/*++ Copyright (c) 2017 Microsoft Corporation Module Name: nla_core.h Author: Lev Nachmanson (levnach) Nikolaj Bjorner (nbjorner) --*/ #pragma once #include "math/lp/factorization.h" #include "math/lp/lp_types.h" #include "math/lp/var_eqs.h" #include "math/lp/nla_tangent_lemmas.h" #include "math/lp/nla_basics_lemmas.h" #include "math/lp/nla_order_lemmas.h" #include "math/lp/nla_monotone_lemmas.h" #include "math/lp/emonics.h" #include "math/lp/nla_settings.h" #include "math/lp/nex.h" #include "math/lp/horner.h" #include "math/lp/nla_intervals.h" #include "math/grobner/pdd_solver.h" #include "nlsat/nlsat_solver.h" namespace nla { template bool try_insert(const A& elem, B& collection) { auto it = collection.find(elem); if (it != collection.end()) return false; collection.insert(elem); return true; } typedef lp::constraint_index lpci; typedef lp::lconstraint_kind llc; typedef lp::constraint_index lpci; typedef lp::explanation expl_set; typedef lp::var_index lpvar; const lpvar null_lpvar = UINT_MAX; inline int rat_sign(const rational& r) { return r.is_pos()? 1 : ( r.is_neg()? -1 : 0); } inline rational rrat_sign(const rational& r) { return rational(rat_sign(r)); } inline bool is_set(unsigned j) { return j != null_lpvar; } inline bool is_even(unsigned k) { return (k & 1) == 0; } class ineq { lp::lconstraint_kind m_cmp; lp::lar_term m_term; rational m_rs; public: ineq(lp::lconstraint_kind cmp, const lp::lar_term& term, const rational& rs) : m_cmp(cmp), m_term(term), m_rs(rs) {} ineq(const lp::lar_term& term, lp::lconstraint_kind cmp, int i) : m_cmp(cmp), m_term(term), m_rs(rational(i)) {} ineq(const lp::lar_term& term, lp::lconstraint_kind cmp, const rational& rs) : m_cmp(cmp), m_term(term), m_rs(rs) {} ineq(lpvar v, lp::lconstraint_kind cmp, int i): m_cmp(cmp), m_term(v), m_rs(rational(i)) {} ineq(lpvar v, lp::lconstraint_kind cmp, rational const& r): m_cmp(cmp), m_term(v), m_rs(r) {} bool operator==(const ineq& a) const { return m_cmp == a.m_cmp && m_term == a.m_term && m_rs == a.m_rs; } const lp::lar_term& term() const { return m_term; }; lp::lconstraint_kind cmp() const { return m_cmp; }; const rational& rs() const { return m_rs; }; }; class lemma { vector m_ineqs; lp::explanation m_expl; public: void push_back(const ineq& i) { m_ineqs.push_back(i);} size_t size() const { return m_ineqs.size() + m_expl.size(); } const vector& ineqs() const { return m_ineqs; } vector& ineqs() { return m_ineqs; } lp::explanation& expl() { return m_expl; } const lp::explanation& expl() const { return m_expl; } bool is_conflict() const { return m_ineqs.empty() && !m_expl.empty(); } }; class core; // // lemmas are created in a scope. // when the destructor of new_lemma is invoked // all constraints are assumed added to the lemma // correctness of the lemma can be checked at this point. // class new_lemma { char const* name; core& c; lemma& current() const; public: new_lemma(core& c, char const* name); ~new_lemma(); lemma& operator()() { return current(); } std::ostream& display(std::ostream& out) const; new_lemma& operator&=(lp::explanation const& e); new_lemma& operator&=(const monic& m); new_lemma& operator&=(const factor& f); new_lemma& operator&=(const factorization& f); new_lemma& operator&=(lpvar j); new_lemma& operator|=(ineq const& i); new_lemma& explain_fixed(lpvar j); new_lemma& explain_equiv(lpvar u, lpvar v); new_lemma& explain_var_separated_from_zero(lpvar j); new_lemma& explain_existing_lower_bound(lpvar j); new_lemma& explain_existing_upper_bound(lpvar j); new_lemma& explain_separation_from_zero(lpvar j); lp::explanation& expl() { return current().expl(); } unsigned num_ineqs() const { return current().ineqs().size(); } }; inline std::ostream& operator<<(std::ostream& out, new_lemma const& l) { return l.display(out); } struct pp_fac { core const& c; factor const& f; pp_fac(core const& c, factor const& f): c(c), f(f) {} }; struct pp_var { core const& c; lpvar v; pp_var(core const& c, lpvar v): c(c), v(v) {} }; struct