3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 05:48:44 +00:00
z3/src/math/dd/dd_pdd.cpp
Nikolaj Bjorner c5187902ad reset also m_values (#107)
* fixes to use list bookkeeping

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix reset logic

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix non-termination bug in simplifier

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* missing reset of values

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-01-28 10:04:21 -08:00

1156 lines
38 KiB
C++

/*++
Copyright (c) 2019 Microsoft Corporation
Module Name:
dd_pdd.cpp
Abstract:
Poly DD package
Author:
Nikolaj Bjorner (nbjorner) 2019-12-17
Revision History:
--*/
#include "util/trace.h"
#include "util/stopwatch.h"
#include "math/dd/dd_pdd.h"
namespace dd {
pdd_manager::pdd_manager(unsigned num_vars, semantics s) {
m_spare_entry = nullptr;
m_max_num_nodes = 1 << 24; // up to 16M nodes
m_mark_level = 0;
m_dmark_level = 0;
m_disable_gc = false;
m_is_new_node = false;
m_semantics = s;
unsigned_vector l2v;
for (unsigned i = 0; i < num_vars; ++i) l2v.push_back(i);
init_nodes(l2v);
}
pdd_manager::~pdd_manager() {
if (m_spare_entry) {
m_alloc.deallocate(sizeof(*m_spare_entry), m_spare_entry);
m_spare_entry = nullptr;
}
reset_op_cache();
}
void pdd_manager::reset(unsigned_vector const& level2var) {
reset_op_cache();
m_node_table.reset();
m_nodes.reset();
m_free_nodes.reset();
m_pdd_stack.reset();
m_values.reset();
m_mpq_table.reset();
m_values.reset();
m_free_values.reset();
m_mpq_table.reset();
init_nodes(level2var);
}
void pdd_manager::init_nodes(unsigned_vector const& l2v) {
// add dummy nodes for operations, and 0, 1 pdds.
for (unsigned i = 0; i < pdd_no_op; ++i) {
m_nodes.push_back(node());
m_nodes[i].m_refcount = max_rc;
m_nodes[i].m_index = i;
}
init_value(rational::zero(), 0);
init_value(rational::one(), 1);
SASSERT(is_val(0));
SASSERT(is_val(1));
alloc_free_nodes(1024 + l2v.size());
init_vars(l2v);
}
void pdd_manager::init_vars(unsigned_vector const& level2var) {
unsigned n = level2var.size();
m_level2var.resize(n);
m_var2level.resize(n);
m_var2pdd.resize(n);
for (unsigned l = 0; l < n; ++l) {
unsigned v = level2var[l];
m_var2pdd[v] = make_node(l, zero_pdd, one_pdd);
m_nodes[m_var2pdd[v]].m_refcount = max_rc;
m_var2level[v] = l;
m_level2var[l] = v;
}
}
void pdd_manager::reset_op_cache() {
for (auto* e : m_op_cache) {
SASSERT(e != m_spare_entry);
m_alloc.deallocate(sizeof(*e), e);
}
m_op_cache.reset();
}
pdd pdd_manager::add(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_add_op), this); }
pdd pdd_manager::sub(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_sub_op), this); }
pdd pdd_manager::mul(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_mul_op), this); }
pdd pdd_manager::reduce(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_reduce_op), this); }
pdd pdd_manager::mk_val(rational const& r) { return pdd(imk_val(r), this); }
pdd pdd_manager::mk_val(unsigned r) { return mk_val(rational(r)); }
pdd pdd_manager::mul(rational const& r, pdd const& b) { pdd c(mk_val(r)); return pdd(apply(c.root, b.root, pdd_mul_op), this); }
pdd pdd_manager::add(rational const& r, pdd const& b) { pdd c(mk_val(r)); return pdd(apply(c.root, b.root, pdd_add_op), this); }
pdd pdd_manager::zero() { return pdd(zero_pdd, this); }
pdd pdd_manager::one() { return pdd(one_pdd, this); }
pdd pdd_manager::mk_or(pdd const& p, pdd const& q) { return p + q - (p*q); }
pdd pdd_manager::mk_xor(pdd const& p, pdd const& q) { if (m_semantics == mod2_e) return p + q; return (p*q*2) - p - q; }
pdd pdd_manager::mk_xor(pdd const& p, unsigned x) { pdd q(mk_val(x)); if (m_semantics == mod2_e) return p + q; return (p*q*2) - p - q; }
pdd pdd_manager::mk_not(pdd const& p) { return 1 - p; }
pdd pdd_manager::subst_val(pdd const& p, vector<std::pair<unsigned, rational>> const& _s) {
typedef std::pair<unsigned, rational> pr;
vector<pr> s(_s);
std::function<bool (pr const&, pr const&)> compare_level =
