mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 03:15:50 +00:00
* dev branch for simplification Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * bug fixes Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * bugfixes Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * fix factorization Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * separate out simplification functionality * reorder initialization Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * reorder initialization Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * Update README.md * initial warppers for seq-map/seq-fold Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * expose fold as well Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * add C++ bindings for sequence operations Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * add abs function to API Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * add parameter validation to ternary and 4-ary functions for API #7219 Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * add pre-processing and reorder Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * add pre-processing and reorder Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> --------- Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
681 lines
22 KiB
C++
681 lines
22 KiB
C++
/*
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
Author: Nikolaj Bjorner, Lev Nachmanson
|
|
*/
|
|
|
|
#ifndef SINGLE_THREAD
|
|
#include <thread>
|
|
#endif
|
|
#include <fstream>
|
|
#include "math/lp/lar_solver.h"
|
|
#include "math/lp/nra_solver.h"
|
|
#include "nlsat/nlsat_solver.h"
|
|
#include "math/polynomial/polynomial.h"
|
|
#include "math/polynomial/algebraic_numbers.h"
|
|
#include "util/map.h"
|
|
#include "util/uint_set.h"
|
|
#include "math/lp/nla_core.h"
|
|
#include "smt/params/smt_params_helper.hpp"
|
|
|
|
|
|
namespace nra {
|
|
|
|
typedef nla::mon_eq mon_eq;
|
|
|
|
typedef nla::variable_map_type variable_map_type;
|
|
|
|
struct solver::imp {
|
|
lp::lar_solver& lra;
|
|
reslimit& m_limit;
|
|
params_ref m_params;
|
|
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
|
|
indexed_uint_set m_term_set;
|
|
scoped_ptr<nlsat::solver> m_nlsat;
|
|
scoped_ptr<scoped_anum_vector> m_values; // values provided by LRA solver
|
|
scoped_ptr<scoped_anum> m_tmp1, m_tmp2;
|
|
nla::core& m_nla_core;
|
|
|
|
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
|
|
lra(s),
|
|
m_limit(lim),
|
|
m_params(p),
|
|
m_nla_core(nla_core) {}
|
|
|
|
bool need_check() {
|
|
return m_nla_core.m_to_refine.size() != 0;
|
|
}
|
|
|
|
indexed_uint_set m_mon_set, m_constraint_set;
|
|
|
|
struct occurs {
|
|
unsigned_vector constraints;
|
|
unsigned_vector monics;
|
|
unsigned_vector terms;
|
|
};
|
|
|
|
void init_cone_of_influence() {
|
|
indexed_uint_set visited;
|
|
unsigned_vector todo;
|
|
vector<occurs> var2occurs;
|
|
m_term_set.reset();
|
|
m_mon_set.reset();
|
|
m_constraint_set.reset();
|
|
|
|
for (auto ci : lra.constraints().indices()) {
|
|
auto const& c = lra.constraints()[ci];
|
|
for (auto const& [coeff, v] : c.coeffs()) {
|
|
var2occurs.reserve(v + 1);
|
|
var2occurs[v].constraints.push_back(ci);
|
|
}
|
|
}
|
|
|
|
for (auto const& m : m_nla_core.emons()) {
|
|
for (auto v : m.vars()) {
|
|
var2occurs.reserve(v + 1);
|
|
var2occurs[v].monics.push_back(m.var());
|
|
}
|
|
}
|
|
|
|
for (const auto *t : lra.terms() ) {
|
|
for (auto const iv : *t) {
|
|
auto v = iv.j();
|
|
var2occurs.reserve(v + 1);
|
|
var2occurs[v].terms.push_back(t->j());
|
|
}
|
|
}
|
|
|
|
for (auto const& m : m_nla_core.m_to_refine)
|
|
todo.push_back(m);
|
|
|
|
for (unsigned i = 0; i < todo.size(); ++i) {
|
|
auto v = todo[i];
|
|
if (visited.contains(v))
|
|
continue;
|
|
visited.insert(v);
|
|
var2occurs.reserve(v + 1);
|
|
for (auto ci : var2occurs[v].constraints) {
|
|
m_constraint_set.insert(ci);
|
|
auto const& c = lra.constraints()[ci];
|
|
for (auto const& [coeff, w] : c.coeffs())
|
|
todo.push_back(w);
|
|
}
|
|
for (auto w : var2occurs[v].monics)
|
|
todo.push_back(w);
|
|
|
|
for (auto ti : var2occurs[v].terms) {
|
|
for (auto iv : lra.get_term(ti))
|
|
todo.push_back(iv.j());
|
|
todo.push_back(ti);
|
|
}
|
|
|
|
if (lra.column_has_term(v)) {
|
|
m_term_set.insert(v);
|
|
for (auto kv : lra.get_term(v))
|
|
todo.push_back(kv.j());
|
|
}
|
|
|
|
if (m_nla_core.is_monic_var(v)) {
|
|
m_mon_set.insert(v);
|
|
for (auto w : m_nla_core.emons()[v])
|
|
todo.push_back(w);
|
|
}
|
|
}
|
|
}
|
|
|
|
void reset() {
|
|
m_values = nullptr;
|
|
m_tmp1 = nullptr; m_tmp2 = nullptr;
|
|
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
|
|
m_values = alloc(scoped_anum_vector, am());
|
|
m_term_set.reset();
|
|
m_lp2nl.reset();
|
|
}
|
|
|
|
/**
|
|
\brief one-shot nlsat check.
