/*++ Copyright (c) 2020 Microsoft Corporation Module Name: sls_arith_base.h Abstract: Theory plugin for arithmetic local search Author: Nikolaj Bjorner (nbjorner) 2020-09-08 --*/ #pragma once #include "util/obj_pair_set.h" #include "util/checked_int64.h" #include "util/optional.h" #include "ast/ast_trail.h" #include "ast/arith_decl_plugin.h" #include "ast/sls/sls_context.h" namespace sls { using theory_var = int; // local search portion for arithmetic template class arith_base : public plugin { enum class ineq_kind { EQ, LE, LT}; enum class var_sort { INT, REAL }; struct bound { bool is_strict = false; num_t value; }; typedef unsigned var_t; typedef unsigned atom_t; struct config { double cb = 2.85; unsigned L = 20; unsigned t = 45; unsigned max_no_improve = 500000; double sp = 0.0003; }; struct stats { unsigned m_num_steps = 0; }; public: struct linear_term { vector> m_args; num_t m_coeff{ 0 }; }; struct nonlinear_coeff { var_t v; // variable or multiplier containing x num_t coeff; // coeff of v in inequality unsigned p; // power }; typedef svector> monomial_t; // encode args <= bound, args = bound, args < bound struct ineq : public linear_term { vector>> m_nonlinear; vector m_monomials; ineq_kind m_op = ineq_kind::LE; num_t m_args_value; bool m_is_linear = true; bool is_true() const; std::ostream& display(std::ostream& out) const; }; private: class var_info { num_t m_range{ 100000000 }; unsigned m_num_out_of_range = 0; unsigned m_num_in_range = 0; num_t m_value{ 0 }; num_t m_best_value{ 0 }; public: var_info(expr* e, var_sort k): m_expr(e), m_sort(k) {} expr* m_expr; var_sort m_sort; arith_op_kind m_op = arith_op_kind::LAST_ARITH_OP; unsigned m_def_idx = UINT_MAX; vector> m_bool_vars; unsigned_vector m_muls; unsigned_vector m_adds; optional m_lo, m_hi; num_t const& value() const { return m_value; } void set_value(num_t const& v) { m_value = v; } num_t const& best_value() const { return m_best_value; } void set_best_value(num_t const& v) { m_best_value = v; } bool in_range(num_t const& n) { if (-m_range < n && n < m_range) return true; bool result = false; if (m_lo && !m_hi) result = n < m_lo->value + m_range; else if (!m_lo && m_hi) result = n > m_hi->value - m_range; #if 0 if (!result) out_of_range(); else ++m_num_in_range; #endif return result; } unsigned m_tabu_pos = 0, m_tabu_neg = 0; unsigned m_last_pos = 0, m_last_neg = 0; bool is_tabu(unsigned step, num_t const& delta) { return (delta > 0 ? m_tabu_pos : m_tabu_neg) > step; } void set_step(unsigned step, unsigned tabu_step, num_t const& delta) { if (delta > 0) m_tabu_pos = tabu_step, m_last_pos = step; else m_tabu_neg = tabu_step, m_last_neg = step; } void out_of_range() { ++m_num_out_of_range; if (m_num_out_of_range < 1000 * (1 + m_num_in_range)) return; IF_VERBOSE(2, verbose_stream() << "increase range " << m_range << "\n"); m_range *= 2; m_num_out_of_range = 0; m_num_in_range = 0; } }; struct mul_def { unsigned m_var; monomial_t m_monomial; }; struct add_def : public linear_term { unsigned m_var; }; struct op_def { unsigned m_var = UINT_MAX; arith_op_kind m_op = LAST_ARITH_OP; unsigned m_arg1, m_arg2; }; struct var_change { unsigned m_var; num_t m_delta; double m_score; }; stats m_stats; config m_config; scoped_ptr_vector m_bool_vars; vector m_vars; vector m_muls; vector m_adds; vector m_ops; unsigned_vector m_expr2var; svector m_probs; bool m_dscore_mode = false; vector m_updates; var_t m_last_var = 0; sat::literal m_last_literal = sat::null_literal; num_t m_last_delta { 0 }; bool m_use_tabu = true; unsigned m_updates_max_size = 45; arith_util a; svector m_prob_break; void invariant(); void invariant(ineq const& i); unsigned get_num_vars() const { return m_vars.size(); } bool eval_is_correct(var_t v); bool repair_mul(mul_def const& md); bool repair_add(add_def const& ad); bool repair_mod(op_def const& od); bool repair_idiv(op_def const& od); bool repair_div(op_def const& od); bool repair_rem(op_def const& od); bool repair_power(op_def const& od); bool repair_abs(op_def const& od); bool repair_to_int(op_def const& od); bool repair_to_real(op_def const& od); bool