); continue; } if (is_app_of(a, m_family_id, OP_FINITE_SET_RANGE)) { for (auto arg : *a) if (!m_manager->is_value(arg)) return false; continue; } // can add also ranges where lo and hi are values. // If it's none of the above, it's not a value return false; } return true; } bool finite_set_decl_plugin::is_unique_value(app* e) const { // Empty set is a value return is_app_of(e, m_family_id, OP_FINITE_SET_EMPTY) || (is_app_of(e, m_family_id, OP_FINITE_SET_SINGLETON) && is_unique_value(to_app(e->get_arg(0)))); } bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const { if (is_unique_value(e1) && is_unique_value(e2)) return e1 != e2; finite_set_recognizers r(get_family_id()); if (r.is_empty(e1) && r.is_singleton(e2)) return true; if (r.is_singleton(e1) && r.is_empty(e2)) return true; if(r.is_singleton(e1) && r.is_singleton(e2)) return m_manager->are_distinct(e1, e2); // TODO: could be extended to cases where we can prove the sets are different by containing one element // that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b. return false; } func_decl *finite_set_util::mk_range_decl() { arith_util a(m_manager); sort *i = a.mk_int(); sort *domain[2] = {i, i}; return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr); }