|
|
A one shot checker is the least functionality that can
|
|
enable non-linear reasoning.
|
|
In addition to checking satisfiability we would also need
|
|
to identify equalities in the model that should be assumed
|
|
with the remaining solver.
|
|
|
|
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
|
|
TBD: explore more incremental ways of applying nlsat (using assumptions)
|
|
*/
|
|
lbool check() {
|
|
SASSERT(need_check());
|
|
reset();
|
|
vector<nlsat::assumption, false> core;
|
|
|
|
init_cone_of_influence();
|
|
// add linear inequalities from lra_solver
|
|
for (auto ci : m_constraint_set)
|
|
add_constraint(ci);
|
|
|
|
// add polynomial definitions.
|
|
for (auto const& m : m_mon_set)
|
|
add_monic_eq(m_nla_core.emons()[m]);
|
|
|
|
// add term definitions.
|
|
for (unsigned i : m_term_set)
|
|
add_term(i);
|
|
|
|
TRACE("nra", m_nlsat->display(tout));
|
|
|
|
smt_params_helper p(m_params);
|
|
if (p.arith_nl_log()) {
|
|
static unsigned id = 0;
|
|
std::stringstream strm;
|
|
|
|
#ifndef SINGLE_THREAD
|
|
std::thread::id this_id = std::this_thread::get_id();
|
|
strm << "nla_" << this_id << "." << (++id) << ".smt2";
|
|
#else
|
|
strm << "nla_" << (++id) << ".smt2";
|
|
#endif
|
|
std::ofstream out(strm.str());
|
|
m_nlsat->display_smt2(out);
|
|
out << "(check-sat)\n";
|
|
out.close();
|
|
}
|
|
|
|
lbool r = l_undef;
|
|
statistics& st = m_nla_core.lp_settings().stats().m_st;
|
|
try {
|
|
r = m_nlsat->check();
|
|
}
|
|
catch (z3_exception&) {
|
|
if (m_limit.is_canceled()) {
|
|
r = l_undef;
|
|
}
|
|
else {
|
|
m_nlsat->collect_statistics(st);
|
|
throw;
|
|
}
|
|
}
|
|
m_nlsat->collect_statistics(st);
|
|
TRACE("nra",
|
|
m_nlsat->display(tout << r << "\n");
|
|
display(tout);
|
|
for (auto [j, x] : m_lp2nl) tout << "j" << j << " := x" << x << "\n";);
|
|
switch (r) {
|
|
case l_true:
|
|
m_nla_core.set_use_nra_model(true);
|
|
lra.init_model();
|
|
for (lp::constraint_index ci : lra.constraints().indices())
|
|
if (!check_constraint(ci)) {
|
|
IF_VERBOSE(0, verbose_stream() << "constraint " << ci << " violated\n";
|
|
lra.constraints().display(verbose_stream()));
|
|
UNREACHABLE();
|
|
return l_undef;
|
|
}
|
|
for (auto const& m : m_nla_core.emons()) {
|
|
if (!check_monic(m)) {
|
|
IF_VERBOSE(0, verbose_stream() << "monic " << m << " violated\n";
|
|
lra.constraints().display(verbose_stream()));
|
|
UNREACHABLE();
|
|
return l_undef;
|
|
}
|
|
}
|
|
break;
|
|
case l_false: {
|
|
lp::explanation ex;
|
|
m_nlsat->get_core(core);
|
|
for (auto c : core) {
|
|
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
|
|
ex.push_back(idx);
|
|
TRACE("nra", lra.display_constraint(tout << "ex: " << idx << ": ", idx) << "\n";);
|
|
}
|
|
nla::new_lemma lemma(m_nla_core, __FUNCTION__);
|
|
lemma &= ex;
|
|
m_nla_core.set_use_nra_model(true);
|
|
break;
|
|
}
|
|
case l_undef:
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
void add_monic_eq_bound(mon_eq const& m) {
|
|
if (!lra.column_has_lower_bound(m.var()) &&
|
|
!lra.column_has_upper_bound(m.var()))
|
|
return;
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
svector<polynomial::var> vars;
|
|
for (auto v : m.vars())
|
|
vars.push_back(lp2nl(v));
|
|
auto v = m.var();
|
|
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.data()), pm);
