3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

Nlsat simplify (#7227)

* dev branch for simplification

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* bug fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* bugfixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix factorization

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* separate out simplification functionality

* reorder initialization

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* reorder initialization

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Update README.md

* initial warppers for seq-map/seq-fold

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* expose fold as well

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add C++ bindings for sequence operations

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add abs function to API

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add parameter validation to ternary and 4-ary functions for API #7219

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add pre-processing and reorder

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add pre-processing and reorder

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

---------

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2024-05-14 22:19:33 -07:00 committed by GitHub
parent e036a5bd9b
commit 8fe357f1f2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 1275 additions and 844 deletions

View file

@ -128,8 +128,12 @@ struct statistics {
unsigned m_grobner_conflicts;
unsigned m_offset_eqs;
unsigned m_fixed_eqs;
::statistics m_st;
statistics() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
void reset() {
memset(this, 0, sizeof(*this));
m_st.reset();
}
void collect_statistics(::statistics& st) const {
st.update("arith-factorizations", m_num_factorizations);
st.update("arith-make-feasible", m_make_feasible);
@ -157,7 +161,7 @@ struct statistics {
st.update("arith-nla-lemmas", m_nla_lemmas);
st.update("arith-nra-calls", m_nra_calls);
st.update("arith-bounds-improvements", m_nla_bounds_improvements);
st.copy(m_st);
}
};

View file

@ -34,7 +34,7 @@ struct solver::imp {
scoped_ptr<scoped_anum_vector> m_values; // values provided by LRA solver
scoped_ptr<scoped_anum> m_tmp1, m_tmp2;
nla::core& m_nla_core;
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
lra(s),
m_limit(lim),
@ -180,6 +180,7 @@ struct solver::imp {
}
lbool r = l_undef;
statistics& st = m_nla_core.lp_settings().stats().m_st;
try {
r = m_nlsat->check();
}
@ -188,9 +189,11 @@ struct solver::imp {
r = l_undef;
}
else {
m_nlsat->collect_statistics(st);
throw;
}
}
m_nlsat->collect_statistics(st);
TRACE("nra",
m_nlsat->display(tout << r << "\n");
display(tout);
@ -234,6 +237,7 @@ struct solver::imp {
return r;
}
void add_monic_eq_bound(mon_eq const& m) {
if (!lra.column_has_lower_bound(m.var()) &&
!lra.column_has_upper_bound(m.var()))
@ -374,6 +378,7 @@ struct solver::imp {
}
lbool r = l_undef;
statistics& st = m_nla_core.lp_settings().stats().m_st;
try {
r = m_nlsat->check();
}
@ -382,9 +387,11 @@ struct solver::imp {
r = l_undef;
}
else {
m_nlsat->collect_statistics(st);
throw;
}
}
m_nlsat->collect_statistics(st);
switch (r) {
case l_true:
@ -665,7 +672,7 @@ nlsat::anum_manager& solver::am() {
scoped_anum& solver::tmp1() { return m_imp->tmp1(); }
scoped_anum& solver::tmp2() { return m_imp->tmp2(); }
void solver::updt_params(params_ref& p) {
m_imp->updt_params(p);

View file

@ -2594,27 +2594,28 @@ namespace algebraic_numbers {
void int_lt(numeral const & a, numeral & b) {
scoped_mpz v(qm());
if (!a.is_basic())
refine_until_prec(const_cast<numeral&>(a), 1);
if (a.is_basic()) {
qm().floor(basic_value(a), v);
qm().dec(v);
}
else {
refine_until_prec(const_cast<numeral&>(a), 1);
bqm().floor(qm(), lower(a.to_algebraic()), v);
}
else
bqm().floor(qm(), lower(a.to_algebraic()), v);
m_wrapper.set(b, v);
}
void int_gt(numeral const & a, numeral & b) {
scoped_mpz v(qm());
if (!a.is_basic())
refine_until_prec(const_cast<numeral&>(a), 1);
if (a.is_basic()) {
qm().ceil(basic_value(a), v);
qm().inc(v);
}
else {
refine_until_prec(const_cast<numeral&>(a), 1);
else
bqm().ceil(qm(), upper(a.to_algebraic()), v);
}
m_wrapper.set(b, v);
}

