mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
456 lines
13 KiB
C++
456 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2016 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
bv_bounds_tactic.cpp
|
|
|
|
Abstract:
|
|
|
|
Contextual bounds simplification tactic.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2016-2-12
|
|
|
|
|
|
--*/
|
|
|
|
#include "bv_bounds_tactic.h"
|
|
#include "ctx_simplify_tactic.h"
|
|
#include "bv_decl_plugin.h"
|
|
#include "ast_pp.h"
|
|
#include <climits>
|
|
|
|
static uint64 uMaxInt(unsigned sz) {
|
|
SASSERT(sz <= 64);
|
|
return ULLONG_MAX >> (64u - sz);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct interval {
|
|
// l < h: [l, h]
|
|
// l > h: [0, h] U [l, UMAX_INT]
|
|
uint64 l, h;
|
|
unsigned sz;
|
|
bool tight;
|
|
|
|
interval() {}
|
|
interval(uint64 l, uint64 h, unsigned sz, bool tight = false) : l(l), h(h), sz(sz), tight(tight) {
|
|
// canonicalize full set
|
|
if (is_wrapped() && l == h + 1) {
|
|
this->l = 0;
|
|
this->h = uMaxInt(sz);
|
|
}
|
|
SASSERT(invariant());
|
|
}
|
|
|
|
bool invariant() const {
|
|
return l <= uMaxInt(sz) && h <= uMaxInt(sz) &&
|
|
(!is_wrapped() || l != h+1);
|
|
}
|
|
|
|
bool is_full() const { return l == 0 && h == uMaxInt(sz); }
|
|
bool is_wrapped() const { return l > h; }
|
|
bool is_singleton() const { return l == h; }
|
|
|
|
bool operator==(const interval& b) const {
|
|
SASSERT(sz == b.sz);
|
|
return l == b.l && h == b.h && tight == b.tight;
|
|
}
|
|
bool operator!=(const interval& b) const { return !(*this == b); }
|
|
|
|
bool implies(const interval& b) const {
|
|
if (b.is_full())
|
|
return true;
|
|
if (is_full())
|
|
return false;
|
|
|
|
if (is_wrapped()) {
|
|
// l >= b.l >= b.h >= h
|
|
return b.is_wrapped() && h <= b.h && l >= b.l;
|
|
} else if (b.is_wrapped()) {
|
|
// b.l > b.h >= h >= l
|
|
// h >= l >= b.l > b.h
|
|
return h <= b.h || l >= b.l;
|
|
} else {
|
|
//
|
|
return l >= b.l && h <= b.h;
|
|
}
|
|
}
|
|
|
|
/// return false if intersection is unsat
|
|
bool intersect(const interval& b, interval& result) const {
|
|
if (is_full() || *this == b) {
|
|
result = b;
|
|
return true;
|
|
}
|
|
if (b.is_full()) {
|
|
result = *this;
|
|
return true;
|
|
}
|
|
|
|
if (is_wrapped()) {
|
|
if (b.is_wrapped()) {
|
|
if (h >= b.l) {
|
|
result = b;
|
|
} else if (b.h >= l) {
|
|
result = *this;
|
|
} else {
|
|
result = interval(std::max(l, b.l), std::min(h, b.h), sz);
|
|
}
|
|
} else {
|
|
return b.intersect(*this, result);
|
|
}
|
|
} else if (b.is_wrapped()) {
|
|
// ... b.h ... l ... h ... b.l ..
|
|
if (h < b.l && l > b.h) {
|
|
return false;
|
|
}
|
|
// ... l ... b.l ... h ...
|
|
if (h >= b.l && l <= b.h) {
|
|
result = b;
|
|
} else if (h >= b.l) {
|
|
result = interval(b.l, h, sz);
|
|
} else {
|
|
// ... l .. b.h .. h .. b.l ...
