/*++ Copyright (c) 2019 Microsoft Corporation Module Name: dd_pdd.cpp Abstract: Poly DD package Author: Nikolaj Bjorner (nbjorner) 2019-12-17 Revision History: --*/ #include "util/trace.h" #include "util/stopwatch.h" #include "math/dd/dd_pdd.h" namespace dd { pdd_manager::pdd_manager(unsigned num_vars, semantics s) { m_spare_entry = nullptr; m_max_num_nodes = 1 << 24; // up to 16M nodes m_mark_level = 0; m_dmark_level = 0; m_disable_gc = false; m_is_new_node = false; m_semantics = s; unsigned_vector l2v; for (unsigned i = 0; i < num_vars; ++i) l2v.push_back(i); init_nodes(l2v); } pdd_manager::~pdd_manager() { if (m_spare_entry) { m_alloc.deallocate(sizeof(*m_spare_entry), m_spare_entry); m_spare_entry = nullptr; } reset_op_cache(); } void pdd_manager::reset(unsigned_vector const& level2var) { reset_op_cache(); m_node_table.reset(); m_nodes.reset(); m_free_nodes.reset(); m_pdd_stack.reset(); m_values.reset(); m_mpq_table.reset(); m_values.reset(); m_free_values.reset(); m_mpq_table.reset(); init_nodes(level2var); } void pdd_manager::init_nodes(unsigned_vector const& l2v) { // add dummy nodes for operations, and 0, 1 pdds. for (unsigned i = 0; i < pdd_no_op; ++i) { m_nodes.push_back(node()); m_nodes[i].m_refcount = max_rc; m_nodes[i].m_index = i; } init_value(rational::zero(), 0); init_value(rational::one(), 1); SASSERT(is_val(0)); SASSERT(is_val(1)); alloc_free_nodes(1024 + l2v.size()); init_vars(l2v); } void pdd_manager::init_vars(unsigned_vector const& level2var) { unsigned n = level2var.size(); m_level2var.resize(n); m_var2level.resize(n); m_var2pdd.resize(n); for (unsigned l = 0; l < n; ++l) { unsigned v = level2var[l]; m_var2pdd[v] = make_node(l, zero_pdd, one_pdd); m_nodes[m_var2pdd[v]].m_refcount = max_rc; m_var2level[v] = l; m_level2var[l] = v; } } void pdd_manager::reset_op_cache() { for (auto* e : m_op_cache) { SASSERT(e != m_spare_entry); m_alloc.deallocate(sizeof(*e), e); } m_op_cache.reset(); } pdd pdd_manager::add(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_add_op), this); } pdd pdd_manager::sub(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_sub_op), this); } pdd pdd_manager::mul(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_mul_op), this); } pdd pdd_manager::reduce(pdd const& a, pdd const& b) { return pdd(apply(a.root, b.root, pdd_reduce_op), this); } pdd pdd_manager::mk_val(rational const& r) { return pdd(imk_val(r), this); } pdd pdd_manager::mk_val(unsigned r) { return mk_val(rational(r)); } pdd pdd_manager::mul(rational const& r, pdd const& b) { pdd c(mk_val(r)); return pdd(apply(c.root, b.root, pdd_mul_op), this); } pdd pdd_manager::add(rational const& r, pdd const& b) { pdd c(mk_val(r)); return pdd(apply(c.root, b.root, pdd_add_op), this); } pdd pdd_manager::zero() { return pdd(zero_pdd, this); } pdd pdd_manager::one() { return pdd(one_pdd, this); } pdd pdd_manager::mk_or(pdd const& p, pdd const& q) { return p + q - (p*q); } pdd pdd_manager::mk_xor(pdd const& p, pdd const& q) { if (m_semantics == mod2_e) return p + q; return (p*q*2) - p - q; } pdd pdd_manager::mk_xor(pdd const& p, unsigned x) { pdd q(mk_val(x)); if (m_semantics == mod2_e) return p + q; return (p*q*2) - p - q; } pdd pdd_manager::mk_not(pdd const& p) { return 1 - p; } pdd pdd_manager::subst_val(pdd const& p, vector> const& _s) { typedef std::pair pr; vector s(_s); std::function