mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
* simplify the nla_solver interface Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * more simplifications Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * init m_use_nra_model Signed-off-by: Lev Nachmanson <levnach@hotmail.com> Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
484 lines
18 KiB
C++
484 lines
18 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
nla_core.h
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
--*/
|
|
#pragma once
|
|
#include "math/lp/factorization.h"
|
|
#include "math/lp/lp_types.h"
|
|
#include "math/lp/var_eqs.h"
|
|
#include "math/lp/nla_tangent_lemmas.h"
|
|
#include "math/lp/nla_basics_lemmas.h"
|
|
#include "math/lp/nla_order_lemmas.h"
|
|
#include "math/lp/nla_monotone_lemmas.h"
|
|
#include "math/lp/emonics.h"
|
|
#include "math/lp/nla_settings.h"
|
|
#include "math/lp/nex.h"
|
|
#include "math/lp/horner.h"
|
|
#include "math/lp/nla_intervals.h"
|
|
#include "math/grobner/pdd_solver.h"
|
|
#include "nlsat/nlsat_solver.h"
|
|
|
|
|
|
namespace nla {
|
|
|
|
template <typename A, typename B>
|
|
bool try_insert(const A& elem, B& collection) {
|
|
auto it = collection.find(elem);
|
|
if (it != collection.end())
|
|
return false;
|
|
collection.insert(elem);
|
|
return true;
|
|
}
|
|
|
|
typedef lp::constraint_index lpci;
|
|
typedef lp::lconstraint_kind llc;
|
|
typedef lp::constraint_index lpci;
|
|
typedef lp::explanation expl_set;
|
|
typedef lp::var_index lpvar;
|
|
const lpvar null_lpvar = UINT_MAX;
|
|
|
|
inline int rat_sign(const rational& r) { return r.is_pos()? 1 : ( r.is_neg()? -1 : 0); }
|
|
inline rational rrat_sign(const rational& r) { return rational(rat_sign(r)); }
|
|
inline bool is_set(unsigned j) { return j != null_lpvar; }
|
|
inline bool is_even(unsigned k) { return (k & 1) == 0; }
|
|
class ineq {
|
|
lp::lconstraint_kind m_cmp;
|
|
lp::lar_term m_term;
|
|
rational m_rs;
|
|
public:
|
|
ineq(lp::lconstraint_kind cmp, const lp::lar_term& term, const rational& rs) : m_cmp(cmp), m_term(term), m_rs(rs) {}
|
|
ineq(const lp::lar_term& term, lp::lconstraint_kind cmp, int i) : m_cmp(cmp), m_term(term), m_rs(rational(i)) {}
|
|
ineq(const lp::lar_term& term, lp::lconstraint_kind cmp, const rational& rs) : m_cmp(cmp), m_term(term), m_rs(rs) {}
|
|
ineq(lpvar v, lp::lconstraint_kind cmp, int i): m_cmp(cmp), m_term(v), m_rs(rational(i)) {}
|
|
ineq(lpvar v, lp::lconstraint_kind cmp, rational const& r): m_cmp(cmp), m_term(v), m_rs(r) {}
|
|
bool operator==(const ineq& a) const {
|
|
return m_cmp == a.m_cmp && m_term == a.m_term && m_rs == a.m_rs;
|
|
}
|
|
const lp::lar_term& term() const { return m_term; };
|
|
lp::lconstraint_kind cmp() const { return m_cmp; };
|
|
const rational& rs() const { return m_rs; };
|
|
};
|
|
|
|
class lemma {
|
|
vector<ineq> m_ineqs;
|
|
lp::explanation m_expl;
|
|
public:
|
|
void push_back(const ineq& i) { m_ineqs.push_back(i);}
|
|
size_t size() const { return m_ineqs.size() + m_expl.size(); }
|
|
const vector<ineq>& ineqs() const { return m_ineqs; }
|
|
vector<ineq>& ineqs() { return m_ineqs; }
|
|
lp::explanation& expl() { return m_expl; }
|
|
const lp::explanation& expl() const { return m_expl; }
|
|
bool is_conflict() const { return m_ineqs.empty() && !m_expl.empty(); }
|
|
};
|
|
|
|
class core;
|
|
//
|
|
// lemmas are created in a scope.
|
|
// when the destructor of new_lemma is invoked
|
|
// all constraints are assumed added to the lemma
|
|
// correctness of the lemma can be checked at this point.