[&](pr const& a, pr const& b) { return m_var2level[a.first] < m_var2level[b.first]; };
std::sort(s.begin(), s.end(), compare_level);
pdd r(one());
for (auto const& q : s) {
r = (r*mk_var(q.first)) + q.second;
}
return pdd(apply(p.root, r.root, pdd_subst_val_op), this);
}
pdd_manager::PDD pdd_manager::apply(PDD arg1, PDD arg2, pdd_op op) {
bool first = true;
SASSERT(well_formed());
scoped_push _sp(*this);
while (true) {
try {
return apply_rec(arg1, arg2, op);
}
catch (const mem_out &) {
try_gc();
if (!first) throw;
first = false;
}
}
SASSERT(well_formed());
return null_pdd;
}
bool pdd_manager::check_result(op_entry*& e1, op_entry const* e2, PDD a, PDD b, PDD c) {
if (e1 != e2) {
SASSERT(e2->m_result != null_pdd);
push_entry(e1);
e1 = nullptr;
return true;
}
else {
e1->m_pdd1 = a;
e1->m_pdd2 = b;
e1->m_op = c;
SASSERT(e1->m_result == null_pdd);
return false;
}
}
pdd_manager::PDD pdd_manager::apply_rec(PDD p, PDD q, pdd_op op) {
switch (op) {
case pdd_sub_op:
if (is_zero(q)) return p;
if (is_val(p) && is_val(q)) return imk_val(val(p) - val(q));
if (m_semantics != mod2_e) break;
op = pdd_add_op;
case pdd_add_op:
if (is_zero(p)) return q;
if (is_zero(q)) return p;
if (is_val(p) && is_val(q)) return imk_val(val(p) + val(q));
if (is_val(p)) std::swap(p, q);
else if (!is_val(q) && level(p) < level(q)) std::swap(p, q);
break;
case pdd_mul_op:
if (is_zero(p) || is_zero(q)) return zero_pdd;
if (is_one(p)) return q;
if (is_one(q)) return p;
if (is_val(p) && is_val(q)) return imk_val(val(p) * val(q));
if (is_val(p)) std::swap(p, q);
else if (!is_val(q) && level(p) < level(q)) std::swap(p, q);
break;
case pdd_reduce_op:
if (is_zero(q)) return p;
if (is_val(p)) return p;
if (!is_val(q) && level(p) < level(q)) return p;
break;
case pdd_subst_val_op:
while (!is_val(q) && !is_val(p)) {
if (level(p) == level(q)) break;
if (level(p) < level(q)) q = lo(q);
else p = lo(p);
}
if (is_val(p) || is_val(q)) return p;
break;
default:
UNREACHABLE();
break;
}
op_entry * e1 = pop_entry(p, q, op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, p, q, op)) {
SASSERT(!m_free_nodes.contains(e2->m_result));
return e2->m_result;
}
PDD r;
unsigned level_p = level(p), level_q = level(q);
unsigned npop = 2;
switch (op) {
case pdd_add_op:
SASSERT(!is_val(p));
if (is_val(q)) {
push(apply_rec(lo(p), q, op));
r = make_node(level_p, read(1), hi(p));
npop = 1;
}
else if (level_p == level_q) {
push(apply_rec(lo(p), lo(q), op));
push(apply_rec(hi(p), hi(q), op));
r = make_node(level_p, read(2), read(1));
}
else {
SASSERT(level_p > level_q);
push(apply_rec(lo(p), q, op));
r = make_node(level_p, read(1), hi(p));
npop = 1;
}
break;
case pdd_sub_op:
if (is_val(p) || (!is_val(q) && level_p < level_q)) {
// p - (ax + b) = -ax + (p - b)
push(apply_rec(p, lo(q), op));
push(minus_rec(hi(q)));
r = make_node(level_q, read(2), read(1));
}
else if (is_val(q) || (level_p > level_q)) {
// (ax + b) - k = ax + (b - k)
push(apply_rec(lo(p), q, op));
r = make_node(level_p, read(1), hi(p));
npop = 1;
}
else {
SASSERT(level_p == level_q);
// (ax + b) - (cx + d) = (a - c)x + (b - d)
push(apply_rec(lo(p), lo(q), op));
push(apply_rec(hi(p), hi(q), op));
r = make_node(level_p, read(2), read(1));
}
break;
case pdd_mul_op:
SASSERT(!is_val(p));
if (is_val(q)) {
push(apply_rec(lo(p), q, op));
push(apply_rec(hi(p), q, op));
r = make_node(level_p, read(2), read(1));
}
else if (level_p == level_q) {
if (m_semantics != free_e) {
//
// (xa+b)*(xc+d) == x(ac+bc+ad) + bd
// == x((a+b)(c+d)-bd) + bd
// because x*x = x
//
push(apply_rec(lo(p), lo(q), pdd_mul_op));
unsigned bd = read(1);
push(apply_rec(hi(p), lo(p), pdd_add_op));
push(apply_rec(hi(q), lo(q), pdd_add_op));
push(apply_rec(read(1), read(2), pdd_mul_op));
push(apply_rec(read(1), bd, pdd_sub_op));
r = make_node(level_p, bd, read(1));
npop = 5;
}
else {
/*
In this case the code should have checked if level(read(1)) == level_a,
Then it should have converted read(1) into e := hi(read(1)), f := lo(read(1)),
Such that read(1) stands for x*e+f.