|
|
polynomial::monomial * mls[1] = { m1 };
|
|
polynomial::scoped_numeral_vector coeffs(pm.m());
|
|
coeffs.push_back(mpz(1));
|
|
polynomial::polynomial_ref p(pm.mk_polynomial(1, coeffs.data(), mls), pm);
|
|
if (lra.column_has_lower_bound(v))
|
|
add_lb_p(lra.get_lower_bound(v), p, lra.get_column_lower_bound_witness(v));
|
|
if (lra.column_has_upper_bound(v))
|
|
add_ub_p(lra.get_upper_bound(v), p, lra.get_column_upper_bound_witness(v));
|
|
}
|
|
|
|
void add_monic_eq(mon_eq const& m) {
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
svector<polynomial::var> vars;
|
|
for (auto v : m.vars())
|
|
vars.push_back(lp2nl(v));
|
|
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.data()), pm);
|
|
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
|
|
polynomial::monomial * mls[2] = { m1, m2 };
|
|
polynomial::scoped_numeral_vector coeffs(pm.m());
|
|
coeffs.push_back(mpz(1));
|
|
coeffs.push_back(mpz(-1));
|
|
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.data(), mls), pm);
|
|
polynomial::polynomial* ps[1] = { p };
|
|
bool even[1] = { false };
|
|
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
|
|
m_nlsat->mk_clause(1, &lit, nullptr);
|
|
}
|
|
|
|
void add_constraint(unsigned idx) {
|
|
auto& c = lra.constraints()[idx];
|
|
auto& pm = m_nlsat->pm();
|
|
auto k = c.kind();
|
|
auto rhs = c.rhs();
|
|
auto lhs = c.coeffs();
|
|
auto sz = lhs.size();
|
|
svector<polynomial::var> vars;
|
|
rational den = denominator(rhs);
|
|
for (auto [coeff, v] : lhs) {
|
|
vars.push_back(lp2nl(v));
|
|
den = lcm(den, denominator(coeff));
|
|
}
|
|
vector<rational> coeffs;
|
|
for (auto kv : lhs) {
|
|
coeffs.push_back(den * kv.first);
|
|
}
|
|
rhs *= den;
|
|
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.data(), vars.data(), -rhs), pm);
|
|
polynomial::polynomial* ps[1] = { p };
|
|
bool is_even[1] = { false };
|
|
nlsat::literal lit;
|
|
nlsat::assumption a = this + idx;
|
|
switch (k) {
|
|
case lp::lconstraint_kind::LE:
|
|
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
|
break;
|
|
case lp::lconstraint_kind::GE:
|
|
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
|
break;
|
|
case lp::lconstraint_kind::LT:
|
|
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
|
break;
|
|
case lp::lconstraint_kind::GT:
|
|
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
|
break;
|
|
case lp::lconstraint_kind::EQ:
|
|
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
|
|
break;
|
|
default:
|
|
UNREACHABLE(); // unreachable
|
|
}
|
|
m_nlsat->mk_clause(1, &lit, a);
|
|
}
|
|
|
|
bool check_monic(mon_eq const& m) {
|
|
scoped_anum val1(am()), val2(am());
|
|
am().set(val1, value(m.var()));
|
|
am().set(val2, rational::one().to_mpq());
|
|
for (auto v : m.vars())
|
|
am().mul(val2, value(v), val2);
|
|
return am().eq(val1, val2);
|
|
}
|
|
|
|
bool check_constraint(unsigned idx) {
|
|
auto& c = lra.constraints()[idx];
|
|
auto k = c.kind();
|
|
auto offset = -c.rhs();
|
|
auto lhs = c.coeffs();
|
|
|
|
scoped_anum val(am()), mon(am());
|
|
am().set(val, offset.to_mpq());
|
|
for (auto [coeff, v] : lhs) {
|
|
am().set(mon, coeff.to_mpq());
|
|
am().mul(mon, value(v), mon);
|
|
am().add(val, mon, val);
|
|
}
|
|
am().set(mon, rational::zero().to_mpq());
|
|
switch (k) {