|
|
//
|
|
class new_lemma {
|
|
char const* name;
|
|
core& c;
|
|
lemma& current() const;
|
|
|
|
public:
|
|
new_lemma(core& c, char const* name);
|
|
~new_lemma();
|
|
lemma& operator()() { return current(); }
|
|
std::ostream& display(std::ostream& out) const;
|
|
new_lemma& operator&=(lp::explanation const& e);
|
|
new_lemma& operator&=(const monic& m);
|
|
new_lemma& operator&=(const factor& f);
|
|
new_lemma& operator&=(const factorization& f);
|
|
new_lemma& operator&=(lpvar j);
|
|
new_lemma& operator|=(ineq const& i);
|
|
new_lemma& explain_fixed(lpvar j);
|
|
new_lemma& explain_equiv(lpvar u, lpvar v);
|
|
new_lemma& explain_var_separated_from_zero(lpvar j);
|
|
new_lemma& explain_existing_lower_bound(lpvar j);
|
|
new_lemma& explain_existing_upper_bound(lpvar j);
|
|
new_lemma& explain_separation_from_zero(lpvar j);
|
|
|
|
lp::explanation& expl() { return current().expl(); }
|
|
|
|
unsigned num_ineqs() const { return current().ineqs().size(); }
|
|
};
|
|
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, new_lemma const& l) {
|
|
return l.display(out);
|
|
}
|
|
|
|
struct pp_fac {
|
|
core const& c;
|
|
factor const& f;
|
|
pp_fac(core const& c, factor const& f): c(c), f(f) {}
|
|
};
|
|
|
|
struct pp_var {
|
|
core const& c;
|
|
lpvar v;
|
|
pp_var(core const& c, lpvar v): c(c), v(v) {}
|
|
};
|
|
|
|
struct pp_factorization {
|
|
core const& c;
|
|
factorization const& f;
|
|
pp_factorization(core const& c, factorization const& f): c(c), f(f) {}
|
|
};
|
|
|
|
class core {
|
|
friend class new_lemma;
|
|
public:
|
|
var_eqs<emonics> m_evars;
|
|
lp::lar_solver& m_lar_solver;
|
|
vector<lemma> * m_lemma_vec;
|
|
lp::u_set m_to_refine;
|
|
tangents m_tangents;
|
|
basics m_basics;
|
|
order m_order;
|
|
monotone m_monotone;
|
|
intervals m_intervals;
|
|
horner m_horner;
|
|
nla_settings m_nla_settings;
|
|
dd::pdd_manager m_pdd_manager;
|
|
dd::solver m_pdd_grobner;
|
|
private:
|
|
emonics m_emons;
|
|
svector<lpvar> m_add_buffer;
|
|
mutable lp::u_set m_active_var_set;
|
|
lp::u_set m_rows;
|
|
public:
|
|
reslimit& m_reslim;
|
|
bool m_use_nra_model;
|
|
nra::solver m_nra;
|
|
|
|
void insert_to_refine(lpvar j);
|
|
void erase_from_to_refine(lpvar j);
|
|
|
|
const lp::u_set& active_var_set () const { return m_active_var_set;}
|
|
bool active_var_set_contains(unsigned j) const { return m_active_var_set.contains(j); }
|
|
|
|
void insert_to_active_var_set(unsigned j) const { m_active_var_set.insert(j); }
|
|
|
|
void clear_active_var_set() const {
|
|
m_active_var_set.clear();
|
|
}
|
|
|
|
void clear_and_resize_active_var_set() const {
|
|
m_active_var_set.clear();
|
|
m_active_var_set.resize(m_lar_solver.number_of_vars());
|
|
}
|
|
|
|
reslimit& reslim() { return m_reslim; }
|
|
emonics& emons() { return m_emons; }
|
|
const emonics& emons() const { return m_emons; }
|
|
// constructor
|
|
core(lp::lar_solver& s, reslimit &);
|
|
|
|
bool compare_holds(const rational& ls, llc cmp, const rational& rs) const;
|
|
|
|
rational value(const lp::lar_term& r) const;
|
|
|
|
lp::lar_term subs_terms_to_columns(const lp::lar_term& t) const;
|
|
bool ineq_holds(const ineq& n) const;
|
|
bool lemma_holds(const lemma& l) const;
|
|
bool is_monic_var(lpvar j) const { return m_emons.is_monic_var(j); }
|
|
const rational& val(lpvar j) const { return m_lar_solver.get_column_value(j).x; }
|
|
|
|
const rational& var_val(const monic& m) const { return m_lar_solver.get_column_value(m.var()).x; }
|
|
|
|
rational mul_val(const monic& m) const {
|
|
rational r(1);
|
|
for (lpvar v : m.vars()) r *= m_lar_solver.get_column_value(v).x;
|
|
return r;
|
|
}
|
|
|
|
bool canonize_sign_is_correct(const monic& m) const;
|
|
|
|
lpvar var(monic const& sv) const { return sv.var(); }