compare_level = [&](pr const& a, pr const& b) { return m_var2level[a.first] < m_var2level[b.first]; }; std::sort(s.begin(), s.end(), compare_level); pdd r(one()); for (auto const& q : s) { r = (r*mk_var(q.first)) + q.second; } return pdd(apply(p.root, r.root, pdd_subst_val_op), this); } pdd_manager::PDD pdd_manager::apply(PDD arg1, PDD arg2, pdd_op op) { bool first = true; SASSERT(well_formed()); scoped_push _sp(*this); while (true) { try { return apply_rec(arg1, arg2, op); } catch (const mem_out &) { try_gc(); if (!first) throw; first = false; } } SASSERT(well_formed()); return null_pdd; } bool pdd_manager::check_result(op_entry*& e1, op_entry const* e2, PDD a, PDD b, PDD c) { if (e1 != e2) { SASSERT(e2->m_result != null_pdd); push_entry(e1); e1 = nullptr; return true; } else { e1->m_pdd1 = a; e1->m_pdd2 = b; e1->m_op = c; SASSERT(e1->m_result == null_pdd); return false; } } pdd_manager::PDD pdd_manager::apply_rec(PDD p, PDD q, pdd_op op) { switch (op) { case pdd_sub_op: if (is_zero(q)) return p; if (is_val(p) && is_val(q)) return imk_val(val(p) - val(q)); if (m_semantics != mod2_e) break; op = pdd_add_op; case pdd_add_op: if (is_zero(p)) return q; if (is_zero(q)) return p; if (is_val(p) && is_val(q)) return imk_val(val(p) + val(q)); if (is_val(p)) std::swap(p, q); else if (!is_val(q) && level(p) < level(q)) std::swap(p, q); break; case pdd_mul_op: if (is_zero(p) || is_zero(q)) return zero_pdd; if (is_one(p)) return q; if (is_one(q)) return p; if (is_val(p) && is_val(q)) return imk_val(val(p) * val(q)); if (is_val(p)) std::swap(p, q); else if (!is_val(q) && level(p) < level(q)) std::swap(p, q); break; case pdd_reduce_op: if (is_zero(q)) return p; if (is_val(p)) return p; if (!is_val(q) && level(p) < level(q)) return p; break; case pdd_subst_val_op: while (!is_val(q) && !is_val(p)) { if (level(p) == level(q)) break; if (level(p) < level(q)) q = lo(q); else p = lo(p); } if (is_val(p) || is_val(q)) return p; break; default: UNREACHABLE(); break; } op_entry * e1 = pop_entry(p, q, op); op_entry const* e2 = m_op_cache.insert_if_not_there(e1); if (check_result(e1, e2, p, q, op)) { SASSERT(!m_free_nodes.contains(e2->m_result)); return e2->m_result; } PDD r; unsigned level_p = level(p), level_q = level(q); unsigned npop = 2; switch (op) { case pdd_add_op: SASSERT(!is_val(p)); if (is_val(q)) { push(apply_rec(lo(p), q, op)); r = make_node(level_p, read(1), hi(p)); npop = 1; } else if (level_p == level_q) { push(apply_rec(lo(p), lo(q), op)); push(apply_rec(hi(p), hi(q), op)); r = make_node(level_p, read(2), read(1)); } else { SASSERT(level_p > level_q); push(apply_rec(lo(p), q, op)); r = make_node(level_p, read(1), hi(p)); npop = 1; } break; case pdd_sub_op: if (is_val(p) || (!is_val(q) && level_p < level_q)) { // p - (ax + b) = -ax + (p - b) push(apply_rec(p, lo(q), op)); push(minus_rec(hi(q))); r = make_node(level_q, read(2), read(1)); } else if (is_val(q) || (level_p > level_q)) { // (ax + b) - k = ax + (b - k) push(apply_rec(lo(p), q, op)); r = make_node(level_p, read(1), hi(p)); npop = 1; } else { SASSERT(level_p == level_q); // (ax + b) - (cx + d) = (a - c)x + (b - d) push(apply_rec(lo(p), lo(q), op)); push(apply_rec(hi(p), hi(q), op)); r = make_node(level_p, read(2), read(1)); } break; case pdd_mul_op: SASSERT(!is_val(p)); if (is_val(q)) { push(apply_rec(lo(p), q, op)); push(apply_rec(hi(p), q, op)); r = make_node(level_p, read(2), read(1)); } else if (level_p == level_q) { if (m_semantics != free_e) { // // (xa+b)*(xc+d) == x(ac+bc+ad) + bd // == x((a+b)(c+d)-bd) + bd // because x*x = x // push(apply_rec(lo(p), lo(q), pdd_mul_op)); unsigned bd = read(1); push(apply_rec(hi(p), lo(p), pdd_add_op)); push(apply_rec(hi(q), lo(q), pdd_add_op)); push(apply_rec(read(1), read(2), pdd_mul_op)); push(apply_rec(read(1), bd, pdd_sub_op)); r = make_node(level_p, bd, read(1)); npop = 5; } else { /* In this case the code should have checked if level(read(1)) == level_a, Then it should have converted read(1) into e := hi(read(1)), f := lo(read(1)), Such that read(1) stands for x*e+f. The task is then to create the term: x*(x*ac + x*e + f) + bd, which is the same as: x*(x*(ac + e) + f) + bd */ push(apply_rec(hi(p), hi(q), op)); push(apply_rec(hi(p), lo(q), op)); push(apply_rec(lo(p), hi(q), op)); push(apply_rec(lo(p), lo(q), op)); unsigned ac = read(4), ad = read(3), bc = read(2), bd = read(1); push(apply_rec(ad, bc, pdd_add_op)); unsigned n = read(1); // n = ad + bc if (!is_val(n) && level(n) == level_p) { push(apply_rec(ac, hi(n), pdd_add_op)); push(make_node(level_p, lo(n), read(1))); r = make_node(level_p, bd, read(1)); npop = 7; } else { push(make_node(level_p, n, ac)); r = make_node(level_p, bd, read(1)); npop = 6; } } } else { // (x*hi(p)+lo(p))*b = x*hi(p)*b + lo(p)*b SASSERT(level_p > level_q); push(apply_rec(lo(p), q, op)); push(apply_rec(hi(p), q, op)); r = make_node(level_p, read(2), read(1)); } break; case pdd_reduce_op: if (level_p > level_q) { push(apply_rec(lo(p), q, op)); push(apply_rec(hi(p), q, op)); if (read(2) == lo(p) && read(1) == hi(p)) { r = p; } else { r = make_node(level_p, read(2), read(1)); } } else { SASSERT(level_p == level_q); r = reduce_on_match(p, q); npop = 0; } break; case pdd_subst_val_op: SASSERT(!is_val(p)); SASSERT(!is_val(q)); SASSERT(level_p = level_q); push(apply_rec(lo(p), hi(q), pdd_subst_val_op)); // lo := subst(lo(p), s) push(apply_rec(hi(p), hi(q), pdd_subst_val_op)); // hi := subst(hi(p), s) push(apply_rec(lo(q), read(1), pdd_mul_op)); // hi := hi*s[var(p)] r = apply_rec(read(1), read(3), pdd_add_op); // r := hi + lo := subst(lo(p),s) + s[var(p)]*subst(hi(p),s) npop = 3; break; default: r = null_pdd; UNREACHABLE(); break; } pop(npop); e1->m_result = r; SASSERT(!m_free_nodes.contains(r)); return r; } pdd pdd_manager::minus(pdd const& a) { if (m_semantics == mod2_e) { return a; } bool first = true; SASSERT(well_formed()); scoped_push _sp(*this); while (true) { try { return pdd(minus_rec(a.root), this); } catch (const mem_out &) { try_gc(); if (!first) throw; first = false; } } SASSERT(well_formed()); return pdd(zero_pdd, this); } pdd_manager::PDD pdd_manager::minus_rec(PDD a) { SASSERT(m_semantics != mod2_e); if (is_zero(a)) return zero_pdd; if (is_val(a)) return imk_val(-val(a)); op_entry* e1 = pop_entry(a, a, pdd_minus_op); op_entry const* e2 = m_op_cache.insert_if_not_there(e1); if (check_result(e1, e2, a, a, pdd_minus_op)) return e2->m_result; push(minus_rec(lo(a))); push(minus_rec(hi(a))); PDD r = make_node(level(a), read(2), read(1)); pop(2); e1->m_result = r; return r; } // q = lt(a)/lt(b), return a - b*q pdd_manager::PDD pdd_manager::reduce_on_match(PDD a, PDD b) { SASSERT(level(a) == level(b) && !is_val(a) && !is_val(b)); push(a); while (lm_divides(b, a)) { push(lt_quotient(b, a)); push(apply_rec(read(1), b, pdd_mul_op)); push(apply_rec(a, read(1), pdd_add_op)); a = read(1); pop(4); push(a); } pop(1); return a; } // true if leading monomial of p divides leading monomial of q bool pdd_manager::lm_divides(PDD p, PDD q) const { p = first_leading(p); q = first_leading(q); while (true) { if (is_val(p)) return true; if (is_val(q)) return false; if (level(p) > level(q)) return false; if (level(p) == level(q)) { p = next_leading(p); q = next_leading(q); } else { q = next_leading(q); } } } // return minus quotient -r, such that lt(q) = lt(p)*r // assume lm_divides(p, q) pdd_manager::PDD pdd_manager::lt_quotient(PDD p, PDD q) { SASSERT(lm_divides(p, q)); p = first_leading(p); q = first_leading(q); SASSERT(is_val(p) || !is_val(q)); if (is_val(p)) { if (is_val(q)) { SASSERT(!val(p).is_zero()); return imk_val(-val(q) / val(p)); } } else if (level(p) == level(q)) { return lt_quotient(next_leading(p), next_leading(q)); } SASSERT(!is_val(q)); push(lt_quotient(p, next_leading(q))); PDD r = apply_rec(m_var2pdd[var(q)], read(1), pdd_mul_op); pop(1); return r; } // // p = lcm(lm(a),lm(b))/lm(a), q = lcm(lm(a),lm(b))/lm(b) // pc = coeff(lt(a)) qc = coeff(lt(b)) // compute a*q*qc - b*p*pc // bool pdd_manager::try_spoly(pdd const& a, pdd const& b, pdd& r) { return common_factors(a, b, m_p, m_q, m_pc, m_qc) && (r = spoly(a, b, m_p, m_q, m_pc, m_qc), true); } pdd pdd_manager::spoly(pdd const& a, pdd const& b, unsigned_vector const& p, unsigned_vector const& q, rational const& pc, rational const& qc) { pdd r1 = mk_val(qc); for (unsigned i = q.size(); i-- > 0; ) r1 *= mk_var(q[i]); pdd r2 = mk_val(-pc); for (unsigned i = p.size(); i-- > 0; ) r2 *= mk_var(p[i]); return (r1*a) + (r2*b); } bool pdd_manager::common_factors(pdd const& a, pdd const& b, unsigned_vector& p, unsigned_vector& q, rational& pc, rational& qc) { p.reset(); q.reset(); PDD x = first_leading(a.root), y = first_leading(b.root); bool has_common = false; while (true) { if (is_val(x) || is_val(y)) { if (!has_common) return false; while (!is_val(y)) q.push_back(var(y)), y = next_leading(y); while (!is_val(x)) p.push_back(var(x)), x = next_leading(x); pc = val(x); qc = val(y); if (m_semantics != mod2_e && pc.is_int() && qc.is_int()) { rational g = gcd(pc, qc); pc /= g; qc /= g; } return true; } if (level(x) == level(y)) { has_common = true; x = next_leading(x); y = next_leading(y); } else if (level(x) > level(y)) { p.push_back(var(x)); x = next_leading(x); } else { q.push_back(var(y)); y = next_leading(y); } } } /*. * The pdd format makes lexicographic comparison easy: compare based on * the top variable and descend depending on whether hi(x) == hi(y) * * NB. this does not compare leading monomials. */ bool pdd_manager::lt(pdd const& a, pdd const& b) { PDD x = a.root; PDD y = b.root; if (x == y) return false; while (true) { SASSERT(x != y); if (is_val(x)) return !is_val(y) || val(x) < val(y); if (is_val(y)) return false; if (level(x) == level(y)) { if (hi(x) == hi(y)) { x = lo(x); y = lo(y); } else { x = hi(x); y = hi(y); } } else { return level(x) > level(y); } } } /** Compare leading terms of pdds */ bool pdd_manager::different_leading_term(pdd const& a, pdd const& b) { PDD x = first_leading(a.root); PDD y = first_leading(b.root); while (true) { if (x == y) return false; if (is_val(x) || is_val(y)) return true; if (level(x) == level(y)) { x = next_leading(x); y = next_leading(y); } else { return true; } } } /** * The assumption is that var(p) is part of the leading monomial. * Then the next leading monomial that uses var(p) has to be under hi(p) * because lo(p) does not use var(p). */ pdd_manager::PDD pdd_manager::next_leading(PDD p) const { SASSERT(!is_val(p)); return first_leading(hi(p)); } /** * The first node that contains a term from the leading monomial * is a node of highest degree and highest variable. * Thus, when the degree of hi(p) + 1 is not dominated by degree of lo(p). */ pdd_manager::PDD pdd_manager::first_leading(PDD p) const { while (!is_val(p) && degree(hi(p)) + 1 < degree(lo(p))) { p = lo(p); } return p; } /* Determine whether p is a linear polynomials. A linear polynomial is of the form x*v1 + y*v2 + .. + vn, where v1, v2, .., vn are values. */ bool pdd_manager::is_linear(PDD p) { while (true) { if (is_val(p)) return true; if (!is_val(hi(p))) return false; p = lo(p); } } bool pdd_manager::is_linear(pdd const& p) { return is_linear(p.root); } /* Determine whether p is a binary polynomials of the form v1, x*v1 + v2, or x*v1 + y*v2 + v3 where v1, v2 are values. */ bool pdd_manager::is_binary(PDD p) { return is_val(p) || (is_val(hi(p)) && (is_val(lo(p)) || (is_val(hi(lo(p))) && is_val(lo(lo(p)))))); } bool pdd_manager::is_binary(pdd const& p) { return is_binary(p.root); } /** Determine if p is a monomial. */ bool pdd_manager::is_monomial(PDD p) { while (true) { if (is_val(p)) return true; if (!is_zero(lo(p))) return false; p = hi(p); } } /* \brief determine if v occurs as a leaf variable. */ bool pdd_manager::var_is_leaf(PDD p, unsigned v) { init_mark(); m_todo.push_back(p); while (!m_todo.empty()) { PDD r = m_todo.back(); m_todo.pop_back(); if (is_val(r) || is_marked(r)) continue; set_mark(r); if (var(r) == v) { if (!is_val(lo(r)) || !is_val(hi(r))) { m_todo.reset(); return false; } continue; } if (!is_marked(lo(r))) m_todo.push_back(lo(r)); if (!is_marked(hi(r))) m_todo.push_back(hi(r)); } return true; } void pdd_manager::push(PDD b) { m_pdd_stack.push_back(b); } void pdd_manager::pop(unsigned num_scopes) { m_pdd_stack.shrink(m_pdd_stack.size() - num_scopes); } pdd_manager::PDD pdd_manager::read(unsigned index) { return m_pdd_stack[m_pdd_stack.size() - index]; } pdd_manager::op_entry* pdd_manager::pop_entry(PDD l, PDD r, PDD op) { op_entry* result = nullptr; if (m_spare_entry) { result = m_spare_entry; m_spare_entry = nullptr; result->m_pdd1 = l; result->m_pdd2 = r; result->m_op = op; } else { void * mem = m_alloc.allocate(sizeof(op_entry)); result = new (mem) op_entry(l, r, op); } result->m_result = null_pdd; return result; } void pdd_manager::push_entry(op_entry* e) { SASSERT(!m_spare_entry); m_spare_entry = e; } pdd_manager::PDD pdd_manager::imk_val(rational const& r) { if (r.is_zero()) return zero_pdd; if (r.is_one()) return one_pdd; if (m_semantics == mod2_e) return imk_val(mod(r, rational(2))); const_info info; if (!m_mpq_table.find(r, info)) { init_value(info, r); } return info.m_node_index; } void pdd_manager::init_value(const_info& info, rational const& r) { unsigned vi = 0; if (m_free_values.empty()) { vi = m_values.size(); m_values.push_back(r); } else { vi = m_free_values.back(); m_free_values.pop_back(); m_values[vi] = r; } m_freeze_value = r; node n(vi); info.m_value_index = vi; info.m_node_index = insert_node(n); m_mpq_table.insert(r, info); } void pdd_manager::init_value(rational const& v, unsigned node_index) { const_info info; m_nodes[node_index].m_hi = 0; m_nodes[node_index].m_lo = node_index; info.m_value_index = m_values.size(); info.m_node_index = node_index; m_mpq_table.insert(v, info); m_values.push_back(v); } pdd_manager::PDD pdd_manager::make_node(unsigned lvl, PDD l, PDD h) { m_is_new_node = false; if (is_zero(h)) return l; SASSERT(is_val(l) || level(l) < lvl); SASSERT(is_val(h) || level(h) <= lvl); node n(lvl, l, h); return insert_node(n); } pdd_manager::PDD pdd_manager::insert_node(node const& n) { node_table::entry* e = m_node_table.insert_if_not_there2(n); if (e->get_data().m_index != 0) { unsigned result = e->get_data().m_index; SASSERT(well_formed(e->get_data())); return result; } e->get_data().m_refcount = 0; bool do_gc = m_free_nodes.empty(); if (do_gc && !m_disable_gc) { gc(); e = m_node_table.insert_if_not_there2(n); e->get_data().m_refcount = 0; } if (do_gc) { if (m_nodes.size() > m_max_num_nodes) { throw mem_out(); } alloc_free_nodes(m_nodes.size()/2); } SASSERT(e->get_data().m_lo == n.m_lo); SASSERT(e->get_data().m_hi == n.m_hi); SASSERT(e->get_data().m_level == n.m_level); SASSERT(!m_free_nodes.empty()); unsigned result = m_free_nodes.back(); m_free_nodes.pop_back(); e->get_data().m_index = result; m_nodes[result] = e->get_data(); SASSERT(well_formed(m_nodes[result])); m_is_new_node = true; SASSERT(!m_free_nodes.contains(result)); SASSERT(m_nodes[result].m_index == result); return result; } void pdd_manager::try_gc() { gc(); reset_op_cache(); SASSERT(m_op_cache.empty()); SASSERT(well_formed()); } void pdd_manager::reserve_var(unsigned i) { while (m_var2level.size() <= i) { unsigned v = m_var2level.size(); m_var2pdd.push_back(make_node(v, zero_pdd, one_pdd)); m_nodes[m_var2pdd[v]].m_refcount = max_rc; m_var2level.push_back(v); m_level2var.push_back(v); } } pdd pdd_manager::mk_var(unsigned i) { reserve_var(i); return pdd(m_var2pdd[i], this); } unsigned pdd_manager::dag_size(pdd const& b) { init_mark(); set_mark(0); set_mark(1); unsigned sz = 0; m_todo.push_back(b.root); while (!m_todo.empty()) { PDD r = m_todo.back(); m_todo.pop_back(); if (is_marked(r)) { continue; } ++sz; set_mark(r); if (is_val(r)) { continue; } if (!is_marked(lo(r))) { m_todo.push_back(lo(r)); } if (!is_marked(hi(r))) { m_todo.push_back(hi(r)); } } return sz; } void pdd_manager::init_dmark() { m_dmark.resize(m_nodes.size()); m_degree.reserve(m_nodes.size()); ++m_dmark_level; if (m_dmark_level == 0) { m_dmark.fill(0); ++m_dmark_level; } } unsigned pdd_manager::degree(pdd const& b) const { return degree(b.root); } unsigned pdd_manager::degree(PDD p) const { if (is_dmarked(p)) { return m_degree[p]; } m_todo.push_back(p); while (!m_todo.empty()) { PDD r = m_todo.back(); if (is_dmarked(r)) { m_todo.pop_back(); } else if (is_val(r)) { m_degree[r] = 0; set_dmark(r); } else if (!is_dmarked(lo(r)) || !is_dmarked(hi(r))) { m_todo.push_back(lo(r)); m_todo.push_back(hi(r)); } else { m_degree[r] = std::max(m_degree[lo(r)], m_degree[hi(r)]+1); set_dmark(r); } } return m_degree[p]; } double pdd_manager::tree_size(pdd const& p) { init_mark(); m_tree_size.reserve(m_nodes.size()); m_todo.push_back(p.root); while (!m_todo.empty()) { PDD r = m_todo.back(); if (is_marked(r)) { m_todo.pop_back(); } else if (is_val(r)) { m_tree_size[r] = 1; set_mark(r); } else if (!is_marked(lo(r)) || !is_marked(hi(r))) { m_todo.push_back(lo(r)); m_todo.push_back(hi(r)); } else { m_tree_size[r] = 1 + m_tree_size[lo(r)] + m_tree_size[hi(r)]; set_mark(r); } } return m_tree_size[p.root]; } unsigned_vector const& pdd_manager::free_vars(pdd const& p) { init_mark(); m_free_vars.reset(); m_todo.push_back(p.root); while (!m_todo.empty()) { PDD r = m_todo.back(); m_todo.pop_back(); if (is_val(r) || is_marked(r)) continue; PDD v = m_var2pdd[var(r)]; if (!is_marked(v)) m_free_vars.push_back(var(r)); set_mark(r); set_mark(v); if (!is_marked(lo(r))) m_todo.push_back(lo(r)); if (!is_marked(hi(r))) m_todo.push_back(hi(r)); } return m_free_vars; } void pdd_manager::alloc_free_nodes(unsigned n) { for (unsigned i = 0; i < n; ++i) { m_free_nodes.push_back(m_nodes.size()); m_nodes.push_back(node()); m_nodes.back().m_index = m_nodes.size() - 1; } std::sort(m_free_nodes.begin(), m_free_nodes.end()); m_free_nodes.reverse(); init_dmark(); } bool pdd_manager::is_reachable(PDD p) { svector reachable(m_nodes.size(), false); compute_reachable(reachable); return reachable[p]; } void pdd_manager::compute_reachable(svector& reachable) { for (unsigned i = m_pdd_stack.size(); i-- > 0; ) { reachable[m_pdd_stack[i]] = true; m_todo.push_back(m_pdd_stack[i]); } for (unsigned i = pdd_no_op; i-- > 0; ) { reachable[i] = true; } for (unsigned i = m_nodes.size(); i-- > pdd_no_op; ) { if (m_nodes[i].m_refcount > 0) { reachable[i] = true; m_todo.push_back(i); } } while (!m_todo.empty()) { PDD p = m_todo.back(); m_todo.pop_back(); SASSERT(reachable[p]); if (is_val(p)) { continue; } if (!reachable[lo(p)]) { reachable[lo(p)] = true; m_todo.push_back(lo(p)); } if (!reachable[hi(p)]) { reachable[hi(p)] = true; m_todo.push_back(hi(p)); } } } void pdd_manager::gc() { init_dmark(); m_free_nodes.reset(); SASSERT(well_formed()); IF_VERBOSE(13, verbose_stream() << "(pdd :gc " << m_nodes.size() << ")\n";); svector reachable(m_nodes.size(), false); compute_reachable(reachable); for (unsigned i = m_nodes.size(); i-- > pdd_no_op; ) { if (!reachable[i]) { if (is_val(i)) { if (m_freeze_value == val(i)) continue; m_free_values.push_back(m_mpq_table.find(val(i)).m_value_index); m_mpq_table.remove(val(i)); } m_nodes[i].set_internal(); SASSERT(m_nodes[i].m_refcount == 0); m_free_nodes.push_back(i); } } // sort free nodes so that adjacent nodes are picked in order of use std::sort(m_free_nodes.begin(), m_free_nodes.end()); m_free_nodes.reverse(); ptr_vector to_delete, to_keep; for (auto* e : m_op_cache) { if (e->m_result != null_pdd) { to_delete.push_back(e); } else { to_keep.push_back(e); } } m_op_cache.reset(); for (op_entry* e : to_delete) { m_alloc.deallocate(sizeof(*e), e); } for (op_entry* e : to_keep) { m_op_cache.insert(e); } m_node_table.reset(); // re-populate node cache for (unsigned i = m_nodes.size(); i-- > 2; ) { if (reachable[i]) { SASSERT(m_nodes[i].m_index == i); m_node_table.insert(m_nodes[i]); } } SASSERT(well_formed()); } void pdd_manager::init_mark() { m_mark.resize(m_nodes.size()); ++m_mark_level; if (m_mark_level == 0) { m_mark.fill(0); ++m_mark_level; } } pdd_manager::monomials_t pdd_manager::to_monomials(pdd const& p) { if (p.is_val()) { std::pair m; m.first = p.val(); monomials_t mons; if (!m.first.is_zero()) { mons.push_back(m); } return mons; } else { monomials_t mons = to_monomials(p.hi()); for (auto & m : mons) { m.second.push_back(p.var()); } mons.append(to_monomials(p.lo())); return mons; } } std::ostream& pdd_manager::display(std::ostream& out, pdd const& b) { auto mons = to_monomials(b); bool first = true; for (auto& m : mons) { if (!first) { if (m.first.is_neg()) out << " - "; else out << " + "; } else { if (m.first.is_neg()) out << "- "; } first = false; rational c = abs(m.first); m.second.reverse(); if (!c.is_one() || m.second.empty()) { out << c; if (!m.second.empty()) out << "*"; } bool f = true; for (unsigned v : m.second) { if (!f) out << "*"; f = false; out << "v" << v; } } if (first) out << "0"; return out; } bool pdd_manager::well_formed() { bool ok = true; for (unsigned n : m_free_nodes) { ok &= (lo(n) == 0 && hi(n) == 0 && m_nodes[n].m_refcount == 0); if (!ok) { IF_VERBOSE(0, verbose_stream() << "free node is not internal " << n << " " << lo(n) << " " << hi(n) << " " << m_nodes[n].m_refcount << "\n"; display(verbose_stream());); UNREACHABLE(); return false; } } for (node const& n : m_nodes) { if (!well_formed(n)) { IF_VERBOSE(0, display(verbose_stream() << n.m_index << " lo " << n.m_lo << " hi " << n.m_hi << "\n");); UNREACHABLE(); return false; } } return ok; } bool pdd_manager::well_formed(node const& n) { PDD lo = n.m_lo; PDD hi = n.m_hi; if (n.is_internal() || hi == 0) return true; bool oklo = is_val(lo) || (level(lo) < n.m_level && !m_nodes[lo].is_internal()); bool okhi = is_val(hi) || (level(hi) <= n.m_level && !m_nodes[hi].is_internal()); return oklo && okhi; } std::ostream& pdd_manager::display(std::ostream& out) { for (unsigned i = 0; i < m_nodes.size(); ++i) { node const& n = m_nodes[i]; if (i != 0 && n.is_internal()) { continue; } else if (is_val(i)) { out << i << " : " << val(i) << "\n"; } else { out << i << " : v" << m_level2var[n.m_level] << " " << n.m_lo << " " << n.m_hi << "\n"; } } return out; } pdd& pdd::operator=(pdd const& other) { unsigned r1 = root; root = other.root; m.inc_ref(root); m.dec_ref(r1); return *this; } std::ostream& operator<<(std::ostream& out, pdd const& b) { return b.display(out); } void pdd_iterator::next() { auto& m = m_pdd.m; while (!m_nodes.empty()) { auto& p = m_nodes.back(); if (p.first && !m.is_val(p.second)) { p.first = false; m_mono.vars.pop_back(); unsigned n = m.lo(p.second); if (m.is_val(n) && m.val(n).is_zero()) { m_nodes.pop_back(); continue; } while (!m.is_val(n)) { m_nodes.push_back(std::make_pair(true, n)); m_mono.vars.push_back(m.var(n)); n = m.hi(n); } m_mono.coeff = m.val(n); break; } else { m_nodes.pop_back(); } } } void pdd_iterator::first() { unsigned n = m_pdd.root; auto& m = m_pdd.m; while (!m.is_val(n)) { m_nodes.push_back(std::make_pair(true, n)); m_mono.vars.push_back(m.var(n)); n = m.hi(n); } m_mono.coeff = m.val(n); } pdd_iterator pdd::begin() const { return pdd_iterator(*this, true); } pdd_iterator pdd::end() const { return pdd_iterator(*this, false); } std::ostream& operator<<(std::ostream& out, pdd_monomial const& m) { if (!m.coeff.is_one()) { out << m.coeff; if (!m.vars.empty()) out << "*"; } bool first = true; for (auto v : m.vars) { if (first) first = false; else out << "*"; out << "v" << v; } return out; } }