The task is then to create the term:
x*(x*ac + x*e + f) + bd, which is the same as: x*(x*(ac + e) + f) + bd
*/
push(apply_rec(hi(p), hi(q), op));
push(apply_rec(hi(p), lo(q), op));
push(apply_rec(lo(p), hi(q), op));
push(apply_rec(lo(p), lo(q), op));
unsigned ac = read(4), ad = read(3), bc = read(2), bd = read(1);
push(apply_rec(ad, bc, pdd_add_op));
unsigned n = read(1); // n = ad + bc
if (!is_val(n) && level(n) == level_p) {
push(apply_rec(ac, hi(n), pdd_add_op));
push(make_node(level_p, lo(n), read(1)));
r = make_node(level_p, bd, read(1));
npop = 7;
} else {
push(make_node(level_p, n, ac));
r = make_node(level_p, bd, read(1));
npop = 6;
}
}
}
else {
// (x*hi(p)+lo(p))*b = x*hi(p)*b + lo(p)*b
SASSERT(level_p > level_q);
push(apply_rec(lo(p), q, op));
push(apply_rec(hi(p), q, op));
r = make_node(level_p, read(2), read(1));
}
break;
case pdd_reduce_op:
if (level_p > level_q) {
push(apply_rec(lo(p), q, op));
push(apply_rec(hi(p), q, op));
if (read(2) == lo(p) && read(1) == hi(p)) {
r = p;
}
else {
r = make_node(level_p, read(2), read(1));
}
}
else {
SASSERT(level_p == level_q);
r = reduce_on_match(p, q);
npop = 0;
}
break;
case pdd_subst_val_op:
SASSERT(!is_val(p));
SASSERT(!is_val(q));
SASSERT(level_p = level_q);
push(apply_rec(lo(p), hi(q), pdd_subst_val_op)); // lo := subst(lo(p), s)
push(apply_rec(hi(p), hi(q), pdd_subst_val_op)); // hi := subst(hi(p), s)
push(apply_rec(lo(q), read(1), pdd_mul_op)); // hi := hi*s[var(p)]
r = apply_rec(read(1), read(3), pdd_add_op); // r := hi + lo := subst(lo(p),s) + s[var(p)]*subst(hi(p),s)
npop = 3;
break;
default:
r = null_pdd;
UNREACHABLE();
break;
}
pop(npop);
e1->m_result = r;
SASSERT(!m_free_nodes.contains(r));
return r;
}
pdd pdd_manager::minus(pdd const& a) {
if (m_semantics == mod2_e) {
return a;
}
bool first = true;
SASSERT(well_formed());
scoped_push _sp(*this);
while (true) {
try {
return pdd(minus_rec(a.root), this);
}
catch (const mem_out &) {
try_gc();
if (!first) throw;
first = false;
}
}
SASSERT(well_formed());
return pdd(zero_pdd, this);
}
pdd_manager::PDD pdd_manager::minus_rec(PDD a) {
SASSERT(m_semantics != mod2_e);
if (is_zero(a)) return zero_pdd;
if (is_val(a)) return imk_val(-val(a));
op_entry* e1 = pop_entry(a, a, pdd_minus_op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, a, pdd_minus_op))
return e2->m_result;
push(minus_rec(lo(a)));
push(minus_rec(hi(a)));
PDD r = make_node(level(a), read(2), read(1));
pop(2);
e1->m_result = r;
return r;
}
// q = lt(a)/lt(b), return a - b*q
pdd_manager::PDD pdd_manager::reduce_on_match(PDD a, PDD b) {
SASSERT(level(a) == level(b) && !is_val(a) && !is_val(b));
push(a);
while (lm_divides(b, a)) {
push(lt_quotient(b, a));
push(apply_rec(read(1), b, pdd_mul_op));
push(apply_rec(a, read(1), pdd_add_op));
a = read(1);
pop(4);
push(a);
}
pop(1);
return a;
}
// true if leading monomial of p divides leading monomial of q
bool pdd_manager::lm_divides(PDD p, PDD q) const {
p = first_leading(p);
q = first_leading(q);
while (true) {
if (is_val(p)) return true;
if (is_val(q)) return false;
if (level(p) > level(q)) return false;