View file

@ -2504,30 +2504,139 @@ namespace polynomial {
return p;
}
void gcd_simplify(polynomial * p) {
if (m_manager.finite()) return;
void gcd_simplify(polynomial_ref& p, manager::ineq_type t) {
auto& m = m_manager.m();
unsigned sz = p->size();
if (sz == 0)
return;
unsigned g = 0;
for (unsigned i = 0; i < sz; i++) {
for (unsigned i = 0; i < sz; i++) {
if (!m.is_int(p->a(i))) {
gcd_simplify_slow(p, t);
return;
}
if (t != EQ && is_unit(p->m(i)))
continue;
int j = m.get_int(p->a(i));
if (j == INT_MIN || j == 1 || j == -1)
if (j == INT_MIN) {
gcd_simplify_slow(p, t);
return;
}
if (j == 1 || j == -1)
return;
g = u_gcd(abs(j), g);
if (g == 1)
return;
}
scoped_mpz r(m), gg(m);
scoped_mpz gg(m);
m.set(gg, g);
for (unsigned i = 0; i < sz; ++i) {
m.div_gcd(p->a(i), gg, r);
m.set(p->a(i), r);
apply_gcd_simplify(gg, p, t);
}
void apply_gcd_simplify(mpz & g, polynomial_ref& p, manager::ineq_type t) {
auto& m = m_manager.m();
#if 0
m.display(verbose_stream() << "gcd ", g);
p->display(verbose_stream() << "\n", m_manager, false);
char const* tt = "";
switch (t) {
case ineq_type::GT: tt = ">"; break;
case ineq_type::LT: tt = "<"; break;
case ineq_type::EQ: tt = "="; break;
}
verbose_stream() << " " << tt << " 0\n ->\n";
#endif
scoped_mpz r(m);
unsigned sz = p->size();
m_som_buffer.reset();
for (unsigned i = 0; i < sz; ++i) {
if (t != EQ && is_unit(p->m(i))) {
scoped_mpz one(m);
m.set(one, 1);
if (t == GT) {
// p - 2 - 1 >= 0
// p div 2 + floor((-2 - 1 ) / 2) >= 0
// p div 2 + floor(-3 / 2) >= 0
// p div 2 - 2 >= 0
// p div 2 - 1 > 0
//
// p + k > 0
// p + k - 1 >= 0
// p div g + (k - 1) div g >= 0
// p div g + (k - 1) div g + 1 > 0
m.sub(p->a(i), one, r);
bool is_neg = m.is_neg(r);
if (is_neg) {
m.neg(r);
m.add(r, g, r);
m.sub(r, one, r);
m.div_gcd(r, g, r);
m.neg(r);
}
else {
m.div_gcd(r, g, r);
}
m.add(r, one, r);
}
else {
// p + k < 0
// p + k + 1 <= 0
// p div g + (k + 1 + g - 1) div g <= 0
// p div g + (k + 1 + g - 1) div g - 1 < 0
m.add(p->a(i), one, r);
bool is_neg = m.is_neg(r);
if (is_neg) {
// p - k <= 0
// p <= k
// p div g <= k div g
// p div g - k div g <= 0
// p div g - k div g - 1 < 0
m.neg(r);
m.div_gcd(r, g, r);
m.neg(r);
m.sub(r, one, r);
}
else {
m.div_gcd(p->a(i), g, r);
m.add(p->a(i), g, r);
m.div_gcd(r, g, r);
m.sub(r, one, r);
}
}
}
else {
m.div_gcd(p->a(i), g, r);
}
if (!m.is_zero(r))
m_som_buffer.add(r, p->m(i));
}
p = m_som_buffer.mk();
// p->display(verbose_stream(), m_manager, false);
// verbose_stream() << " " << tt << " 0\n";
}
void gcd_simplify_slow(polynomial_ref& p, manager::ineq_type t) {
auto& m = m_manager.m();
unsigned sz = p->size();
scoped_mpz g(m);
m.set(g, 0);
for (unsigned i = 0; i < sz; i++) {
auto const& a = p->a(i);
if (m.is_one(a) || m.is_minus_one(a))
return;
if (t != EQ && is_unit(p->m(i)))
continue;
m.gcd(a, g, g);
if (m.is_one(g))
return;
}
apply_gcd_simplify(g, p, t);
}
polynomial * mk_zero() {
@ -6087,9 +6196,11 @@ namespace polynomial {
}
return false;
}
if (!m_manager.ge(a1, a2))
return false;
++i, ++j;
if (m_manager.eq(a1, a2) || (m1->is_square() && m_manager.ge(a1, a2))) {
++i, ++j;
continue;
}
return false;
}
return i == sz1 && j == sz2;
}
@ -6971,8 +7082,8 @@ namespace polynomial {
return m_imp->hash(p);
}
void manager::gcd_simplify(polynomial * p) {
m_imp->gcd_simplify(p);
void manager::gcd_simplify(polynomial_ref& p, ineq_type t) {
m_imp->gcd_simplify(p, t);
}
polynomial * manager::coeff(polynomial const * p, var x, unsigned k) {

View file

@ -285,7 +285,8 @@ namespace polynomial {
/**
\brief Normalize coefficients by dividing by their gcd
*/
void gcd_simplify(polynomial* p);
enum ineq_type { EQ, LT, GT };
void gcd_simplify(polynomial_ref& p, ineq_type t);
/**
\brief Return true if \c m is the unit monomial.