|
|
|
|
rational val_rooted(const monic& m) const { return m.rsign()*val(m.var()); }
|
|
|
|
rational val(const factor& f) const { return f.rat_sign() * (f.is_var()? val(f.var()) : var_val(m_emons[f.var()])); }
|
|
|
|
rational val(const factorization&) const;
|
|
|
|
lpvar var(const factor& f) const { return f.var(); }
|
|
|
|
// returns true if the combination of the Horner's schema and Grobner Basis should be called
|
|
bool need_to_call_algebraic_methods() const {
|
|
return lp_settings().stats().m_nla_calls % m_nla_settings.horner_frequency() == 0;
|
|
}
|
|
|
|
void incremental_linearization(bool);
|
|
|
|
svector<lpvar> sorted_rvars(const factor& f) const;
|
|
bool done() const;
|
|
|
|
|
|
// the value of the factor is equal to the value of the variable multiplied
|
|
// by the canonize_sign
|
|
bool canonize_sign(const factor& f) const;
|
|
bool canonize_sign(const factorization& f) const;
|
|
|
|
bool canonize_sign(lpvar j) const;
|
|
|
|
// the value of the rooted monomias is equal to the value of the m.var() variable multiplied
|
|
// by the canonize_sign
|
|
bool canonize_sign(const monic& m) const;
|
|
|
|
|
|
void deregister_monic_from_monicomials (const monic & m, unsigned i);
|
|
|
|
void deregister_monic_from_tables(const monic & m, unsigned i);
|
|
|
|
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
|
|
void push();
|
|
void pop(unsigned n);
|
|
|
|
rational mon_value_by_vars(unsigned i) const;
|
|
rational product_value(const monic & m) const;
|
|
|
|
// return true iff the monic value is equal to the product of the values of the factors
|
|
bool check_monic(const monic& m) const;
|
|
|
|
|
|
std::ostream & print_ineq(const ineq & in, std::ostream & out) const;
|
|
std::ostream & print_var(lpvar j, std::ostream & out) const;
|
|
std::ostream & print_monics(std::ostream & out) const;
|
|
std::ostream & print_ineqs(const lemma& l, std::ostream & out) const;
|
|
std::ostream & print_factorization(const factorization& f, std::ostream& out) const;
|
|
template <typename T>
|
|
std::ostream& print_product(const T & m, std::ostream& out) const;
|
|
template <typename T>
|
|
std::string product_indices_str(const T & m) const;
|
|
std::string var_str(lpvar) const;
|
|
|
|
std::ostream & print_factor(const factor& f, std::ostream& out) const;
|
|
std::ostream & print_factor_with_vars(const factor& f, std::ostream& out) const;
|
|
std::ostream& print_monic(const monic& m, std::ostream& out) const;
|
|
std::ostream& print_bfc(const factorization& m, std::ostream& out) const;
|
|
std::ostream& print_monic_with_vars(unsigned i, std::ostream& out) const;
|
|
template <typename T>
|
|
std::ostream& print_product_with_vars(const T& m, std::ostream& out) const;
|
|
std::ostream& print_monic_with_vars(const monic& m, std::ostream& out) const;
|
|
std::ostream& print_explanation(const lp::explanation& exp, std::ostream& out) const;
|
|
std::ostream& diagnose_pdd_miss(std::ostream& out);
|
|
template <typename T>
|
|
void trace_print_rms(const T& p, std::ostream& out);
|
|
void trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const;
|
|
void print_monic_stats(const monic& m, std::ostream& out);
|
|
void print_stats(std::ostream& out);
|
|
|
|
pp_var pp(lpvar j) const { return pp_var(*this, j); }
|
|
pp_fac pp(factor const& f) const { return pp_fac(*this, f); }
|
|
pp_factorization pp(factorization const& f) const { return pp_factorization(*this, f); }
|
|
|
|
std::ostream& print_lemma(const lemma& l, std::ostream& out) const;
|
|
|
|
|
|
void trace_print_ol(const monic& ac,
|
|
const factor& a,
|
|
const factor& c,
|
|
const monic& bc,
|
|
const factor& b,
|
|
std::ostream& out);
|
|
|
|
|
|
void mk_ineq_no_expl_check(new_lemma& lemma, lp::lar_term& t, llc cmp, const rational& rs);