if (level(p) == level(q)) {
p = next_leading(p);
q = next_leading(q);
}
else {
q = next_leading(q);
}
}
}
// return minus quotient -r, such that lt(q) = lt(p)*r
// assume lm_divides(p, q)
pdd_manager::PDD pdd_manager::lt_quotient(PDD p, PDD q) {
SASSERT(lm_divides(p, q));
p = first_leading(p);
q = first_leading(q);
SASSERT(is_val(p) || !is_val(q));
if (is_val(p)) {
if (is_val(q)) {
SASSERT(!val(p).is_zero());
return imk_val(-val(q) / val(p));
}
}
else if (level(p) == level(q)) {
return lt_quotient(next_leading(p), next_leading(q));
}
SASSERT(!is_val(q));
push(lt_quotient(p, next_leading(q)));
PDD r = apply_rec(m_var2pdd[var(q)], read(1), pdd_mul_op);
pop(1);
return r;
}
//
// p = lcm(lm(a),lm(b))/lm(a), q = lcm(lm(a),lm(b))/lm(b)
// pc = coeff(lt(a)) qc = coeff(lt(b))
// compute a*q*qc - b*p*pc
//
bool pdd_manager::try_spoly(pdd const& a, pdd const& b, pdd& r) {
return common_factors(a, b, m_p, m_q, m_pc, m_qc) && (r = spoly(a, b, m_p, m_q, m_pc, m_qc), true);
}
pdd pdd_manager::spoly(pdd const& a, pdd const& b, unsigned_vector const& p, unsigned_vector const& q, rational const& pc, rational const& qc) {
pdd r1 = mk_val(qc);
for (unsigned i = q.size(); i-- > 0; ) r1 *= mk_var(q[i]);
pdd r2 = mk_val(-pc);
for (unsigned i = p.size(); i-- > 0; ) r2 *= mk_var(p[i]);
return (r1*a) + (r2*b);
}
bool pdd_manager::common_factors(pdd const& a, pdd const& b, unsigned_vector& p, unsigned_vector& q, rational& pc, rational& qc) {
p.reset(); q.reset();
PDD x = first_leading(a.root), y = first_leading(b.root);
bool has_common = false;
while (true) {
if (is_val(x) || is_val(y)) {
if (!has_common) return false;
while (!is_val(y)) q.push_back(var(y)), y = next_leading(y);
while (!is_val(x)) p.push_back(var(x)), x = next_leading(x);
pc = val(x);
qc = val(y);
if (m_semantics != mod2_e && pc.is_int() && qc.is_int()) {
rational g = gcd(pc, qc);
pc /= g;
qc /= g;
}
return true;
}
if (level(x) == level(y)) {
has_common = true;
x = next_leading(x);
y = next_leading(y);
}
else if (level(x) > level(y)) {
p.push_back(var(x));
x = next_leading(x);
}
else {
q.push_back(var(y));
y = next_leading(y);
}
}
}
/*.
* The pdd format makes lexicographic comparison easy: compare based on
* the top variable and descend depending on whether hi(x) == hi(y)
*
* NB. this does not compare leading monomials.
*/
bool pdd_manager::lt(pdd const& a, pdd const& b) {
PDD x = a.root;
PDD y = b.root;
if (x == y) return false;
while (true) {
SASSERT(x != y);
if (is_val(x))
return !is_val(y) || val(x) < val(y);
if (is_val(y))
return false;
if (level(x) == level(y)) {
if (hi(x) == hi(y)) {
x = lo(x);
y = lo(y);
}
else {
x = hi(x);
y = hi(y);
}
}
else {
return level(x) > level(y);
}
}
}
/**
Compare leading terms of pdds
*/
bool pdd_manager::different_leading_term(pdd const& a, pdd const& b) {
PDD x = first_leading(a.root);
PDD y = first_leading(b.root);
while (true) {
if (x == y) return false;
if (is_val(x) || is_val(y)) return true;
if (level(x) == level(y)) {
x = next_leading(x);
y = next_leading(y);
}
else {
return true;
}
}
}
/**
* The assumption is that var(p) is part of the leading monomial.