|
|
case lp::lconstraint_kind::LE:
|
|
return am().le(val, mon);
|
|
case lp::lconstraint_kind::GE:
|
|
return am().ge(val, mon);
|
|
case lp::lconstraint_kind::LT:
|
|
return am().lt(val, mon);
|
|
case lp::lconstraint_kind::GT:
|
|
return am().gt(val, mon);
|
|
case lp::lconstraint_kind::EQ:
|
|
return am().eq(val, mon);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
lbool check(dd::solver::equation_vector const& eqs) {
|
|
reset();
|
|
for (auto const& eq : eqs)
|
|
add_eq(*eq);
|
|
for (auto const& m : m_nla_core.emons())
|
|
if (any_of(m.vars(), [&](lp::lpvar v) { return m_lp2nl.contains(v); }))
|
|
add_monic_eq_bound(m);
|
|
for (unsigned i : m_term_set)
|
|
add_term(i);
|
|
for (auto const& [v, w] : m_lp2nl) {
|
|
if (lra.column_has_lower_bound(v))
|
|
add_lb(lra.get_lower_bound(v), w, lra.get_column_lower_bound_witness(v));
|
|
if (lra.column_has_upper_bound(v))
|
|
add_ub(lra.get_upper_bound(v), w, lra.get_column_upper_bound_witness(v));
|
|
}
|
|
|
|
lbool r = l_undef;
|
|
statistics& st = m_nla_core.lp_settings().stats().m_st;
|
|
try {
|
|
r = m_nlsat->check();
|
|
}
|
|
catch (z3_exception&) {
|
|
if (m_limit.is_canceled()) {
|
|
r = l_undef;
|
|
}
|
|
else {
|
|
m_nlsat->collect_statistics(st);
|
|
throw;
|
|
}
|
|
}
|
|
m_nlsat->collect_statistics(st);
|
|
|
|
switch (r) {
|
|
case l_true:
|
|
m_nla_core.set_use_nra_model(true);
|
|
lra.init_model();
|
|
for (lp::constraint_index ci : lra.constraints().indices())
|
|
if (!check_constraint(ci))
|
|
return l_undef;
|
|
for (auto const& m : m_nla_core.emons())
|
|
if (!check_monic(m))
|
|
return l_undef;
|
|
break;
|
|
case l_false: {
|
|
lp::explanation ex;
|
|
vector<nlsat::assumption, false> core;
|
|
m_nlsat->get_core(core);
|
|
u_dependency_manager dm;
|
|
vector<unsigned, false> lv;
|
|
for (auto c : core)
|
|
dm.linearize(static_cast<u_dependency*>(c), lv);
|
|
for (auto ci : lv)
|
|
ex.push_back(ci);
|
|
nla::new_lemma lemma(m_nla_core, __FUNCTION__);
|
|
lemma &= ex;
|
|
break;
|
|
}
|
|
case l_undef:
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
lbool check(vector<dd::pdd> const& eqs) {
|
|
reset();
|
|
for (auto const& eq : eqs)
|
|
add_eq(eq);
|
|
for (auto const& m : m_nla_core.emons())
|
|
add_monic_eq(m);
|
|
for (auto const& [v, w] : m_lp2nl) {
|
|
if (lra.column_has_lower_bound(v))
|
|
add_lb(lra.get_lower_bound(v), w);
|
|
if (lra.column_has_upper_bound(v))
|
|
add_ub(lra.get_upper_bound(v), w);
|
|
}
|
|
|
|
lbool r = l_undef;
|
|
try {
|
|
r = m_nlsat->check();
|
|
}
|
|
catch (z3_exception&) {
|
|
if (m_limit.is_canceled()) {
|
|
r = l_undef;
|
|
}
|
|
else {
|
|
throw;
|
|
}
|
|
}
|
|
|
|
if (r == l_true)
|
|
return r;
|
|
|
|
IF_VERBOSE(0, verbose_stream() << "check-nra " << r << "\n";
|
|
m_nlsat->display(verbose_stream());
|
|
for (auto const& [v, w] : m_lp2nl) {
|
|
if (lra.column_has_lower_bound(v))
|
|
verbose_stream() << "x" << w << " >= " << lra.get_lower_bound(v) << "\n";
|
|
if (lra.column_has_upper_bound(v))
|
|
verbose_stream() << "x" << w << " <= " << lra.get_upper_bound(v) << "\n";
|
|
});
|
|
|
|
return r;
|
|
}
|
|
|
|
void add_eq(dd::solver::equation const& eq) {
|
|
add_eq(eq.poly(), eq.dep());
|
|
}
|
|
|
|
void add_eq(dd::pdd const& eq, nlsat::assumption a = nullptr) {
|
|
dd::pdd normeq = eq;