|
|
SASSERT(l <= b.h);
|
|
result = interval(l, std::min(h, b.h), sz);
|
|
}
|
|
} else {
|
|
if (l > b.h || h < b.l)
|
|
return false;
|
|
|
|
// 0 .. l.. l' ... h ... h'
|
|
result = interval(std::max(l, b.l), std::min(h, b.h), sz, tight && b.tight);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// return false if negation is empty
|
|
bool negate(interval& result) const {
|
|
if (!tight) {
|
|
result = interval(0, uMaxInt(sz), true);
|
|
return true;
|
|
}
|
|
|
|
if (is_full())
|
|
return false;
|
|
if (l == 0) {
|
|
result = interval(h + 1, uMaxInt(sz), sz);
|
|
} else if (uMaxInt(sz) == h) {
|
|
result = interval(0, l - 1, sz);
|
|
} else {
|
|
result = interval(h + 1, l - 1, sz);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& o, const interval& I) {
|
|
o << "[" << I.l << ", " << I.h << "]";
|
|
return o;
|
|
}
|
|
|
|
|
|
struct undo_bound {
|
|
expr* e;
|
|
interval b;
|
|
bool fresh;
|
|
undo_bound(expr* e, const interval& b, bool fresh) : e(e), b(b), fresh(fresh) {}
|
|
};
|
|
|
|
class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier {
|
|
typedef obj_map<expr, interval> map;
|
|
typedef obj_map<expr, bool> expr_set;
|
|
typedef obj_map<expr, unsigned> expr_cnt;
|
|
|
|
ast_manager& m;
|
|
params_ref m_params;
|
|
bool m_propagate_eq;
|
|
bv_util m_bv;
|
|
vector<undo_bound> m_scopes;
|
|
map m_bound;
|
|
svector<expr_set*> m_expr_vars;
|
|
svector<expr_cnt*> m_bound_exprs;
|
|
|
|
bool is_number(expr *e, uint64& n, unsigned& sz) const {
|
|
rational r;
|
|
if (m_bv.is_numeral(e, r, sz) && sz <= 64) {
|
|
n = r.get_uint64();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool is_bound(expr *e, expr*& v, interval& b) const {
|
|
uint64 n;
|
|
expr *lhs, *rhs;
|
|
unsigned sz;
|
|
|
|
if (m_bv.is_bv_ule(e, lhs, rhs)) {
|
|
if (is_number(lhs, n, sz)) { // C ule x <=> x uge C
|
|
if (m_bv.is_numeral(rhs))
|
|
return false;
|
|
b = interval(n, uMaxInt(sz), sz, true);
|
|
v = rhs;
|
|
return true;
|
|
}
|
|
if (is_number(rhs, n, sz)) { // x ule C
|
|
b = interval(0, n, sz, true);
|
|
v = lhs;
|
|
return true;
|
|
}
|
|
} else if (m_bv.is_bv_sle(e, lhs, rhs)) {
|
|
if (is_number(lhs, n, sz)) { // C sle x <=> x sge C
|
|
if (m_bv.is_numeral(rhs))
|
|
return false;
|
|
b = interval(n, (1ull << (sz-1)) - 1, sz, true);
|
|
v = rhs;
|
|
return true;
|
|
}
|
|
if (is_number(rhs, n, sz)) { // x sle C
|
|
b = interval(1ull << (sz-1), n, sz, true);
|
|
v = lhs;
|
|
return true;
|
|
}
|
|
} else if (m.is_eq(e, lhs, rhs)) {
|
|
if (is_number(lhs, n, sz)) {
|
|
if (m_bv.is_numeral(rhs))
|
|
return false;
|
|
b = interval(n, n, sz, true);
|
|
v = rhs;
|
|
return true;
|
|
}
|
|
if (is_number(rhs, n, sz)) {
|
|
b = interval(n, n, sz, true);
|
|
v = lhs;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
expr_set* get_expr_vars(expr* t) {
|
|
unsigned id = t->get_id();
|
|