* Then the next leading monomial that uses var(p) has to be under hi(p)
* because lo(p) does not use var(p).
*/
pdd_manager::PDD pdd_manager::next_leading(PDD p) const {
SASSERT(!is_val(p));
return first_leading(hi(p));
}
/**
* The first node that contains a term from the leading monomial
* is a node of highest degree and highest variable.
* Thus, when the degree of hi(p) + 1 is not dominated by degree of lo(p).
*/
pdd_manager::PDD pdd_manager::first_leading(PDD p) const {
while (!is_val(p) && degree(hi(p)) + 1 < degree(lo(p))) {
p = lo(p);
}
return p;
}
/*
Determine whether p is a linear polynomials.
A linear polynomial is of the form x*v1 + y*v2 + .. + vn,
where v1, v2, .., vn are values.
*/
bool pdd_manager::is_linear(PDD p) {
while (true) {
if (is_val(p)) return true;
if (!is_val(hi(p))) return false;
p = lo(p);
}
}
bool pdd_manager::is_linear(pdd const& p) {
return is_linear(p.root);
}
/*
Determine whether p is a binary polynomials
of the form v1, x*v1 + v2, or x*v1 + y*v2 + v3
where v1, v2 are values.
*/
bool pdd_manager::is_binary(PDD p) {
return is_val(p) || (is_val(hi(p)) && (is_val(lo(p)) || (is_val(hi(lo(p))) && is_val(lo(lo(p))))));
}
bool pdd_manager::is_binary(pdd const& p) {
return is_binary(p.root);
}
/**
Determine if p is a monomial.
*/
bool pdd_manager::is_monomial(PDD p) {
while (true) {
if (is_val(p)) return true;
if (!is_zero(lo(p))) return false;
p = hi(p);
}
}
/*
\brief determine if v occurs as a leaf variable.
*/
bool pdd_manager::var_is_leaf(PDD p, unsigned v) {
init_mark();
m_todo.push_back(p);
while (!m_todo.empty()) {
PDD r = m_todo.back();
m_todo.pop_back();
if (is_val(r) || is_marked(r)) continue;
set_mark(r);
if (var(r) == v) {
if (!is_val(lo(r)) || !is_val(hi(r))) {
m_todo.reset();
return false;
}
continue;
}
if (!is_marked(lo(r))) m_todo.push_back(lo(r));
if (!is_marked(hi(r))) m_todo.push_back(hi(r));
}
return true;
}
void pdd_manager::push(PDD b) {
m_pdd_stack.push_back(b);
}
void pdd_manager::pop(unsigned num_scopes) {
m_pdd_stack.shrink(m_pdd_stack.size() - num_scopes);
}
pdd_manager::PDD pdd_manager::read(unsigned index) {
return m_pdd_stack[m_pdd_stack.size() - index];
}
pdd_manager::op_entry* pdd_manager::pop_entry(PDD l, PDD r, PDD op) {
op_entry* result = nullptr;
if (m_spare_entry) {
result = m_spare_entry;
m_spare_entry = nullptr;
result->m_pdd1 = l;
result->m_pdd2 = r;
result->m_op = op;
}
else {
void * mem = m_alloc.allocate(sizeof(op_entry));
result = new (mem) op_entry(l, r, op);
}
result->m_result = null_pdd;
return result;
}
void pdd_manager::push_entry(op_entry* e) {
SASSERT(!m_spare_entry);
m_spare_entry = e;
}
pdd_manager::PDD pdd_manager::imk_val(rational const& r) {
if (r.is_zero()) return zero_pdd;
if (r.is_one()) return one_pdd;
if (m_semantics == mod2_e) return imk_val(mod(r, rational(2)));
const_info info;
if (!m_mpq_table.find(r, info)) {
init_value(info, r);
}
return info.m_node_index;
}
void pdd_manager::init_value(const_info& info, rational const& r) {
unsigned vi = 0;
if (m_free_values.empty()) {
vi = m_values.size();
m_values.push_back(r);
}
else {
vi = m_free_values.back();
m_free_values.pop_back();
m_values[vi] = r;
}
m_freeze_value = r;
node n(vi);
info.m_value_index = vi;
info.m_node_index = insert_node(n);
m_mpq_table.insert(r, info);
}