|
|
rational lc(1);
|
|
for (auto const& [c, m] : eq)
|
|
lc = lcm(denominator(c), lc);
|
|
if (lc != 1)
|
|
normeq *= lc;
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
polynomial::polynomial_ref p(pdd2polynomial(normeq), pm);
|
|
bool is_even[1] = {false};
|
|
polynomial::polynomial* ps[1] = {p};
|
|
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
|
|
m_nlsat->mk_clause(1, &lit, a);
|
|
}
|
|
|
|
void add_lb(lp::impq const& b, unsigned w, nlsat::assumption a = nullptr) {
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
polynomial::polynomial_ref p(pm.mk_polynomial(w), pm);
|
|
add_lb_p(b, p, a);
|
|
}
|
|
|
|
void add_ub(lp::impq const& b, unsigned w, nlsat::assumption a = nullptr) {
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
polynomial::polynomial_ref p(pm.mk_polynomial(w), pm);
|
|
add_ub_p(b, p, a);
|
|
}
|
|
|
|
void add_lb_p(lp::impq const& b, polynomial::polynomial* p, nlsat::assumption a = nullptr) {
|
|
add_bound_p(b.x, p, b.y <= 0, b.y > 0 ? nlsat::atom::kind::GT : nlsat::atom::kind::LT, a);
|
|
}
|
|
|
|
void add_ub_p(lp::impq const& b, polynomial::polynomial* p, nlsat::assumption a = nullptr) {
|
|
add_bound_p(b.x, p, b.y >= 0, b.y < 0 ? nlsat::atom::kind::LT : nlsat::atom::kind::GT, a);
|
|
}
|
|
|
|
// w - bound < 0
|
|
// w - bound > 0
|
|
|
|
void add_bound_p(lp::mpq const& bound, polynomial::polynomial* p1, bool neg, nlsat::atom::kind k, nlsat::assumption a = nullptr) {
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
polynomial::polynomial_ref p2(pm.mk_const(bound), pm);
|
|
polynomial::polynomial_ref p(pm.sub(p1, p2), pm);
|
|
polynomial::polynomial* ps[1] = {p};
|
|
bool is_even[1] = {false};
|
|
nlsat::literal lit = m_nlsat->mk_ineq_literal(k, 1, ps, is_even);
|
|
if (neg)
|
|
lit.neg();
|
|
m_nlsat->mk_clause(1, &lit, a);
|
|
}
|
|
|
|
void add_bound(lp::mpq const& bound, unsigned w, bool neg, nlsat::atom::kind k, nlsat::assumption a = nullptr) {
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
polynomial::polynomial_ref p(pm.mk_polynomial(w), pm);
|
|
add_bound_p(bound, p, neg, k, a);
|
|
}
|
|
|
|
polynomial::polynomial* pdd2polynomial(dd::pdd const& p) {
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
if (p.is_val())
|
|
return pm.mk_const(p.val());
|
|
polynomial::polynomial_ref lo(pdd2polynomial(p.lo()), pm);
|
|
polynomial::polynomial_ref hi(pdd2polynomial(p.hi()), pm);
|
|
unsigned w, v = p.var();
|
|
if (!m_lp2nl.find(v, w)) {
|
|
w = m_nlsat->mk_var(is_int(v));
|
|
m_lp2nl.insert(v, w);
|
|
}
|
|
polynomial::polynomial_ref vp(pm.mk_polynomial(w, 1), pm);
|
|
polynomial::polynomial_ref mp(pm.mul(vp, hi), pm);
|
|
return pm.add(lo, mp);
|
|
}
|
|
|
|
|
|
|
|
bool is_int(lp::lpvar v) {
|
|
return lra.var_is_int(v);
|
|
}
|
|
|
|
polynomial::var lp2nl(lp::lpvar v) {
|
|
polynomial::var r;
|
|
if (!m_lp2nl.find(v, r)) {
|
|
r = m_nlsat->mk_var(is_int(v));
|
|
m_lp2nl.insert(v, r);
|
|
if (!m_term_set.contains(v) && lra.column_has_term(v)) {
|
|
m_term_set.insert(v);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
//
|
|
void add_term(unsigned term_column) {
|
|
const lp::lar_term& t = lra.get_term(term_column);
|
|
// code that creates a polynomial equality between the linear coefficients and
|
|
// variable representing the term.