m_expr_vars.reserve(id + 1);
|
|
expr_set*& entry = m_expr_vars[id];
|
|
if (entry)
|
|
return entry;
|
|
|
|
expr_set* set = alloc(expr_set);
|
|
entry = set;
|
|
|
|
if (!m_bv.is_numeral(t))
|
|
set->insert(t, true);
|
|
|
|
if (!is_app(t))
|
|
return set;
|
|
|
|
app* a = to_app(t);
|
|
for (unsigned i = 0; i < a->get_num_args(); ++i) {
|
|
expr_set* set_arg = get_expr_vars(a->get_arg(i));
|
|
for (expr_set::iterator I = set_arg->begin(), E = set_arg->end(); I != E; ++I) {
|
|
set->insert(I->m_key, true);
|
|
}
|
|
}
|
|
return set;
|
|
}
|
|
|
|
expr_cnt* get_expr_bounds(expr* t) {
|
|
unsigned id = t->get_id();
|
|
m_bound_exprs.reserve(id + 1);
|
|
expr_cnt*& entry = m_bound_exprs[id];
|
|
if (entry)
|
|
return entry;
|
|
|
|
expr_cnt* set = alloc(expr_cnt);
|
|
entry = set;
|
|
|
|
if (!is_app(t))
|
|
return set;
|
|
|
|
interval b;
|
|
expr* e;
|
|
if (is_bound(t, e, b)) {
|
|
set->insert_if_not_there2(e, 0)->get_data().m_value++;
|
|
}
|
|
|
|
app* a = to_app(t);
|
|
for (unsigned i = 0; i < a->get_num_args(); ++i) {
|
|
expr_cnt* set_arg = get_expr_bounds(a->get_arg(i));
|
|
for (expr_cnt::iterator I = set_arg->begin(), E = set_arg->end(); I != E; ++I) {
|
|
set->insert_if_not_there2(I->m_key, 0)->get_data().m_value += I->m_value;
|
|
}
|
|
}
|
|
return set;
|
|
}
|
|
|
|
public:
|
|
bv_bounds_simplifier(ast_manager& m, params_ref const& p) : m(m), m_params(p), m_bv(m) {
|
|
updt_params(p);
|
|
}
|
|
|
|
virtual void updt_params(params_ref const & p) {
|
|
m_propagate_eq = p.get_bool("propagate_eq", false);
|
|
}
|
|
|
|
static void get_param_descrs(param_descrs& r) {
|
|
r.insert("propagate-eq", CPK_BOOL, "(default: false) propagate equalities from inequalities");
|
|
}
|
|
|
|
virtual ~bv_bounds_simplifier() {
|
|
for (unsigned i = 0, e = m_expr_vars.size(); i < e; ++i) {
|
|
dealloc(m_expr_vars[i]);
|
|
}
|
|
for (unsigned i = 0, e = m_bound_exprs.size(); i < e; ++i) {
|
|
dealloc(m_bound_exprs[i]);
|
|
}
|
|
}
|
|
|
|
virtual bool assert_expr(expr * t, bool sign) {
|
|
while (m.is_not(t, t)) {
|
|
sign = !sign;
|
|
}
|
|
|
|
interval b;
|
|
expr* t1;
|
|
if (is_bound(t, t1, b)) {
|
|
SASSERT(!m_bv.is_numeral(t1));
|
|
if (sign)
|
|
VERIFY(b.negate(b));
|
|
|
|
TRACE("bv", tout << (sign?"(not ":"") << mk_pp(t, m) << (sign ? ")" : "") << ": " << mk_pp(t1, m) << " in " << b << "\n";);
|
|
map::obj_map_entry* e = m_bound.find_core(t1);
|
|
if (e) {
|
|
interval& old = e->get_data().m_value;
|
|
interval intr;
|
|
if (!old.intersect(b, intr))
|
|
return false;
|
|
if (old == intr)
|
|
return true;
|
|
m_scopes.insert(undo_bound(t1, old, false));
|
|
old = intr;
|
|
} else {
|
|
m_bound.insert(t1, b);
|
|
m_scopes.insert(undo_bound(t1, interval(), true));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
virtual bool simplify(expr* t, expr_ref& result) {
|
|
expr* t1;
|
|
interval b;
|
|
|
|