View file

@ -117,20 +117,14 @@ namespace polynomial {
}
void reset_psc_chain_cache() {
psc_chain_cache::iterator it = m_psc_chain_cache.begin();
psc_chain_cache::iterator end = m_psc_chain_cache.end();
for (; it != end; ++it) {
del_psc_chain_entry(*it);
}
for (auto & k : m_psc_chain_cache)
del_psc_chain_entry(k);
m_psc_chain_cache.reset();
}
void reset_factor_cache() {
factor_cache::iterator it = m_factor_cache.begin();
factor_cache::iterator end = m_factor_cache.end();
for (; it != end; ++it) {
del_factor_entry(*it);
}
for (auto & e : m_factor_cache)
del_factor_entry(e);
m_factor_cache.reset();
}
@ -139,7 +133,6 @@ namespace polynomial {
polynomial * mk_unique(polynomial * p) {
if (m_in_cache.get(pid(p), false))
return p;
// m.gcd_simplify(p);
polynomial * p_prime = m_poly_table.insert_if_not_there(p);
if (p == p_prime) {
m_cached_polys.push_back(p_prime);

View file

@ -4,6 +4,7 @@ z3_add_component(nlsat
nlsat_evaluator.cpp
nlsat_explain.cpp
nlsat_interval_set.cpp
nlsat_simplify.cpp
nlsat_solver.cpp
nlsat_types.cpp
COMPONENT_DEPENDENCIES