|
|
svector<polynomial::var> vars;
|
|
rational den(1);
|
|
for (lp::lar_term::ival kv : t) {
|
|
vars.push_back(lp2nl(kv.j()));
|
|
den = lcm(den, denominator(kv.coeff()));
|
|
}
|
|
vars.push_back(lp2nl(term_column));
|
|
|
|
vector<rational> coeffs;
|
|
for (auto kv : t) {
|
|
coeffs.push_back(den * kv.coeff());
|
|
}
|
|
coeffs.push_back(-den);
|
|
polynomial::manager& pm = m_nlsat->pm();
|
|
polynomial::polynomial_ref p(pm.mk_linear(coeffs.size(), coeffs.data(), vars.data(), rational(0)), pm);
|
|
polynomial::polynomial* ps[1] = {p};
|
|
bool is_even[1] = {false};
|
|
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
|
|
m_nlsat->mk_clause(1, &lit, nullptr);
|
|
}
|
|
|
|
nlsat::anum const& value(lp::lpvar v) {
|
|
polynomial::var pv;
|
|
if (m_lp2nl.find(v, pv))
|
|
return m_nlsat->value(pv);
|
|
else {
|
|
for (unsigned w = m_values->size(); w <= v; ++w) {
|
|
scoped_anum a(am());
|
|
am().set(a, m_nla_core.val(w).to_mpq());
|
|
m_values->push_back(a);
|
|
}
|
|
return (*m_values)[v];
|
|
}
|
|
}
|
|
|
|
nlsat::anum_manager& am() {
|
|
return m_nlsat->am();
|
|
}
|
|
|
|
scoped_anum& tmp1() {
|
|
if (!m_tmp1)
|
|
m_tmp1 = alloc(scoped_anum, am());
|
|
return *m_tmp1;
|
|
}
|
|
|
|
scoped_anum& tmp2() {
|
|
if (!m_tmp2)
|
|
m_tmp2 = alloc(scoped_anum, am());
|
|
return *m_tmp2;
|
|
}
|
|
|
|
|
|
void updt_params(params_ref& p) {
|
|
m_params.append(p);
|
|
}
|
|
|
|
|
|
std::ostream& display(std::ostream& out) const {
|
|
for (auto m : m_nla_core.emons()) {
|
|
out << "j" << m.var() << " = ";
|
|
for (auto v : m.vars()) {
|
|
out << "j" << v << " ";
|
|
}
|
|
out << "\n";
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
|
|
solver::solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p) {
|
|
m_imp = alloc(imp, s, lim, p, nla_core);
|
|
}
|
|
|
|
solver::~solver() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
|
|
lbool solver::check() {
|
|
return m_imp->check();
|
|
}
|
|
|
|
lbool solver::check(vector<dd::pdd> const& eqs) {
|
|
return m_imp->check(eqs);
|
|
}
|
|
|
|
lbool solver::check(dd::solver::equation_vector const& eqs) {
|
|
return m_imp->check(eqs);
|
|
}
|
|
|
|
bool solver::need_check() {
|
|
return m_imp->need_check();
|
|
}
|
|
|
|
std::ostream& solver::display(std::ostream& out) const {
|
|
return m_imp->display(out);
|
|
}
|
|
|
|
nlsat::anum const& solver::value(lp::lpvar v) {
|
|
return m_imp->value(v);
|
|
}
|
|
|
|
nlsat::anum_manager& solver::am() {
|
|
return m_imp->am();
|
|
}
|
|
|
|
scoped_anum& solver::tmp1() { return m_imp->tmp1(); }
|
|
|
|
scoped_anum& solver::tmp2() { return m_imp->tmp2(); }
|
|
|
|
|
|
void solver::updt_params(params_ref& p) {
|
|
m_imp->updt_params(p);
|
|
}
|
|
|
|
}
|