|
|
|
|
void maybe_add_a_factor(lpvar i,
|
|
const factor& c,
|
|
std::unordered_set<lpvar>& found_vars,
|
|
std::unordered_set<unsigned>& found_rm,
|
|
vector<factor> & r) const;
|
|
|
|
llc apply_minus(llc cmp);
|
|
|
|
void fill_explanation_and_lemma_sign(new_lemma& lemma, const monic& a, const monic & b, rational const& sign);
|
|
|
|
svector<lpvar> reduce_monic_to_rooted(const svector<lpvar> & vars, rational & sign) const;
|
|
|
|
monic_coeff canonize_monic(monic const& m) const;
|
|
|
|
int vars_sign(const svector<lpvar>& v);
|
|
bool has_upper_bound(lpvar j) const;
|
|
bool has_lower_bound(lpvar j) const;
|
|
bool no_bounds(lpvar j) const {
|
|
return !has_upper_bound(j) && !has_lower_bound(j);
|
|
}
|
|
const rational& get_upper_bound(unsigned j) const;
|
|
const rational& get_lower_bound(unsigned j) const;
|
|
|
|
bool zero_is_an_inner_point_of_bounds(lpvar j) const;
|
|
bool var_is_int(lpvar j) const { return m_lar_solver.column_is_int(j); }
|
|
int rat_sign(const monic& m) const;
|
|
inline int rat_sign(lpvar j) const { return nla::rat_sign(val(j)); }
|
|
|
|
bool sign_contradiction(const monic& m) const;
|
|
|
|
bool var_is_fixed_to_zero(lpvar j) const;
|
|
bool var_is_fixed_to_val(lpvar j, const rational& v) const;
|
|
|
|
bool var_is_fixed(lpvar j) const;
|
|
bool var_is_free(lpvar j) const;
|
|
|
|
bool find_canonical_monic_of_vars(const svector<lpvar>& vars, lpvar & i) const;
|
|
bool is_canonical_monic(lpvar) const;
|
|
bool elists_are_consistent(bool check_in_model) const;
|
|
bool elist_is_consistent(const std::unordered_set<lpvar>&) const;
|
|
bool var_has_positive_lower_bound(lpvar j) const;
|
|
|
|
bool var_has_negative_upper_bound(lpvar j) const;
|
|
|
|
bool var_is_separated_from_zero(lpvar j) const;
|
|
|
|
bool vars_are_equiv(lpvar a, lpvar b) const;
|
|
bool explain_ineq(new_lemma& lemma, const lp::lar_term& t, llc cmp, const rational& rs);
|
|
bool explain_upper_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const;
|
|
bool explain_lower_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const;
|
|
bool explain_coeff_lower_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const;
|
|
bool explain_coeff_upper_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const;
|
|
bool explain_by_equiv(const lp::lar_term& t, lp::explanation& e) const;
|
|
bool has_zero_factor(const factorization& factorization) const;
|
|
|
|
template <typename T>
|
|
bool mon_has_zero(const T& product) const;
|
|
lp::lp_settings& lp_settings();
|
|
const lp::lp_settings& lp_settings() const;
|
|
unsigned random();
|
|
|
|
// we look for octagon constraints here, with a left part +-x +- y
|
|
void collect_equivs();
|
|
|
|
bool is_octagon_term(const lp::lar_term& t, bool & sign, lpvar& i, lpvar &j) const;
|
|
|
|
void add_equivalence_maybe(const lp::lar_term *t, lpci c0, lpci c1);
|
|
|
|
void init_vars_equivalence();
|
|
|
|
bool vars_table_is_ok() const;
|
|
|
|
bool rm_table_is_ok() const;
|
|
|
|
bool tables_are_ok() const;
|
|
|
|
bool var_is_a_root(lpvar j) const;
|
|
|
|
template <typename T>
|
|
bool vars_are_roots(const T& v) const;
|
|
|
|
void register_monic_in_tables(unsigned i_mon);
|
|
|
|
void register_monics_in_tables();
|
|
|
|
void clear();
|
|
|
|
void init_search();
|
|
|
|
void init_to_refine();
|
|
|
|
bool divide(const monic& bc, const factor& c, factor & b) const;
|
|
|
|
std::unordered_set<lpvar> collect_vars(const lemma& l) const;
|
|
|
|
bool rm_check(const monic&) const;
|
|
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity();
|
|
|
|
// NSB code review: these could be methods on new_lemma
|
|
void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp);
|
|