View file

@ -0,0 +1,824 @@
#include "nlsat/nlsat_simplify.h"
#include "nlsat/nlsat_solver.h"
#include "nlsat/nlsat_scoped_literal_vector.h"
#include "util/dependency.h"
#include "util/map.h"
namespace nlsat {
struct simplify::imp {
solver& s;
atom_vector& m_atoms;
clause_vector& m_clauses, m_learned;
pmanager& m_pm;
literal_vector m_lemma;
vector<ptr_vector<clause>> m_var_occurs;
imp(solver& s, atom_vector& atoms, clause_vector& clauses, clause_vector& learned, pmanager& pm):
s(s),
m_atoms(atoms),
m_clauses(clauses),
m_learned(learned),
m_pm(pm) {}
void operator()() {
// for now just remove all learned clauses.
// TODO; check if main clauses are subsumed by learned,
// then promote learned to main.
for (auto c : m_learned)
s.del_clause(c);
m_learned.reset();
IF_VERBOSE(3, s.display(verbose_stream() << "before\n"));
unsigned sz = m_clauses.size();
while (true) {
subsumption_simplify();
while (elim_uncnstr())
;
simplify_literals();
while (fm())
;
if (m_clauses.size() >= sz)
break;
split_factors();
sz = m_clauses.size();
}
IF_VERBOSE(3, s.display(verbose_stream() << "after\n"));
}
//
// Apply gcd simplification to literals
//
void simplify_literals() {
u_map<literal> b2l;
scoped_literal_vector lits(s);
polynomial_ref p(m_pm);
ptr_buffer<poly> ps;
buffer<bool> is_even;
unsigned num_atoms = m_atoms.size();
for (unsigned j = 0; j < num_atoms; ++j) {
atom* a1 = m_atoms[j];
if (a1 && a1->is_ineq_atom()) {
ineq_atom const& a = *to_ineq_atom(a1);
ps.reset();
is_even.reset();
for (unsigned i = 0; i < a.size(); ++i) {
p = a.p(i);
ps.push_back(p);
is_even.push_back(a.is_even(i));
}
literal l = s.mk_ineq_literal(a.get_kind(), ps.size(), ps.data(), is_even.data(), true);
if (l == null_literal)
continue;
lits.push_back(l);
if (a.m_bool_var != l.var()) {
IF_VERBOSE(3, s.display(verbose_stream() << "simplify ", a) << " -> ";
s.display(verbose_stream(), l) << "\n");
b2l.insert(a.m_bool_var, l);
}
}
}
update_clauses(b2l);
}
void update_clauses(u_map<literal> const& b2l) {
bool is_sat = true;
literal_vector lits;
unsigned n = m_clauses.size();
for (unsigned i = 0; i < n; ++i) {
clause* c = m_clauses[i];
lits.reset();
bool changed = false;
bool is_tautology = false;
for (literal l : *c) {
literal lit = null_literal;
if (b2l.find(l.var(), lit)) {
lit = l.sign() ? ~lit : lit;
if (lit == true_literal)
is_tautology = true;
else if (lit != false_literal)
lits.push_back(lit);
changed = true;
}
else
lits.push_back(l);
}
if (changed) {
c->set_removed();
if (is_tautology)
continue;
s.mk_clause(lits.size(), lits.data(), c->is_learned(), c->assumptions());
}
}
cleanup_removed();
}
//
// Replace unit literals p*q > 0 by clauses.
//
void split_factors() {
auto sz = m_clauses.size();
for (unsigned i = 0; i < sz; ++i) {
auto& c = *m_clauses[i];
if (c.size() != 1)
continue;
auto lit = c[0];
auto a1 = m_atoms[lit.var()];
if (!a1)
continue;
auto& a = *to_ineq_atom(a1);
if (a.size() != 2)
continue;
auto* p = a.p(0);
auto* q = a.p(1);
auto is_evenp = a.is_even(0);
auto is_evenq = a.is_even(1);
auto asum = c.assumptions();
literal lits[2];
clause* c1 = nullptr, * c2 = nullptr;
c.set_removed();
s.inc_simplify();
switch (a.get_kind()) {
case atom::EQ: {
auto l1 = s.mk_ineq_literal(atom::EQ, 1, &p, &is_evenp, false);
auto l2 = s.mk_ineq_literal(atom::EQ, 1, &q, &is_evenq, false);
if (lit.sign()) {
lits[0] = ~l1;
c1 = s.mk_clause(1, lits, false, asum);
lits[0] = ~l2;
c2 = s.mk_clause(1, lits, false, asum);
}
else {
lits[0] = l1;
lits[1] = l2;
c1 = s.mk_clause(2, lits, false, asum);
}
break;
}
case atom::LT: {
auto pgt = s.mk_ineq_literal(atom::GT, 1, &p, &is_evenp, false);
auto plt = s.mk_ineq_literal(atom::LT, 1, &p, &is_evenp, false);
auto qgt = s.mk_ineq_literal(atom::GT, 1, &q, &is_evenq, false);
auto qlt = s.mk_ineq_literal(atom::LT, 1, &q, &is_evenq, false);
if (lit.sign()) {
// p*q >= 0 <=> (p < 0 => q <= 0) & (q < 0 => p <= 0)
// (!(p < 0) or !(q > 0)) & (!(q < 0) or !(p > 0))
lits[0] = ~plt;
lits[1] = ~qgt;
c1 = s.mk_clause(2, lits, false, asum);
lits[0] = ~qlt;
lits[1] = ~pgt;
c2 = s.mk_clause(2, lits, false, asum);
}
else {
// p*q < 0
// (p > 0 & q < 0) or (q > 0 & p < 0)
// (p > 0 or q > 0) and (p < 0 or q < 0)
lits[0] = pgt;
lits[1] = qgt;
c1 = s.mk_clause(2, lits, false, asum);
lits[0] = plt;
lits[1] = qlt;
c2 = s.mk_clause(2, lits, false, asum);
}
break;
}
case atom::GT: {
auto pgt = s.mk_ineq_literal(atom::GT, 1, &p, &is_evenp, false);