void pdd_manager::init_value(rational const& v, unsigned node_index) {
const_info info;
m_nodes[node_index].m_hi = 0;
m_nodes[node_index].m_lo = node_index;
info.m_value_index = m_values.size();
info.m_node_index = node_index;
m_mpq_table.insert(v, info);
m_values.push_back(v);
}
pdd_manager::PDD pdd_manager::make_node(unsigned lvl, PDD l, PDD h) {
m_is_new_node = false;
if (is_zero(h)) return l;
SASSERT(is_val(l) || level(l) < lvl);
SASSERT(is_val(h) || level(h) <= lvl);
node n(lvl, l, h);
return insert_node(n);
}
pdd_manager::PDD pdd_manager::insert_node(node const& n) {
node_table::entry* e = m_node_table.insert_if_not_there2(n);
if (e->get_data().m_index != 0) {
unsigned result = e->get_data().m_index;
SASSERT(well_formed(e->get_data()));
return result;
}
e->get_data().m_refcount = 0;
bool do_gc = m_free_nodes.empty();
if (do_gc && !m_disable_gc) {
gc();
e = m_node_table.insert_if_not_there2(n);
e->get_data().m_refcount = 0;
}
if (do_gc) {
if (m_nodes.size() > m_max_num_nodes) {
throw mem_out();
}
alloc_free_nodes(m_nodes.size()/2);
}
SASSERT(e->get_data().m_lo == n.m_lo);
SASSERT(e->get_data().m_hi == n.m_hi);
SASSERT(e->get_data().m_level == n.m_level);
SASSERT(!m_free_nodes.empty());
unsigned result = m_free_nodes.back();
m_free_nodes.pop_back();
e->get_data().m_index = result;
m_nodes[result] = e->get_data();
SASSERT(well_formed(m_nodes[result]));
m_is_new_node = true;
SASSERT(!m_free_nodes.contains(result));
SASSERT(m_nodes[result].m_index == result);
return result;
}
void pdd_manager::try_gc() {
gc();
reset_op_cache();
SASSERT(m_op_cache.empty());
SASSERT(well_formed());
}
void pdd_manager::reserve_var(unsigned i) {
while (m_var2level.size() <= i) {
unsigned v = m_var2level.size();
m_var2pdd.push_back(make_node(v, zero_pdd, one_pdd));
m_nodes[m_var2pdd[v]].m_refcount = max_rc;
m_var2level.push_back(v);
m_level2var.push_back(v);
}
}
pdd pdd_manager::mk_var(unsigned i) {
reserve_var(i);
return pdd(m_var2pdd[i], this);
}
unsigned pdd_manager::dag_size(pdd const& b) {
init_mark();
set_mark(0);
set_mark(1);
unsigned sz = 0;
m_todo.push_back(b.root);
while (!m_todo.empty()) {
PDD r = m_todo.back();
m_todo.pop_back();
if (is_marked(r)) {
continue;
}
++sz;
set_mark(r);
if (is_val(r)) {
continue;
}
if (!is_marked(lo(r))) {
m_todo.push_back(lo(r));
}
if (!is_marked(hi(r))) {
m_todo.push_back(hi(r));
}
}
return sz;
}
void pdd_manager::init_dmark() {
m_dmark.resize(m_nodes.size());
m_degree.reserve(m_nodes.size());
++m_dmark_level;
if (m_dmark_level == 0) {
m_dmark.fill(0);
++m_dmark_level;
}
}
unsigned pdd_manager::degree(pdd const& b) const {
return degree(b.root);
}
unsigned pdd_manager::degree(PDD p) const {
if (is_dmarked(p)) {
return m_degree[p];
}
m_todo.push_back(p);
while (!m_todo.empty()) {
PDD r = m_todo.back();
if (is_dmarked(r)) {
m_todo.pop_back();
}
else if (is_val(r)) {
m_degree[r] = 0;
set_dmark(r);
}
else if (!is_dmarked(lo(r)) || !is_dmarked(hi(r))) {
m_todo.push_back(lo(r));
m_todo.push_back(hi(r));
}
else {
m_degree[r] = std::max(m_degree[lo(r)], m_degree[hi(r)]+1);
set_dmark(r);
}
}
return m_degree[p];
}
double pdd_manager::tree_size(pdd const& p) {
init_mark();
m_tree_size.reserve(m_nodes.size());
m_todo.push_back(p.root);
while (!m_todo.empty()) {
PDD r = m_todo.back();
if (is_marked(r)) {
m_todo.pop_back();
}
else if (is_val(r)) {
m_tree_size[r] = 1;
