mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
303 lines
11 KiB
C++
303 lines
11 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
sls_arith_base.h
|
|
|
|
Abstract:
|
|
|
|
Theory plugin for arithmetic local search
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2020-09-08
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
#include "util/obj_pair_set.h"
|
|
#include "util/checked_int64.h"
|
|
#include "util/optional.h"
|
|
#include "ast/ast_trail.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "ast/sls/sls_context.h"
|
|
|
|
namespace sls {
|
|
|
|
using theory_var = int;
|
|
|
|
// local search portion for arithmetic
|
|
template<typename num_t>
|
|
class arith_base : public plugin {
|
|
enum class ineq_kind { EQ, LE, LT};
|
|
enum class var_sort { INT, REAL };
|
|
struct bound { bool is_strict = false; num_t value; };
|
|
typedef unsigned var_t;
|
|
typedef unsigned atom_t;
|
|
|
|
struct config {
|
|
double cb = 2.85;
|
|
unsigned L = 20;
|
|
unsigned t = 45;
|
|
unsigned max_no_improve = 500000;
|
|
double sp = 0.0003;
|
|
};
|
|
|
|
struct stats {
|
|
unsigned m_num_steps = 0;
|
|
};
|
|
|
|
public:
|
|
struct linear_term {
|
|
vector<std::pair<num_t, var_t>> m_args;
|
|
num_t m_coeff{ 0 };
|
|
};
|
|
struct nonlinear_coeff {
|
|
var_t v; // variable or multiplier containing x
|
|
num_t coeff; // coeff of v in inequality
|
|
unsigned p; // power
|
|
};
|
|
|
|
typedef svector<std::pair<unsigned, unsigned>> monomial_t;
|
|
|
|
// encode args <= bound, args = bound, args < bound
|
|
struct ineq : public linear_term {
|
|
vector<std::pair<var_t, vector<nonlinear_coeff>>> m_nonlinear;
|
|
vector<monomial_t> m_monomials;
|
|
ineq_kind m_op = ineq_kind::LE;
|
|
num_t m_args_value;
|
|
bool m_is_linear = true;
|
|
|
|
bool is_true() const;
|
|
std::ostream& display(std::ostream& out) const;
|
|
};
|
|
private:
|
|
|
|
class var_info {
|
|
num_t m_range{ 100000000 };
|
|
unsigned m_num_out_of_range = 0;
|
|
unsigned m_num_in_range = 0;
|
|
num_t m_value{ 0 };
|
|
num_t m_best_value{ 0 };
|
|
public:
|
|
var_info(expr* e, var_sort k): m_expr(e), m_sort(k) {}
|
|
expr* m_expr;
|
|
|
|
var_sort m_sort;
|
|
arith_op_kind m_op = arith_op_kind::LAST_ARITH_OP;
|
|
unsigned m_def_idx = UINT_MAX;
|
|
vector<std::pair<num_t, sat::bool_var>> m_bool_vars;
|
|
unsigned_vector m_muls;
|
|
unsigned_vector m_adds;
|
|
optional<bound> m_lo, m_hi;
|
|
|
|
num_t const& value() const { return m_value; }
|
|
void set_value(num_t const& v) { m_value = v; }
|
|
|
|
num_t const& best_value() const { return m_best_value; }
|
|
void set_best_value(num_t const& v) { m_best_value = v; }
|
|
|
|
bool in_range(num_t const& n) {
|
|
if (-m_range < n && n < m_range)
|
|
return true;
|
|
bool result = false;
|
|
if (m_lo && !m_hi)
|
|
result = n < m_lo->value + m_range;
|
|
else if (!m_lo && m_hi)
|
|
result = n > m_hi->value - m_range;
|
|
#if 0
|
|
if (!result)
|
|
out_of_range();
|
|
else
|
|
++m_num_in_range;
|
|
#endif
|
|
return result;
|
|
}
|
|
unsigned m_tabu_pos = 0, m_tabu_neg = 0;
|
|
unsigned m_last_pos = 0, m_last_neg = 0;
|
|
bool is_tabu(unsigned step, num_t const& delta) {
|
|
return (delta > 0 ? m_tabu_pos : m_tabu_neg) > step;
|
|
}
|
|
void set_step(unsigned step, unsigned tabu_step, num_t const& delta) {