auto plt = s.mk_ineq_literal(atom::LT, 1, &p, &is_evenp, false);
auto qgt = s.mk_ineq_literal(atom::GT, 1, &q, &is_evenq, false);
auto qlt = s.mk_ineq_literal(atom::LT, 1, &q, &is_evenq, false);
if (lit.sign()) {
// p*q <= 0
// (p > 0 => q <= 0) & (p < 0 => q >= 0)
// (!(p > 0) or !(q > 0)) & (!(p < 0) or !(q < 0))
lits[0] = ~pgt;
lits[1] = ~qgt;
c1 = s.mk_clause(2, lits, false, asum);
lits[0] = ~qlt;
lits[1] = ~plt;
c2 = s.mk_clause(2, lits, false, asum);
}
else {
// p*q > 0
// (p > 0 or q < 0) & (p < 0 or q > 0)
lits[0] = plt;
lits[1] = qgt;
c1 = s.mk_clause(2, lits, false, asum);
lits[0] = qlt;
lits[1] = pgt;
c2 = s.mk_clause(2, lits, false, asum);
}
break;
}
}
IF_VERBOSE(3,
s.display(verbose_stream(), c) << " ->\n";
if (c1) s.display(verbose_stream(), *c1) << "\n";
if (c2) s.display(verbose_stream(), *c2) << "\n");
}
cleanup_removed();
}
bool elim_uncnstr() {
// compute variable occurrences
if (any_of(m_clauses, [&](clause* c) { return s.has_root_atom(*c); }))
return false;
compute_occurs();
// for each variable occurrence, figure out if it is unconstrained.
bool has_removed = false;
for (unsigned v = m_var_occurs.size(); v-- > 0; ) {
auto& clauses = m_var_occurs[v];
if (clauses.size() != 1)
continue;
auto& c = *clauses[0];
if (c.is_removed())
continue;
if (!is_unconstrained(v, c))
continue;
s.inc_simplify();
c.set_removed();
has_removed = true;
}
cleanup_removed();
return has_removed;
}
bool is_unconstrained(var x, clause& c) {
poly* p;
polynomial_ref A(m_pm), B(m_pm);
for (auto lit : c) {
bool_var b = lit.var();
if (!m_atoms[b])
continue;
auto& a = *to_ineq_atom(m_atoms[b]);
if (!is_single_poly(a, p))
continue;
if (1 != m_pm.degree(p, x))
continue;
A = m_pm.coeff(p, x, 1, B);
if (a.is_eq() && !lit.sign()) {
// A*x + B = 0
if (s.is_int(x) && is_unit(A)) {
s.add_bound(bound_constraint(x, A, B, false, nullptr));
return true;
}
if (!s.is_int(x) && m_pm.is_const(A)) {
s.add_bound(bound_constraint(x, A, B, false, nullptr));
return true;
}
}
// TODO: add other cases for LT and GT atoms
}
return false;
}
void compute_occurs() {
m_var_occurs.reset();
for (auto c : m_clauses)
compute_occurs(*c);
}
void compute_occurs(clause& c) {
var_vector vars;
m_pm.begin_vars_incremental();
for (auto lit : c) {
bool_var b = lit.var();
atom* a = m_atoms[b];
if (!a)
continue;
if (a->is_ineq_atom()) {
auto sz = to_ineq_atom(a)->size();
for (unsigned i = 0; i < sz; ++i) {
auto* p = to_ineq_atom(a)->p(i);
m_pm.vars_incremental(p, vars);
}
}
}
m_pm.end_vars_incremental(vars);
unsigned h = 0;
for (auto v : vars) {
m_var_occurs.reserve(v + 1);
m_var_occurs[v].push_back(&c);
h |= (1ul << (v % 32ul));
}
c.set_var_hash(h);
}
bool cleanup_removed() {
unsigned j = 0, sz = m_clauses.size();
for (unsigned i = 0; i < sz; ++i) {
auto c = m_clauses[i];
if (c->is_removed())
s.del_clause(c);
else
m_clauses[j++] = c;
}
m_clauses.shrink(j);
return j < sz;
}
bool unit_subsumption_simplify(clause& src, clause& c) {
if (src.size() != 1)
return false;
auto u = src[0];
for (auto lit : c) {
if (subsumes(u, ~lit)) {
literal_vector lits;
for (auto lit2 : c)
if (lit2 != lit)
lits.push_back(lit2);
if (lits.empty())
return false;
auto a = s.join(c.assumptions(), src.assumptions());
auto cls = s.mk_clause(lits.size(), lits.data(), false, a);
if (cls)
compute_occurs(*cls);
return true;
}
}
return false;
}
//
// Subsumption simplification
//
// Remove D if C subsumes D
//
// Unit subsumption resolution
// u is a unit literal (lit or C) is a clause
// u => ~lit, then simplify (lit or C) to C
//
void subsumption_simplify() {
compute_occurs();
for (unsigned v = m_var_occurs.size(); v-- > 0; ) {
auto& clauses = m_var_occurs[v];
unsigned sz = clauses.size();
for (unsigned i = 0; i < sz; ++i) {
auto c = clauses[i];
if (c->is_marked() || c->is_removed())
continue;
c->mark();
for (unsigned j = 0; j < sz; ++j) {
auto c2 = clauses[j];
if (c == c2 || c2->is_removed())
continue;
if (subsumes(*c, *c2) || unit_subsumption_simplify(*c, *c2)) {
IF_VERBOSE(3, s.display(verbose_stream() << "subsumes ", *c);
s.display(verbose_stream() << " ", *c2) << "\n");
s.inc_simplify();
c2->set_removed();
}
}
}
}
for (auto c : m_clauses)
c->unmark();
cleanup_removed();
}
// does c1 subsume c2?
bool subsumes(clause const& c1, clause const& c2) {
if (c1.size() > c2.size())
return false;
if ((c1.var_hash() & c2.var_hash()) != c1.var_hash())
return false;
for (auto lit1 : c1) {
if (!any_of(c2, [&](auto lit2) { return subsumes(lit1, lit2); }))