set_mark(r);
}
else if (!is_marked(lo(r)) || !is_marked(hi(r))) {
m_todo.push_back(lo(r));
m_todo.push_back(hi(r));
}
else {
m_tree_size[r] = 1 + m_tree_size[lo(r)] + m_tree_size[hi(r)];
set_mark(r);
}
}
return m_tree_size[p.root];
}
unsigned_vector const& pdd_manager::free_vars(pdd const& p) {
init_mark();
m_free_vars.reset();
m_todo.push_back(p.root);
while (!m_todo.empty()) {
PDD r = m_todo.back();
m_todo.pop_back();
if (is_val(r) || is_marked(r)) continue;
PDD v = m_var2pdd[var(r)];
if (!is_marked(v)) m_free_vars.push_back(var(r));
set_mark(r);
set_mark(v);
if (!is_marked(lo(r))) m_todo.push_back(lo(r));
if (!is_marked(hi(r))) m_todo.push_back(hi(r));
}
return m_free_vars;
}
void pdd_manager::alloc_free_nodes(unsigned n) {
for (unsigned i = 0; i < n; ++i) {
m_free_nodes.push_back(m_nodes.size());
m_nodes.push_back(node());
m_nodes.back().m_index = m_nodes.size() - 1;
}
std::sort(m_free_nodes.begin(), m_free_nodes.end());
m_free_nodes.reverse();
init_dmark();
}
bool pdd_manager::is_reachable(PDD p) {
svector<bool> reachable(m_nodes.size(), false);
compute_reachable(reachable);
return reachable[p];
}
void pdd_manager::compute_reachable(svector<bool>& reachable) {
for (unsigned i = m_pdd_stack.size(); i-- > 0; ) {
reachable[m_pdd_stack[i]] = true;
m_todo.push_back(m_pdd_stack[i]);
}
for (unsigned i = pdd_no_op; i-- > 0; ) {
reachable[i] = true;
}
for (unsigned i = m_nodes.size(); i-- > pdd_no_op; ) {
if (m_nodes[i].m_refcount > 0) {
reachable[i] = true;
m_todo.push_back(i);
}
}
while (!m_todo.empty()) {
PDD p = m_todo.back();
m_todo.pop_back();
SASSERT(reachable[p]);
if (is_val(p)) {
continue;
}
if (!reachable[lo(p)]) {
reachable[lo(p)] = true;
m_todo.push_back(lo(p));
}
if (!reachable[hi(p)]) {
reachable[hi(p)] = true;
m_todo.push_back(hi(p));
}
}
}
void pdd_manager::gc() {
init_dmark();
m_free_nodes.reset();
SASSERT(well_formed());
IF_VERBOSE(13, verbose_stream() << "(pdd :gc " << m_nodes.size() << ")\n";);
svector<bool> reachable(m_nodes.size(), false);
compute_reachable(reachable);
for (unsigned i = m_nodes.size(); i-- > pdd_no_op; ) {
if (!reachable[i]) {
if (is_val(i)) {
if (m_freeze_value == val(i)) continue;
m_free_values.push_back(m_mpq_table.find(val(i)).m_value_index);
m_mpq_table.remove(val(i));
}
m_nodes[i].set_internal();
SASSERT(m_nodes[i].m_refcount == 0);
m_free_nodes.push_back(i);
}
}
// sort free nodes so that adjacent nodes are picked in order of use
std::sort(m_free_nodes.begin(), m_free_nodes.end());
m_free_nodes.reverse();
ptr_vector<op_entry> to_delete, to_keep;
for (auto* e : m_op_cache) {
if (e->m_result != null_pdd) {
to_delete.push_back(e);
}
else {
to_keep.push_back(e);
}
}
m_op_cache.reset();
for (op_entry* e : to_delete) {
m_alloc.deallocate(sizeof(*e), e);
}
for (op_entry* e : to_keep) {
m_op_cache.insert(e);
}
m_node_table.reset();
// re-populate node cache
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (reachable[i]) {
SASSERT(m_nodes[i].m_index == i);
m_node_table.insert(m_nodes[i]);
}
}
SASSERT(well_formed());
}
void pdd_manager::init_mark() {
m_mark.resize(m_nodes.size());
++m_mark_level;
if (m_mark_level == 0) {
m_mark.fill(0);
++m_mark_level;
}
}
pdd_manager::monomials_t pdd_manager::to_monomials(pdd const& p) {
if (p.is_val()) {
std::pair<rational, unsigned_vector> m;
m.first = p.val();