repair(sat::literal lit); bool in_bounds(var_t v, num_t const& value); bool is_fixed(var_t v); bool is_linear(var_t x, vector const& nlc, num_t& b); bool is_quadratic(var_t x, vector const& nlc, num_t& a, num_t& b); num_t mul_value_without(var_t m, var_t x); void add_update(var_t v, num_t delta); bool is_permitted_update(var_t v, num_t const& delta, num_t& delta_out); num_t value1(var_t v); vector m_factors; vector const& factor(num_t n); num_t root_of(unsigned n, num_t a); num_t power_of(num_t a, unsigned k); struct monomial_elem { num_t other_product; var_t v; unsigned p; // power }; // double reward(sat::literal lit); bool sign(sat::bool_var v) const { return !ctx.is_true(sat::literal(v, false)); } ineq* atom(sat::bool_var bv) const { return m_bool_vars.get(bv, nullptr); } num_t dtt(bool sign, ineq const& ineq) const { return dtt(sign, ineq.m_args_value, ineq); } num_t dtt(bool sign, num_t const& args_value, ineq const& ineq) const; num_t dtt(bool sign, ineq const& ineq, var_t v, num_t const& new_value) const; num_t dtt(bool sign, ineq const& ineq, num_t const& coeff, num_t const& delta) const; num_t dts(unsigned cl, var_t v, num_t const& new_value) const; num_t compute_dts(unsigned cl) const; bool is_mul(var_t v) const { return m_vars[v].m_op == arith_op_kind::OP_MUL; } bool is_add(var_t v) const { return m_vars[v].m_op == arith_op_kind::OP_ADD; } mul_def const& get_mul(var_t v) const { SASSERT(is_mul(v)); return m_muls[m_vars[v].m_def_idx]; } add_def const& get_add(var_t v) const { SASSERT(is_add(v)); return m_adds[m_vars[v].m_def_idx]; } bool update(var_t v, num_t const& new_value); bool apply_update(); bool find_nl_moves(sat::literal lit); bool find_lin_moves(sat::literal lit); bool find_reset_moves(sat::literal lit); void add_reset_update(var_t v); void find_linear_moves(ineq const& i, var_t x, num_t const& coeff, num_t const& sum); void find_quadratic_moves(ineq const& i, var_t x, num_t const& a, num_t const& b, num_t const& sum); double compute_score(var_t x, num_t const& delta); void save_best_values(); var_t mk_var(expr* e); var_t mk_term(expr* e); var_t mk_op(arith_op_kind k, expr* e, expr* x, expr* y); void add_arg(linear_term& term, num_t const& c, var_t v); void add_args(linear_term& term, expr* e, num_t const& sign); ineq& new_ineq(ineq_kind op, num_t const& bound); void init_ineq(sat::bool_var bv, ineq& i); num_t divide(var_t v, num_t const& delta, num_t const& coeff); num_t divide_floor(var_t v, num_t const& a, num_t const& b); num_t divide_ceil(var_t v, num_t const& a, num_t const& b); void init_bool_var_assignment(sat::bool_var v); bool is_int(var_t v) const { return m_vars[v].m_sort == var_sort::INT; } num_t value(var_t v) const { return m_vars[v].value(); } bool is_num(expr* e, num_t& i); expr_ref from_num(sort* s, num_t const& n); void check_ineqs(); void init_bool_var(sat::bool_var bv); void initialize_unit(sat::literal lit); void add_le(var_t v, num_t const& n); void add_ge(var_t v, num_t const& n); void add_lt(var_t v, num_t const& n); void add_gt(var_t v, num_t const& n); std::ostream& display(std::ostream& out, var_t v) const; std::ostream& display(std::ostream& out, add_def const& ad) const; std::ostream& display(std::ostream& out, mul_def const& md) const; public: arith_base(context& ctx); ~arith_base() override {} void register_term(expr* e) override; bool set_value(expr* e, expr* v) override; expr_ref get_value(expr* e) override; void initialize() override; void propagate_literal(sat::literal lit) override; bool propagate() override; void repair_up(app* e) override; bool repair_down(app* e) override; void repair_literal(sat::literal lit) override; bool is_sat() override; void on_rescale() override; void on_restart() override; std::ostream& display(std::ostream& out) const override; void collect_statistics(statistics& st) const override; void reset_statistics() override; }; inline std::ostream& operator<<(std::ostream& out, typename arith_base>::ineq const& ineq) { return ineq.display(out); } inline std::ostream& operator<<(std::ostream& out, typename arith_base::ineq const& ineq) { return ineq.display(out); } }