return false;
}
return true;
}
bool subsumes(literal lit1, literal lit2) {
if (lit1 == lit2)
return true;
atom* a1 = m_atoms[lit1.var()];
atom* a2 = m_atoms[lit2.var()];
if (!a1 || !a2)
return false;
// use m_pm.ge(p1, p2)
// whenever lit1 = p1 < 0, lit2 = p2 < 0
// or lit1 = p1 < 0, lit2 = !(p2 > 0)
// or lit1 = !(p1 > 0), lit2 = !(p2 > 0)
// use m_pm.ge(p2, p1)
// whenever lit1 = p1 > 0, lit2 = p2 > 0
// or lit1 = !(p1 < 0), lit2 = !(p2 < 0)
// or lit1 = p1 > 0, lit2 = !(p2 < 0)
// or lit1 = !(p1 > 0), lit2 = p2 < 0
//
if (a1->is_ineq_atom() && a2->is_ineq_atom()) {
auto& i1 = *to_ineq_atom(a1);
auto& i2 = *to_ineq_atom(a2);
auto is_lt1 = !lit1.sign() && a1->get_kind() == atom::kind::LT;
auto is_le1 = lit1.sign() && a1->get_kind() == atom::kind::GT;
auto is_gt1 = !lit1.sign() && a1->get_kind() == atom::kind::GT;
auto is_ge1 = lit1.sign() && a1->get_kind() == atom::kind::LT;
auto is_lt2 = !lit2.sign() && a2->get_kind() == atom::kind::LT;
auto is_le2 = lit2.sign() && a2->get_kind() == atom::kind::GT;
auto is_gt2 = !lit2.sign() && a2->get_kind() == atom::kind::GT;
auto is_ge2 = lit2.sign() && a2->get_kind() == atom::kind::LT;
auto check_ge = (is_lt1 && (is_lt2 || is_le2)) || (is_le1 && is_le2);
auto check_le = (is_gt1 && (is_gt2 || is_ge2)) || (is_ge1 && is_ge2);
if (i1.size() != i2.size())
;
else if (check_ge) {
for (unsigned i = 0; i < i1.size(); ++i)
if (!m_pm.ge(i1.p(i), i2.p(i)))
return false;
return true;
}
else if (check_le) {
for (unsigned i = 0; i < i1.size(); ++i)
if (!m_pm.ge(i2.p(i), i1.p(i)))
return false;
return true;
}
}
return false;
}
//
// Fourier Motzkin elimination
//
bool fm() {
if (any_of(m_clauses, [&](clause* c) { return s.has_root_atom(*c); }))
return false;
compute_occurs();
for (unsigned v = m_var_occurs.size(); v-- > 0; )
apply_fm(v, m_var_occurs[v]);
return cleanup_removed();
}
// progression of possible features:
// . Current: unit literals
// . Either lower or upper bound is unit coefficient
// . single occurrence of x in C
// . (x <= t or x <= s or C) == (x <= max(s, t) or C)
//
bool is_invertible(var x, polynomial_ref& A) {
if (!m_pm.is_const(A))
return false;
if (s.is_int(x) && !is_unit(A))
return false;
return true;
}
bool apply_fm(var x, ptr_vector<clause>& clauses) {
polynomial_ref A(m_pm), B(m_pm);
vector<bound_constraint> lo, hi;
poly* p = nullptr;
bool all_solved = true;
for (auto c : clauses) {
if (c->is_removed())
continue;
if (c->size() != 1) {
all_solved = false;
continue;
}
literal lit = (*c)[0];
bool sign = lit.sign();
ineq_atom const& a = *to_ineq_atom(m_atoms[lit.var()]);
if (sign && a.is_eq()) {
all_solved = false;
continue;
}
if (!is_single_poly(a, p)) {
all_solved = false;
continue;
}
if (1 != m_pm.degree(p, x)) {
all_solved = false;
continue;
}
A = m_pm.coeff(p, x, 1, B);
if (!is_invertible(x, A)) {
all_solved = false;
continue;
}
auto const& A_value = m_pm.coeff(A, 0);
bool is_pos = m_pm.m().is_pos(A_value);
bool is_strict = false;
switch (a.get_kind()) {
case atom::LT:
// !(Ax + B < 0) == Ax + B >= 0
if (sign)
is_strict = false;
else {
// Ax + B < 0 == -Ax - B > 0
A = -A;
B = -B;
is_pos = !is_pos;
if (s.is_int(x)) {
// Ax + B > 0 == Ax + B - |A| >= 0
if (is_pos)
B = m_pm.sub(B, A);
else
B = m_pm.add(B, A);
is_strict = false;
}
else
is_strict = true;
}
break;
case atom::GT:
// !(Ax + B > 0) == -Ax + -B >= 0
if (sign) {
A = -A;
B = -B;
is_pos = !is_pos;
is_strict = false;
}
else {
// Ax + B > 0
if (s.is_int(x)) {
// Ax + B - |A| >= 0
if (is_pos)
B = m_pm.sub(B, A);
else
B = m_pm.add(B, A);
is_strict = false;
}
else
is_strict = true;
}
break;
case atom::EQ: {
all_solved = false;
if (sign)
continue;
bound_constraint l(x, A, B, false, c);
A = -A;
B = -B;
bound_constraint h(x, A, B, false, c);
apply_fm_equality(x, clauses, l, h);
return true;
}
default:
UNREACHABLE();
break;
}
auto& set = is_pos ? hi : lo;
bool found = false;
for (auto const& bound : set) {
if (is_strict == bound.is_strict && m_pm.eq(A, bound.A) && m_pm.eq(B, bound.B))
found = true;
}
if (found)
continue;
set.push_back(bound_constraint(x, A, B, is_strict, c));
}
if (lo.empty() && hi.empty())
return false;
if (apply_fm_equality(x, clauses, lo, hi))
return true;
if (!all_solved)
return false;
IF_VERBOSE(3,
verbose_stream() << "x" << x << " lo " << lo.size() << " hi " << hi.size() << "\n";
for (auto c : clauses)
if (!c->is_removed())
s.display(verbose_stream(), *c) << "\n";
);