if (m_bound.find(t, b) && b.is_singleton()) {
|
|
result = m_bv.mk_numeral(b.l, m_bv.get_bv_size(t));
|
|
return true;
|
|
}
|
|
|
|
if (!m.is_bool(t))
|
|
return false;
|
|
|
|
bool sign = false;
|
|
while (m.is_not(t, t)) {
|
|
sign = !sign;
|
|
}
|
|
|
|
if (!is_bound(t, t1, b))
|
|
return false;
|
|
|
|
if (sign && b.tight) {
|
|
sign = false;
|
|
if (!b.negate(b)) {
|
|
result = m.mk_false();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
interval ctx, intr;
|
|
result = 0;
|
|
|
|
if (b.is_full() && b.tight) {
|
|
result = m.mk_true();
|
|
} else if (m_bound.find(t1, ctx)) {
|
|
if (ctx.implies(b)) {
|
|
result = m.mk_true();
|
|
} else if (!b.intersect(ctx, intr)) {
|
|
result = m.mk_false();
|
|
} else if (m_propagate_eq && intr.is_singleton()) {
|
|
result = m.mk_eq(t1, m_bv.mk_numeral(rational(intr.l, rational::ui64()),
|
|
m.get_sort(t1)));
|
|
}
|
|
}
|
|
|
|
CTRACE("bv", result != 0, tout << mk_pp(t, m) << " " << b << " (ctx: " << ctx << ") (intr: " << intr << "): " << result << "\n";);
|
|
if (sign && result != 0)
|
|
result = m.mk_not(result);
|
|
return result != 0;
|
|
}
|
|
|
|
virtual bool may_simplify(expr* t) {
|
|
if (m_bv.is_numeral(t))
|
|
return false;
|
|
|
|
while (m.is_not(t, t));
|
|
|
|
expr_set* used_exprs = get_expr_vars(t);
|
|
for (map::iterator I = m_bound.begin(), E = m_bound.end(); I != E; ++I) {
|
|
if (I->m_value.is_singleton() && used_exprs->contains(I->m_key))
|
|
return true;
|
|
}
|
|
|
|
expr* t1;
|
|
interval b;
|
|
// skip common case: single bound constraint without any context for simplification
|
|
if (is_bound(t, t1, b)) {
|
|
return b.is_full() || m_bound.contains(t1);
|
|
}
|
|
|
|
expr_cnt* bounds = get_expr_bounds(t);
|
|
for (expr_cnt::iterator I = bounds->begin(), E = bounds->end(); I != E; ++I) {
|
|
if (I->m_value > 1 || m_bound.contains(I->m_key))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual void pop(unsigned num_scopes) {
|
|
TRACE("bv", tout << "pop: " << num_scopes << "\n";);
|
|
if (m_scopes.empty())
|
|
return;
|
|
unsigned target = m_scopes.size() - num_scopes;
|
|
if (target == 0) {
|
|
m_bound.reset();
|
|
m_scopes.reset();
|
|
return;
|
|
}
|
|
for (unsigned i = m_scopes.size()-1; i >= target; --i) {
|
|
undo_bound& undo = m_scopes[i];
|
|
SASSERT(m_bound.contains(undo.e));
|
|
if (undo.fresh) {
|
|
m_bound.erase(undo.e);
|
|
} else {
|
|
m_bound.insert(undo.e, undo.b);
|
|
}
|
|
}
|
|
m_scopes.shrink(target);
|
|
}
|
|
|
|
virtual simplifier * translate(ast_manager & m) {
|
|
return alloc(bv_bounds_simplifier, m, m_params);
|
|
}
|
|
|
|
virtual unsigned scope_level() const {
|
|
return m_scopes.size();
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
tactic * mk_bv_bounds_tactic(ast_manager & m, params_ref const & p) {
|
|
return clean(alloc(ctx_simplify_tactic, m, alloc(bv_bounds_simplifier, m, p), p));
|
|
}
|