pp_factorization { core const& c; factorization const& f; pp_factorization(core const& c, factorization const& f): c(c), f(f) {} }; class core { friend class new_lemma; public: var_eqs m_evars; lp::lar_solver& m_lar_solver; vector * m_lemma_vec; lp::u_set m_to_refine; tangents m_tangents; basics m_basics; order m_order; monotone m_monotone; intervals m_intervals; horner m_horner; nla_settings m_nla_settings; dd::pdd_manager m_pdd_manager; dd::solver m_pdd_grobner; private: emonics m_emons; svector m_add_buffer; mutable lp::u_set m_active_var_set; lp::u_set m_rows; public: reslimit& m_reslim; bool m_use_nra_model; nra::solver m_nra; void insert_to_refine(lpvar j); void erase_from_to_refine(lpvar j); const lp::u_set& active_var_set () const { return m_active_var_set;} bool active_var_set_contains(unsigned j) const { return m_active_var_set.contains(j); } void insert_to_active_var_set(unsigned j) const { m_active_var_set.insert(j); } void clear_active_var_set() const { m_active_var_set.clear(); } void clear_and_resize_active_var_set() const { m_active_var_set.clear(); m_active_var_set.resize(m_lar_solver.number_of_vars()); } reslimit& reslim() { return m_reslim; } emonics& emons() { return m_emons; } const emonics& emons() const { return m_emons; } // constructor core(lp::lar_solver& s, reslimit &); bool compare_holds(const rational& ls, llc cmp, const rational& rs) const; rational value(const lp::lar_term& r) const; lp::lar_term subs_terms_to_columns(const lp::lar_term& t) const; bool ineq_holds(const ineq& n) const; bool lemma_holds(const lemma& l) const; bool is_monic_var(lpvar j) const { return m_emons.is_monic_var(j); } const rational& val(lpvar j) const { return m_lar_solver.get_column_value(j).x; } const rational& var_val(const monic& m) const { return m_lar_solver.get_column_value(m.var()).x; } rational mul_val(const monic& m) const { rational r(1); for (lpvar v : m.vars()) r *= m_lar_solver.get_column_value(v).x; return r; } bool canonize_sign_is_correct(const monic& m) const; lpvar var(monic const& sv) const { return sv.var(); } rational val_rooted(const monic& m) const { return m.rsign()*val(m.var()); } rational val(const factor& f) const { return f.rat_sign() * (f.is_var()? val(f.var()) : var_val(m_emons[f.var()])); } rational val(const factorization&) const; lpvar var(const factor& f) const { return f.var(); } // returns true if the combination of the Horner's schema and Grobner Basis should be called bool need_to_call_algebraic_methods() const { return lp_settings().stats().m_nla_calls % m_nla_settings.horner_frequency() == 0; } void incremental_linearization(bool); svector sorted_rvars(const factor& f) const; bool done() const; // the value of the factor is equal to the value of the variable multiplied // by the canonize_sign bool canonize_sign(const factor& f) const; bool canonize_sign(const factorization& f) const; bool canonize_sign(lpvar j) const; // the value of the rooted monomias is equal to the value of the m.var() variable multiplied // by the canonize_sign bool canonize_sign(const monic& m) const; void deregister_monic_from_monicomials (const monic & m, unsigned i); void deregister_monic_from_tables(const monic & m, unsigned i); void add_monic(lpvar v, unsigned sz, lpvar const* vs); void push(); void pop(unsigned n); rational mon_value_by_vars(unsigned i) const; rational product_value(const monic & m) const; // return true iff the monic value is equal to the product of the values of the factors bool check_monic(const monic& m) const; std::ostream & print_ineq(const ineq & in, std::ostream & out) const; std::ostream & print_var(lpvar j, std::ostream & out) const; std::ostream & print_monics(std::ostream & out) const; std::ostream & print_ineqs(const lemma& l, std::ostream & out) const; std::ostream & print_factorization(const factorization& f, std::ostream& out) const; template std::ostream& print_product(const T & m, std::ostream& out) const; template std::string product_indices_str(const