void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp, rational const& bound);
|
|
void negate_relation(new_lemma& lemma, unsigned j, const rational& a);
|
|
void negate_factor_equality(new_lemma& lemma, const factor& c, const factor& d);
|
|
void negate_factor_relation(new_lemma& lemma, const rational& a_sign, const factor& a, const rational& b_sign, const factor& b);
|
|
void negate_var_relation_strictly(new_lemma& lemma, lpvar a, lpvar b);
|
|
|
|
bool find_bfc_to_refine_on_monic(const monic&, factorization & bf);
|
|
|
|
bool find_bfc_to_refine(const monic* & m, factorization& bf);
|
|
|
|
bool conflict_found() const;
|
|
|
|
lbool check(vector<lemma>& l_vec);
|
|
|
|
bool no_lemmas_hold() const;
|
|
|
|
lbool test_check(vector<lemma>& l);
|
|
lpvar map_to_root(lpvar) const;
|
|
std::ostream& print_terms(std::ostream&) const;
|
|
std::ostream& print_term(const lp::lar_term&, std::ostream&) const;
|
|
template <typename T>
|
|
std::ostream& print_row(const T & row , std::ostream& out) const {
|
|
vector<std::pair<rational, lpvar>> v;
|
|
for (auto p : row) {
|
|
v.push_back(std::make_pair(p.coeff(), p.var()));
|
|
}
|
|
return lp::print_linear_combination_customized(v, [this](lpvar j) { return var_str(j); },
|
|
out);
|
|
}
|
|
void run_grobner();
|
|
void find_nl_cluster();
|
|
void prepare_rows_and_active_vars();
|
|
void add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector<lpvar>& q);
|
|
std::unordered_set<lpvar> get_vars_of_expr_with_opening_terms(const nex* e);
|
|
void display_matrix_of_m_rows(std::ostream & out) const;
|
|
void set_active_vars_weights(nex_creator&);
|
|
unsigned get_var_weight(lpvar) const;
|
|
void add_row_to_grobner(const vector<lp::row_cell<rational>> & row);
|
|
bool check_pdd_eq(const dd::solver::equation*);
|
|
const rational& val_of_fixed_var_with_deps(lpvar j, u_dependency*& dep);
|
|
dd::pdd pdd_expr(const rational& c, lpvar j, u_dependency*&);
|
|
void set_level2var_for_grobner();
|
|
void configure_grobner();
|
|
bool influences_nl_var(lpvar) const;
|
|
bool is_nl_var(lpvar) const;
|
|
bool is_used_in_monic(lpvar) const;
|
|
void patch_monomials_with_real_vars();
|
|
void patch_monomial_with_real_var(lpvar);
|
|
bool var_is_used_in_a_correct_monic(lpvar) const;
|
|
void update_to_refine_of_var(lpvar j);
|
|
bool try_to_patch(lpvar, const rational&, const monic&);
|
|
bool to_refine_is_correct() const;
|
|
bool patch_blocker(lpvar u, const monic& m) const;
|
|
bool has_big_num(const monic&) const;
|
|
bool var_is_big(lpvar) const;
|
|
bool has_real(const factorization&) const;
|
|
bool has_real(const monic& m) const;
|
|
void set_use_nra_model(bool m) { m_use_nra_model = m; }
|
|
bool use_nra_model() const { return m_use_nra_model; }
|
|
}; // end of core
|
|
|
|
struct pp_mon {
|
|
core const& c;
|
|
monic const& m;
|
|
pp_mon(core const& c, monic const& m): c(c), m(m) {}
|
|
pp_mon(core const& c, lpvar v): c(c), m(c.emons()[v]) {}
|
|
};
|
|
struct pp_mon_with_vars {
|
|
core const& c;
|
|
monic const& m;
|
|
pp_mon_with_vars(core const& c, monic const& m): c(c), m(m) {}
|
|
pp_mon_with_vars(core const& c, lpvar v): c(c), m(c.emons()[v]) {}
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, pp_mon const& p) { return p.c.print_monic(p.m, out); }
|
|
inline std::ostream& operator<<(std::ostream& out, pp_mon_with_vars const& p) { return p.c.print_monic_with_vars(p.m, out); }
|
|
inline std::ostream& operator<<(std::ostream& out, pp_fac const& f) { return f.c.print_factor(f.f, out); }
|
|
inline std::ostream& operator<<(std::ostream& out, pp_factorization const& f) { return f.c.print_factorization(f.f, out); }
|
|
inline std::ostream& operator<<(std::ostream& out, pp_var const& v) { return v.c.print_var(v.v, out); }
|
|
|
|
} // end of namespace nla
|
|
|