/*++ Copyright (c) 2016 Microsoft Corporation Module Name: bv_bounds_tactic.cpp Abstract: Contextual bounds simplification tactic. Author: Nikolaj Bjorner (nbjorner) 2016-2-12 --*/ #include "bv_bounds_tactic.h" #include "ctx_simplify_tactic.h" #include "bv_decl_plugin.h" #include "ast_pp.h" #include static uint64 uMaxInt(unsigned sz) { SASSERT(sz <= 64); return ULLONG_MAX >> (64u - sz); } namespace { struct interval { // l < h: [l, h] // l > h: [0, h] U [l, UMAX_INT] uint64 l, h; unsigned sz; bool tight; interval() {} interval(uint64 l, uint64 h, unsigned sz, bool tight = false) : l(l), h(h), sz(sz), tight(tight) { // canonicalize full set if (is_wrapped() && l == h + 1) { this->l = 0; this->h = uMaxInt(sz); } SASSERT(invariant()); } bool invariant() const { return l <= uMaxInt(sz) && h <= uMaxInt(sz) && (!is_wrapped() || l != h+1); } bool is_full() const { return l == 0 && h == uMaxInt(sz); } bool is_wrapped() const { return l > h; } bool is_singleton() const { return l == h; } bool operator==(const interval& b) const { SASSERT(sz == b.sz); return l == b.l && h == b.h && tight == b.tight; } bool operator!=(const interval& b) const { return !(*this == b); } bool implies(const interval& b) const { if (b.is_full()) return true; if (is_full()) return false; if (is_wrapped()) { // l >= b.l >= b.h >= h return b.is_wrapped() && h <= b.h && l >= b.l; } else if (b.is_wrapped()) { // b.l > b.h >= h >= l // h >= l >= b.l > b.h return h <= b.h || l >= b.l; } else { // return l >= b.l && h <= b.h; } } /// return false if intersection is unsat bool intersect(const interval& b, interval& result) const { if (is_full() || *this == b) { result = b; return true; } if (b.is_full()) { result = *this; return true; } if (is_wrapped()) { if (b.is_wrapped()) { if (h >= b.l) { result = b; } else if (b.h >= l) { result = *this; } else { result = interval(std::max(l, b.l), std::min(h, b.h), sz); } } else { return b.intersect(*this, result); } } else if (b.is_wrapped()) { // ... b.h ... l ... h ... b.l .. if (h < b.l && l > b.h) { return false; } // ... l ... b.l ... h ... if (h >= b.l && l <= b.h) { result = b; } else if (h >= b.l) { result = interval(b.l, h, sz); } else { // ... l .. b.h .. h .. b.l ... SASSERT(l <= b.h); result = interval(l, std::min(h, b.h), sz); } } else { if (l > b.h || h < b.l) return false; // 0 .. l.. l' ... h ... h' result = interval(std::max(l, b.l), std::min(h, b.h), sz, tight && b.tight); } return true; } /// return false if negation is empty bool negate(interval& result) const { if (!tight) { result = interval(0, uMaxInt(sz), true); return true; } if (is_full()) return false; if (l == 0) { result = interval(h + 1, uMaxInt(sz), sz); } else if (uMaxInt(sz) == h) { result = interval(0, l - 1, sz); } else { result = interval(h + 1, l - 1, sz); } return true; } }; std::ostream& operator<<(std::ostream& o, const interval& I) { o << "[" << I.l << ", " << I.h << "]"; return o; } struct undo_bound { expr* e; interval b; bool fresh; undo_bound(expr* e, const interval& b, bool fresh) : e(e), b(b), fresh(fresh) {} }; class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier { typedef obj_map map; typedef obj_map expr_set; typedef obj_map expr_cnt; ast_manager& m; params_ref m_params; bool m_propagate_eq; bv_util m_bv; vector m_scopes; map m_bound; svector m_expr_vars; svector m_bound_exprs; bool is_number(expr *e, uint64& n, unsigned& sz) const { rational r; if (m_bv.is_numeral(e, r, sz) && sz <= 64) { n = r.get_uint64(); return true; } return false; } bool is_bound(expr *e, expr*& v, interval& b) const { uint64 n; expr *lhs, *rhs; unsigned sz; if (m_bv.is_bv_ule(e, lhs, rhs)) { if (is_number(lhs, n, sz)) { // C ule x <=> x uge C if (m_bv.is_numeral(rhs)) return false; b = interval(n, uMaxInt(sz), sz, true); v = rhs; return true; } if (is_number(rhs, n, sz)) { // x ule C b = interval(0, n, sz, true); v = lhs; return true; } } else if (m_bv.is_bv_sle(e, lhs, rhs)) { if (is_number(lhs, n, sz)) { // C sle x <=> x sge C if (m_bv.is_numeral(rhs)) return false; b = interval(n, (1ull << (sz-1)) - 1, sz, true); v = rhs; return true; } if (is_number(rhs, n, sz)) { // x sle C b = interval(1ull << (sz-1), n, sz, true); v = lhs; return true; } } else if (m.is_eq(e, lhs, rhs)) { if (is_number(lhs, n, sz)) { if (m_bv.is_numeral(rhs)) return false; b = interval(n, n, sz, true); v = rhs; return true; } if (is_number(rhs, n, sz)) { b = interval(n, n, sz, true); v = lhs; return true; } } return false; } expr_set* get_expr_vars(expr* t) { unsigned id = t->get_id(); m_expr_vars.reserve(id + 1); expr_set*& entry = m_expr_vars[id]; if (entry) return entry; expr_set* set = alloc(expr_set); entry = set; if (!m_bv.is_numeral(t)) set->insert(t, true); if (!is_app(t)) return set; app* a = to_app(t); for (unsigned i = 0; i < a->get_num_args(); ++i) { expr_set* set_arg = get_expr_vars(a->get_arg(i)); for (expr_set::iterator I = set_arg->begin(), E = set_arg->end(); I != E; ++I) { set->insert(I->m_key, true); } } return set; } expr_cnt* get_expr_bounds(expr* t) { unsigned id = t->get_id(); m_bound_exprs.reserve(id + 1); expr_cnt*& entry = m_bound_exprs[id]; if (entry) return entry; expr_cnt* set = alloc(expr_cnt); entry = set; if (!is_app(t)) return set; interval b; expr* e; if (is_bound(t, e, b)) { set->insert_if_not_there2(e, 0)->get_data().m_value++; } app* a = to_app(t); for (unsigned i = 0; i < a->get_num_args(); ++i) { expr_cnt* set_arg = get_expr_bounds(a->get_arg(i)); for (expr_cnt::iterator I = set_arg->begin(), E = set_arg->end(); I != E; ++I) { set->insert_if_not_there2(I->m_key, 0)->get_data().m_value += I->m_value; } } return set; } public: bv_bounds_simplifier(ast_manager& m, params_ref const& p) : m(m), m_params(p), m_bv(m) { updt_params(p); } virtual void updt_params(params_ref const & p) { m_propagate_eq = p.get_bool("propagate_eq", false); } static void get_param_descrs(param_descrs& r) { r.insert("propagate-eq", CPK_BOOL, "(default: false) propagate equalities from inequalities"); } virtual ~bv_bounds_simplifier() { for (unsigned i = 0, e = m_expr_vars.size(); i < e; ++i) { dealloc(m_expr_vars[i]); } for (unsigned i = 0, e = m_bound_exprs.size(); i < e; ++i) { dealloc(m_bound_exprs[i]); } } virtual bool assert_expr(expr * t, bool sign) { while (m.is_not(t, t)) { sign = !sign; } interval b; expr* t1; if (is_bound(t, t1, b)) { SASSERT(!m_bv.is_numeral(t1)); if (sign) VERIFY(b.negate(b)); TRACE("bv", tout << (sign?"(not ":"") << mk_pp(t, m) << (sign ? ")" : "") << ": " << mk_pp(t1, m) << " in " << b << "\n";); map::obj_map_entry* e = m_bound.find_core(t1); if (e) { interval& old = e->get_data().m_value; interval intr; if (!old.intersect(b, intr)) return false; if (old == intr) return true; m_scopes.insert(undo_bound(t1, old, false)); old = intr; } else { m_bound.insert(t1, b); m_scopes.insert(undo_bound(t1, interval(), true)); } } return true; } virtual bool simplify(expr* t, expr_ref& result) { expr* t1; interval b; if (m_bound.find(t, b) && b.is_singleton()) { result = m_bv.mk_numeral(b.l, m_bv.get_bv_size(t)); return true; } if (!m.is_bool(t)) return false; bool sign = false; while (m.is_not(t, t)) { sign = !sign; } if (!is_bound(t, t1, b)) return false; if (sign && b.tight) { sign = false; if (!b.negate(b)) { result = m.mk_false(); return true; } } interval ctx, intr; result = 0; if (b.is_full() && b.tight) { result = m.mk_true(); } else if (m_bound.find(t1, ctx)) { if (ctx.implies(b)) { result = m.mk_true(); } else if (!b.intersect(ctx, intr)) { result = m.mk_false(); } else if (m_propagate_eq && intr.is_singleton()) { result = m.mk_eq(t1, m_bv.mk_numeral(rational(intr.l, rational::ui64()), m.get_sort(t1))); } } CTRACE("bv", result != 0, tout << mk_pp(t, m) << " " << b << " (ctx: " << ctx << ") (intr: " << intr << "): " << result << "\n";); if (sign && result != 0) result = m.mk_not(result); return result != 0; } virtual bool may_simplify(expr* t) { if (m_bv.is_numeral(t)) return false; while (m.is_not(t, t)); expr_set* used_exprs = get_expr_vars(t); for (map::iterator I = m_bound.begin(), E = m_bound.end(); I != E; ++I) { if (I->m_value.is_singleton() && used_exprs->contains(I->m_key)) return true; } expr* t1; interval b; // skip common case: single bound constraint without any context for simplification if (is_bound(t, t1, b)) { return b.is_full() || m_bound.contains(t1); } expr_cnt* bounds = get_expr_bounds(t); for (expr_cnt::iterator I = bounds->begin(), E = bounds->end(); I != E; ++I) { if (I->m_value > 1 || m_bound.contains(I->m_key)) return true; } return false; } virtual void pop(unsigned num_scopes) { TRACE("bv", tout << "pop: " << num_scopes << "\n";); if (m_scopes.empty()) return; unsigned target = m_scopes.size() - num_scopes; if (target == 0) { m_bound.reset(); m_scopes.reset(); return; } for (unsigned i = m_scopes.size()-1; i >= target; --i) { undo_bound& undo = m_scopes[i]; SASSERT(m_bound.contains(undo.e)); if (undo.fresh) { m_bound.erase(undo.e); } else { m_bound.insert(undo.e, undo.b); } } m_scopes.shrink(target); } virtual simplifier * translate(ast_manager & m) { return alloc(bv_bounds_simplifier, m, m_params); } virtual unsigned scope_level() const { return m_scopes.size(); } }; } tactic * mk_bv_bounds_tactic(ast_manager & m, params_ref const & p) { return clean(alloc(ctx_simplify_tactic, m, alloc(bv_bounds_simplifier, m, p), p)); }