T & m) const; std::string var_str(lpvar) const; std::ostream & print_factor(const factor& f, std::ostream& out) const; std::ostream & print_factor_with_vars(const factor& f, std::ostream& out) const; std::ostream& print_monic(const monic& m, std::ostream& out) const; std::ostream& print_bfc(const factorization& m, std::ostream& out) const; std::ostream& print_monic_with_vars(unsigned i, std::ostream& out) const; template std::ostream& print_product_with_vars(const T& m, std::ostream& out) const; std::ostream& print_monic_with_vars(const monic& m, std::ostream& out) const; std::ostream& print_explanation(const lp::explanation& exp, std::ostream& out) const; std::ostream& diagnose_pdd_miss(std::ostream& out); template void trace_print_rms(const T& p, std::ostream& out); void trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const; void print_monic_stats(const monic& m, std::ostream& out); void print_stats(std::ostream& out); pp_var pp(lpvar j) const { return pp_var(*this, j); } pp_fac pp(factor const& f) const { return pp_fac(*this, f); } pp_factorization pp(factorization const& f) const { return pp_factorization(*this, f); } std::ostream& print_lemma(const lemma& l, std::ostream& out) const; void trace_print_ol(const monic& ac, const factor& a, const factor& c, const monic& bc, const factor& b, std::ostream& out); void mk_ineq_no_expl_check(new_lemma& lemma, lp::lar_term& t, llc cmp, const rational& rs); void maybe_add_a_factor(lpvar i, const factor& c, std::unordered_set& found_vars, std::unordered_set& found_rm, vector & r) const; llc apply_minus(llc cmp); void fill_explanation_and_lemma_sign(new_lemma& lemma, const monic& a, const monic & b, rational const& sign); svector reduce_monic_to_rooted(const svector & vars, rational & sign) const; monic_coeff canonize_monic(monic const& m) const; int vars_sign(const svector& v); bool has_upper_bound(lpvar j) const; bool has_lower_bound(lpvar j) const; bool no_bounds(lpvar j) const { return !has_upper_bound(j) && !has_lower_bound(j); } const rational& get_upper_bound(unsigned j) const; const rational& get_lower_bound(unsigned j) const; bool zero_is_an_inner_point_of_bounds(lpvar j) const; bool var_is_int(lpvar j) const { return m_lar_solver.column_is_int(j); } int rat_sign(const monic& m) const; inline int rat_sign(lpvar j) const { return nla::rat_sign(val(j)); } bool sign_contradiction(const monic& m) const; bool var_is_fixed_to_zero(lpvar j) const; bool var_is_fixed_to_val(lpvar j, const rational& v) const; bool var_is_fixed(lpvar j) const; bool var_is_free(lpvar j) const; bool find_canonical_monic_of_vars(const svector& vars, lpvar & i) const; bool is_canonical_monic(lpvar) const; bool elists_are_consistent(bool check_in_model) const; bool elist_is_consistent(const std::unordered_set&) const; bool var_has_positive_lower_bound(lpvar j) const; bool var_has_negative_upper_bound(lpvar j) const; bool var_is_separated_from_zero(lpvar j) const; bool vars_are_equiv(lpvar a, lpvar b) const; bool explain_ineq(new_lemma& lemma, const lp::lar_term& t, llc cmp, const rational& rs); bool explain_upper_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const; bool explain_lower_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const; bool explain_coeff_lower_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const; bool explain_coeff_upper_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const; bool explain_by_equiv(const lp::lar_term& t, lp::explanation& e) const; bool has_zero_factor(const factorization& factorization) const; template bool mon_has_zero(const T& product) const; lp::lp_settings& lp_settings(); const lp::lp_settings& lp_settings() const; unsigned random(); // we look for octagon constraints here, with a left part +-x +- y void collect_equivs(); bool is_octagon_term(const lp::lar_term& t, bool & sign, lpvar& i, lpvar &j) const; void add_equivalence_maybe(const lp::lar_term *t, lpci c0, lpci c1); void init_vars_equivalence(); bool