|
|
if (delta > 0)
|
|
m_tabu_pos = tabu_step, m_last_pos = step;
|
|
else
|
|
m_tabu_neg = tabu_step, m_last_neg = step;
|
|
}
|
|
void out_of_range() {
|
|
++m_num_out_of_range;
|
|
if (m_num_out_of_range < 1000 * (1 + m_num_in_range))
|
|
return;
|
|
IF_VERBOSE(2, verbose_stream() << "increase range " << m_range << "\n");
|
|
m_range *= 2;
|
|
m_num_out_of_range = 0;
|
|
m_num_in_range = 0;
|
|
}
|
|
};
|
|
|
|
struct mul_def {
|
|
unsigned m_var;
|
|
monomial_t m_monomial;
|
|
};
|
|
|
|
struct add_def : public linear_term {
|
|
unsigned m_var;
|
|
};
|
|
|
|
struct op_def {
|
|
unsigned m_var = UINT_MAX;
|
|
arith_op_kind m_op = LAST_ARITH_OP;
|
|
unsigned m_arg1, m_arg2;
|
|
};
|
|
|
|
struct var_change {
|
|
unsigned m_var;
|
|
num_t m_delta;
|
|
double m_score;
|
|
};
|
|
|
|
stats m_stats;
|
|
config m_config;
|
|
scoped_ptr_vector<ineq> m_bool_vars;
|
|
vector<var_info> m_vars;
|
|
vector<mul_def> m_muls;
|
|
vector<add_def> m_adds;
|
|
vector<op_def> m_ops;
|
|
unsigned_vector m_expr2var;
|
|
svector<double> m_probs;
|
|
bool m_dscore_mode = false;
|
|
vector<var_change> m_updates;
|
|
var_t m_last_var = 0;
|
|
sat::literal m_last_literal = sat::null_literal;
|
|
num_t m_last_delta { 0 };
|
|
bool m_use_tabu = true;
|
|
unsigned m_updates_max_size = 45;
|
|
arith_util a;
|
|
svector<double> m_prob_break;
|
|
|
|
void invariant();
|
|
void invariant(ineq const& i);
|
|
|
|
unsigned get_num_vars() const { return m_vars.size(); }
|
|
|
|
bool eval_is_correct(var_t v);
|
|
bool repair_mul(mul_def const& md);
|
|
bool repair_add(add_def const& ad);
|
|
bool repair_mod(op_def const& od);
|
|
bool repair_idiv(op_def const& od);
|
|
bool repair_div(op_def const& od);
|
|
bool repair_rem(op_def const& od);
|
|
bool repair_power(op_def const& od);
|
|
bool repair_abs(op_def const& od);
|
|
bool repair_to_int(op_def const& od);
|
|
bool repair_to_real(op_def const& od);
|
|
bool repair(sat::literal lit);
|
|
bool in_bounds(var_t v, num_t const& value);
|
|
bool is_fixed(var_t v);
|
|
bool is_linear(var_t x, vector<nonlinear_coeff> const& nlc, num_t& b);
|
|
bool is_quadratic(var_t x, vector<nonlinear_coeff> const& nlc, num_t& a, num_t& b);
|
|
num_t mul_value_without(var_t m, var_t x);
|
|
|
|
void add_update(var_t v, num_t delta);
|
|
bool is_permitted_update(var_t v, num_t const& delta, num_t& delta_out);
|
|
|
|
|
|
num_t value1(var_t v);
|
|
|
|
vector<num_t> m_factors;
|
|
vector<num_t> const& factor(num_t n);
|
|
num_t root_of(unsigned n, num_t a);
|
|
num_t power_of(num_t a, unsigned k);
|
|
|
|
struct monomial_elem {
|
|
num_t other_product;
|
|
var_t v;
|
|
unsigned p; // power
|
|
};
|
|
|
|
// double reward(sat::literal lit);
|
|
|
|
bool sign(sat::bool_var v) const { return !ctx.is_true(sat::literal(v, false)); }
|
|
ineq* atom(sat::bool_var bv) const { return m_bool_vars.get(bv, nullptr); }
|
|
num_t dtt(bool sign, ineq const& ineq) const { return dtt(sign, ineq.m_args_value, ineq); }
|
|
num_t dtt(bool sign, num_t const& args_value, ineq const& ineq) const;
|
|
num_t dtt(bool sign, ineq const& ineq, var_t v, num_t const& new_value) const;
|
|
num_t dtt(bool sign, ineq const& ineq, num_t const& coeff, num_t const& delta) const;
|
|
num_t dts(unsigned cl, var_t v, num_t const& new_value) const;