auto num_lo = lo.size(), num_hi = hi.size();
if (num_lo >= 2 && num_hi >= 2 && (num_lo > 2 || num_hi > 2))
return false;
apply_fm_inequality(x, clauses, lo, hi);
return true;
}
void apply_fm_inequality(
var x, ptr_vector<clause>& clauses,
vector<bound_constraint>& lo, vector<bound_constraint>& hi) {
polynomial_ref C(m_pm), D(m_pm);
for (auto c : clauses)
c->set_removed();
for (auto const& l : lo) {
// l.A * x + l.B, l.is_strict;, l.A < 0
for (auto const& h : hi) {
// h.A * x + h.B, h.is_strict; h.A > 0
// (l.A x + l.B)*h.A + (h.A x + h.B)*|l.A| >= 0
C = m_pm.mul(l.B, h.A);
D = m_pm.mul(h.B, l.A);
C = m_pm.sub(C, D);
poly* p = C.get();
bool is_even = false;
m_lemma.reset();
if (l.is_strict || h.is_strict)
m_lemma.push_back(s.mk_ineq_literal(atom::GT, 1, &p, &is_even, true));
else
m_lemma.push_back(~s.mk_ineq_literal(atom::LT, 1, &p, &is_even, true));
if (m_lemma[0] == true_literal)
continue;
auto a = s.join(l.c->assumptions(), h.c->assumptions());
auto cls = s.mk_clause(m_lemma.size(), m_lemma.data(), false, a);
if (cls)
compute_occurs(*cls);
IF_VERBOSE(3, s.display(verbose_stream() << "add resolvent ", *cls) << "\n");
}
}
// track updates for model reconstruction
for (auto const& l : lo)
s.add_bound(l);
for (auto const& h : hi)
s.add_bound(h);
}
literal substitute_var(var x, poly* p, poly* q, literal lit) {
auto b = lit.var();
auto a = m_atoms[b];
if (!a)
return lit;
SASSERT(a->is_ineq_atom());
auto& a1 = *to_ineq_atom(a);
auto r = substitute_var(x, p, q, a1);
if (r == null_literal)
r = lit;
else if (lit.sign())
r.neg();
return r;
}
literal substitute_var(var x, poly* p, poly* q, ineq_atom const& a) {
unsigned sz = a.size();
bool_vector even;
polynomial_ref pr(m_pm), qq(q, m_pm);
qq = -qq;
polynomial_ref_vector ps(m_pm);
bool change = false;
auto k = a.get_kind();
for (unsigned i = 0; i < sz; ++i) {
poly* po = a.p(i);
m_pm.substitute(po, x, qq, p, pr);
change |= pr != po;
TRACE("nlsat", tout << pr << "\n";);
if (m_pm.is_zero(pr)) {
ps.reset();
even.reset();
ps.push_back(pr);
even.push_back(false);
break;
}
if (m_pm.is_const(pr)) {
if (!a.is_even(i) && m_pm.m().is_neg(m_pm.coeff(pr, 0)))
k = atom::flip(k);
continue;
}
ps.push_back(pr);
even.push_back(a.is_even(i));
}
if (!change)
return null_literal;
return s.mk_ineq_literal(k, ps.size(), ps.data(), even.data(), true);
}
bool apply_fm_equality(
var x, ptr_vector<clause>& clauses,
vector<bound_constraint>& lo, vector<bound_constraint>& hi) {
for (auto& l : lo) {
if (l.is_strict)
continue;
l.A = -l.A;
l.B = -l.B;
for (auto& h : hi) {
if (h.is_strict)
continue;
if (!m_pm.eq(l.B, h.B))
continue;
if (!m_pm.eq(l.A, h.A))
continue;
l.A = -l.A;
l.B = -l.B;
apply_fm_equality(x, clauses, l, h);
s.inc_simplify();
return true;
}
l.A = -l.A;
l.B = -l.B;
}
return false;
}
void apply_fm_equality(
var x, ptr_vector<clause>& clauses,
bound_constraint& l, bound_constraint& h) {
auto a1 = s.join(l.c->assumptions(), h.c->assumptions());
s.inc_ref(a1);
polynomial_ref A(l.A), B(l.B);
if (m_pm.is_neg(l.A)) {
A = -A;
B = -B;
}
for (auto c : clauses) {
if (c->is_removed())
continue;
c->set_removed();
if (c == l.c || c == h.c)
continue;
m_lemma.reset();
bool is_tautology = false;
for (literal lit : *c) {
lit = substitute_var(x, A, B, lit);
m_lemma.push_back(lit);
if (lit == true_literal)
is_tautology = true;
}
if (is_tautology)
continue;
auto a = s.join(c->assumptions(), a1);
auto cls = s.mk_clause(m_lemma.size(), m_lemma.data(), false, a);
IF_VERBOSE(3,
if (cls) {
s.display_proc()(verbose_stream(), x) << " * " << l.A << " = " << l.B << "\n";
s.display(verbose_stream(), *c) << " -> ";
s.display(verbose_stream(), *cls) << " - ";
s.display(verbose_stream(), *l.c) << " ";
s.display(verbose_stream(), *h.c) << "\n";
});
if (cls)
compute_occurs(*cls);
}
s.dec_ref(a1);
// track updates for model reconstruction
s.add_bound(l);
s.add_bound(h);
s.inc_simplify();
}
bool is_single_poly(ineq_atom const& a, poly*& p) {
unsigned sz = a.size();
return sz == 1 && a.is_odd(0) && (p = a.p(0), true);
}
bool is_unit(polynomial_ref const& p) {
if (!m_pm.is_const(p))
return false;
auto const& c = m_pm.coeff(p, 0);
return m_pm.m().is_one(c) || m_pm.m().is_minus_one(c);
}
};
simplify::simplify(solver& s, atom_vector& atoms, clause_vector& clauses, clause_vector& learned, pmanager& pm) {
m_imp = alloc(imp, s, atoms, clauses, learned, pm);
}
simplify::~simplify() {
dealloc(m_imp);
}
void simplify::operator()() {
(*m_imp)();
}
};