monomials_t mons;
if (!m.first.is_zero()) {
mons.push_back(m);
}
return mons;
}
else {
monomials_t mons = to_monomials(p.hi());
for (auto & m : mons) {
m.second.push_back(p.var());
}
mons.append(to_monomials(p.lo()));
return mons;
}
}
std::ostream& pdd_manager::display(std::ostream& out, pdd const& b) {
auto mons = to_monomials(b);
bool first = true;
for (auto& m : mons) {
if (!first) {
if (m.first.is_neg()) out << " - ";
else out << " + ";
}
else {
if (m.first.is_neg()) out << "- ";
}
first = false;
rational c = abs(m.first);
m.second.reverse();
if (!c.is_one() || m.second.empty()) {
out << c;
if (!m.second.empty()) out << "*";
}
bool f = true;
for (unsigned v : m.second) {
if (!f) out << "*";
f = false;
out << "v" << v;
}
}
if (first) out << "0";
return out;
}
bool pdd_manager::well_formed() {
bool ok = true;
for (unsigned n : m_free_nodes) {
ok &= (lo(n) == 0 && hi(n) == 0 && m_nodes[n].m_refcount == 0);
if (!ok) {
IF_VERBOSE(0,
verbose_stream() << "free node is not internal " << n << " "
<< lo(n) << " " << hi(n) << " " << m_nodes[n].m_refcount << "\n";
display(verbose_stream()););
UNREACHABLE();
return false;
}
}
for (node const& n : m_nodes) {
if (!well_formed(n)) {
IF_VERBOSE(0, display(verbose_stream() << n.m_index << " lo " << n.m_lo << " hi " << n.m_hi << "\n"););
UNREACHABLE();
return false;
}
}
return ok;
}
bool pdd_manager::well_formed(node const& n) {
PDD lo = n.m_lo;
PDD hi = n.m_hi;
if (n.is_internal() || hi == 0) return true;
bool oklo = is_val(lo) || (level(lo) < n.m_level && !m_nodes[lo].is_internal());
bool okhi = is_val(hi) || (level(hi) <= n.m_level && !m_nodes[hi].is_internal());
return oklo && okhi;
}
std::ostream& pdd_manager::display(std::ostream& out) {
for (unsigned i = 0; i < m_nodes.size(); ++i) {
node const& n = m_nodes[i];
if (i != 0 && n.is_internal()) {
continue;
}
else if (is_val(i)) {
out << i << " : " << val(i) << "\n";
}
else {
out << i << " : v" << m_level2var[n.m_level] << " " << n.m_lo << " " << n.m_hi << "\n";
}
}
return out;
}
pdd& pdd::operator=(pdd const& other) {
unsigned r1 = root;
root = other.root;
m.inc_ref(root);
m.dec_ref(r1);
return *this;
}
std::ostream& operator<<(std::ostream& out, pdd const& b) { return b.display(out); }
void pdd_iterator::next() {
auto& m = m_pdd.m;
while (!m_nodes.empty()) {
auto& p = m_nodes.back();
if (p.first && !m.is_val(p.second)) {
p.first = false;
m_mono.vars.pop_back();
unsigned n = m.lo(p.second);
if (m.is_val(n) && m.val(n).is_zero()) {
m_nodes.pop_back();
continue;
}
while (!m.is_val(n)) {
m_nodes.push_back(std::make_pair(true, n));
m_mono.vars.push_back(m.var(n));
n = m.hi(n);
}
m_mono.coeff = m.val(n);
break;
}
else {
m_nodes.pop_back();
}
}
}
void pdd_iterator::first() {
unsigned n = m_pdd.root;
auto& m = m_pdd.m;
while (!m.is_val(n)) {
m_nodes.push_back(std::make_pair(true, n));
m_mono.vars.push_back(m.var(n));
n = m.hi(n);
}
m_mono.coeff = m.val(n);
}
pdd_iterator pdd::begin() const { return pdd_iterator(*this, true); }
pdd_iterator pdd::end() const { return pdd_iterator(*this, false); }
std::ostream& operator<<(std::ostream& out, pdd_monomial const& m) {
if (!m.coeff.is_one()) {
out << m.coeff;
if (!m.vars.empty()) out << "*";
}
bool first = true;
for (auto v : m.vars) {
if (first) first = false; else out << "*";
out << "v" << v;
}
return out;
}
}