|
|
num_t compute_dts(unsigned cl) const;
|
|
|
|
bool is_mul(var_t v) const { return m_vars[v].m_op == arith_op_kind::OP_MUL; }
|
|
bool is_add(var_t v) const { return m_vars[v].m_op == arith_op_kind::OP_ADD; }
|
|
mul_def const& get_mul(var_t v) const { SASSERT(is_mul(v)); return m_muls[m_vars[v].m_def_idx]; }
|
|
add_def const& get_add(var_t v) const { SASSERT(is_add(v)); return m_adds[m_vars[v].m_def_idx]; }
|
|
|
|
bool update(var_t v, num_t const& new_value);
|
|
bool apply_update();
|
|
bool find_nl_moves(sat::literal lit);
|
|
bool find_lin_moves(sat::literal lit);
|
|
bool find_reset_moves(sat::literal lit);
|
|
void add_reset_update(var_t v);
|
|
void find_linear_moves(ineq const& i, var_t x, num_t const& coeff, num_t const& sum);
|
|
void find_quadratic_moves(ineq const& i, var_t x, num_t const& a, num_t const& b, num_t const& sum);
|
|
double compute_score(var_t x, num_t const& delta);
|
|
void save_best_values();
|
|
|
|
var_t mk_var(expr* e);
|
|
var_t mk_term(expr* e);
|
|
var_t mk_op(arith_op_kind k, expr* e, expr* x, expr* y);
|
|
void add_arg(linear_term& term, num_t const& c, var_t v);
|
|
void add_args(linear_term& term, expr* e, num_t const& sign);
|
|
ineq& new_ineq(ineq_kind op, num_t const& bound);
|
|
void init_ineq(sat::bool_var bv, ineq& i);
|
|
num_t divide(var_t v, num_t const& delta, num_t const& coeff);
|
|
num_t divide_floor(var_t v, num_t const& a, num_t const& b);
|
|
num_t divide_ceil(var_t v, num_t const& a, num_t const& b);
|
|
|
|
void init_bool_var_assignment(sat::bool_var v);
|
|
|
|
bool is_int(var_t v) const { return m_vars[v].m_sort == var_sort::INT; }
|
|
|
|
num_t value(var_t v) const { return m_vars[v].value(); }
|
|
bool is_num(expr* e, num_t& i);
|
|
expr_ref from_num(sort* s, num_t const& n);
|
|
void check_ineqs();
|
|
void init_bool_var(sat::bool_var bv);
|
|
void initialize_unit(sat::literal lit);
|
|
void add_le(var_t v, num_t const& n);
|
|
void add_ge(var_t v, num_t const& n);
|
|
void add_lt(var_t v, num_t const& n);
|
|
void add_gt(var_t v, num_t const& n);
|
|
std::ostream& display(std::ostream& out, var_t v) const;
|
|
std::ostream& display(std::ostream& out, add_def const& ad) const;
|
|
std::ostream& display(std::ostream& out, mul_def const& md) const;
|
|
public:
|
|
arith_base(context& ctx);
|
|
~arith_base() override {}
|
|
void register_term(expr* e) override;
|
|
bool set_value(expr* e, expr* v) override;
|
|
expr_ref get_value(expr* e) override;
|
|
void initialize() override;
|
|
void propagate_literal(sat::literal lit) override;
|
|
bool propagate() override;
|
|
void repair_up(app* e) override;
|
|
bool repair_down(app* e) override;
|
|
void repair_literal(sat::literal lit) override;
|
|
bool is_sat() override;
|
|
void on_rescale() override;
|
|
void on_restart() override;
|
|
std::ostream& display(std::ostream& out) const override;
|
|
void collect_statistics(statistics& st) const override;
|
|
void reset_statistics() override;
|
|
};
|
|
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, typename arith_base<checked_int64<true>>::ineq const& ineq) {
|
|
return ineq.display(out);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, typename arith_base<rational>::ineq const& ineq) {
|
|
return ineq.display(out);
|
|
}
|
|
}
|