vars_table_is_ok() const; bool rm_table_is_ok() const; bool tables_are_ok() const; bool var_is_a_root(lpvar j) const; template bool vars_are_roots(const T& v) const; void register_monic_in_tables(unsigned i_mon); void register_monics_in_tables(); void clear(); void init_search(); void init_to_refine(); bool divide(const monic& bc, const factor& c, factor & b) const; std::unordered_set collect_vars(const lemma& l) const; bool rm_check(const monic&) const; std::unordered_map get_rm_by_arity(); // NSB code review: these could be methods on new_lemma void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp); void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp, rational const& bound); void negate_relation(new_lemma& lemma, unsigned j, const rational& a); void negate_factor_equality(new_lemma& lemma, const factor& c, const factor& d); void negate_factor_relation(new_lemma& lemma, const rational& a_sign, const factor& a, const rational& b_sign, const factor& b); void negate_var_relation_strictly(new_lemma& lemma, lpvar a, lpvar b); bool find_bfc_to_refine_on_monic(const monic&, factorization & bf); bool find_bfc_to_refine(const monic* & m, factorization& bf); bool conflict_found() const; lbool check(vector& l_vec); bool no_lemmas_hold() const; lbool test_check(vector& l); lpvar map_to_root(lpvar) const; std::ostream& print_terms(std::ostream&) const; std::ostream& print_term(const lp::lar_term&, std::ostream&) const; template std::ostream& print_row(const T & row , std::ostream& out) const { vector> v; for (auto p : row) { v.push_back(std::make_pair(p.coeff(), p.var())); } return lp::print_linear_combination_customized(v, [this](lpvar j) { return var_str(j); }, out); } void run_grobner(); void find_nl_cluster(); void prepare_rows_and_active_vars(); void add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector& q); std::unordered_set get_vars_of_expr_with_opening_terms(const nex* e); void display_matrix_of_m_rows(std::ostream & out) const; void set_active_vars_weights(nex_creator&); unsigned get_var_weight(lpvar) const; void add_row_to_grobner(const vector> & row); bool check_pdd_eq(const dd::solver::equation*); const rational& val_of_fixed_var_with_deps(lpvar j, u_dependency*& dep); dd::pdd pdd_expr(const rational& c, lpvar j, u_dependency*&); void set_level2var_for_grobner(); void configure_grobner(); bool influences_nl_var(lpvar) const; bool is_nl_var(lpvar) const; bool is_used_in_monic(lpvar) const; void patch_monomials_with_real_vars(); void patch_monomial_with_real_var(lpvar); bool var_is_used_in_a_correct_monic(lpvar) const; void update_to_refine_of_var(lpvar j); bool try_to_patch(lpvar, const rational&, const monic&); bool to_refine_is_correct() const; bool patch_blocker(lpvar u, const monic& m) const; bool has_big_num(const monic&) const; bool var_is_big(lpvar) const; bool has_real(const factorization&) const; bool has_real(const monic& m) const; void set_use_nra_model(bool m) { m_use_nra_model = m; } bool use_nra_model() const { return m_use_nra_model; } }; // end of core struct pp_mon { core const& c; monic const& m; pp_mon(core const& c, monic const& m): c(c), m(m) {} pp_mon(core const& c, lpvar v): c(c), m(c.emons()[v]) {} }; struct pp_mon_with_vars { core const& c; monic const& m; pp_mon_with_vars(core const& c, monic const& m): c(c), m(m) {} pp_mon_with_vars(core const& c, lpvar v): c(c), m(c.emons()[v]) {} }; inline std::ostream& operator<<(std::ostream& out, pp_mon const& p) { return p.c.print_monic(p.m, out); } inline std::ostream& operator<<(std::ostream& out, pp_mon_with_vars const& p) { return p.c.print_monic_with_vars(p.m, out); } inline std::ostream& operator<<(std::ostream& out, pp_fac const& f) { return f.c.print_factor(f.f, out); } inline std::ostream& operator<<(std::ostream& out, pp_factorization const& f) { return f.c.print_factorization(f.f, out); } inline std::ostream& operator<<(std::ostream& out, pp_var const& v) { return v.c.print_var(v.v, out); } } // end of namespace nla