View file

@ -0,0 +1,16 @@
#pragma once
#include "nlsat/nlsat_types.h"
#include "nlsat/nlsat_clause.h"
namespace nlsat {
class simplify {
struct imp;
imp * m_imp;
public:
simplify(solver& s, atom_vector& atoms, clause_vector& clauses, clause_vector& learned, pmanager & pm);
~simplify();
void operator()();
};
}

File diff suppressed because it is too large Load diff

View file

@ -24,6 +24,7 @@ Revision History:
#include "util/params.h"
#include "util/statistics.h"
#include "util/rlimit.h"
#include "util/dependency.h"
namespace nlsat {
@ -36,6 +37,15 @@ namespace nlsat {
virtual std::ostream& operator()(std::ostream& out, assumption a) const = 0;
};
struct bound_constraint {
var x;
polynomial_ref A, B;
bool is_strict;
clause* c;
bound_constraint(var x, polynomial_ref& A, polynomial_ref& B, bool is_strict, clause* c) :
x(x), A(A), B(B), is_strict(is_strict), c(c) {}
};
class solver {
struct imp;
struct ctx;
@ -103,7 +113,7 @@ namespace nlsat {
e[i] = 1 if is_even[i] is false
e[i] = 2 if is_even[i] is true
*/
literal mk_ineq_literal(atom::kind k, unsigned sz, poly * const * ps, bool const * is_even);
literal mk_ineq_literal(atom::kind k, unsigned sz, poly * const * ps, bool const * is_even, bool simplify = false);
/**
\brief Create an atom of the form: x=root[i](p), x<root[i](p), x>root[i](p)
@ -114,6 +124,9 @@ namespace nlsat {
void inc_ref(literal l) { inc_ref(l.var()); }
void dec_ref(bool_var b);
void dec_ref(literal l) { dec_ref(l.var()); }
void inc_ref(assumption a);
void dec_ref(assumption a);
/**
\brief Create a new clause.
@ -172,6 +185,17 @@ namespace nlsat {
void get_bvalues(svector<bool_var> const& bvars, svector<lbool>& vs);
void set_bvalues(svector<lbool> const& vs);
/**
* \brief Access functions for simplify module.
*/
void del_clause(clause* c);
clause* mk_clause(unsigned n, literal const* lits, bool learned, internal_assumption a);
bool has_root_atom(clause const& c) const;
assumption join(assumption a, assumption b);
void inc_simplify();
void add_bound(bound_constraint const& c);
/**
\brief reorder variables.
*/
@ -244,6 +268,8 @@ namespace nlsat {
std::ostream& display(std::ostream & out, unsigned n, literal const* ls) const;
std::ostream& display(std::ostream& out, clause const& c) const;
std::ostream& display(std::ostream & out, literal_vector const& ls) const;
std::ostream& display(std::ostream & out, atom const& a) const;
@ -254,9 +280,10 @@ namespace nlsat {
std::ostream& display_smt2(std::ostream & out, literal_vector const& ls) const;
std::ostream& display_smt2(std::ostream & out) const;
std::ostream& display_smt2(std::ostream & out) const;
/**
\brief Display variable
*/

View file

@ -32,6 +32,7 @@ namespace nlsat {
#define NLSAT_VB_LVL 10
typedef void * assumption;
typedef void * assumption_set;
typedef void * internal_assumption;
typedef sat::bool_var bool_var;
typedef sat::bool_var_vector bool_var_vector;
@ -74,6 +75,7 @@ namespace nlsat {
}
protected:
friend class solver;
friend class simplify;
kind m_kind;
unsigned m_ref_count;
bool_var m_bool_var;

View file

@ -28,6 +28,7 @@ Revision History:
# include <iostream>
#endif
small_object_allocator::small_object_allocator(char const * id) {
for (unsigned i = 0; i < NUM_SLOTS; i++) {
m_chunks[i] = nullptr;
@ -98,7 +99,9 @@ void small_object_allocator::deallocate(size_t size, void * p) {
void * small_object_allocator::allocate(size_t size) {
if (size == 0) return nullptr;
if (size == 0)
return nullptr;
#if defined(Z3DEBUG) && !defined(_WINDOWS)
@ -109,6 +112,8 @@ void * small_object_allocator::allocate(size_t size) {
if (size >= SMALL_OBJ_SIZE - (1 << PTR_ALIGNMENT)) {
return memory::allocate(size);
}
#ifdef Z3DEBUG
size_t osize = size;
#endif