3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-24 21:26:59 +00:00
z3/src/math/simplex/model_based_opt.cpp
Nikolaj Bjorner 6558999cef fixes #1171
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-07-27 08:46:20 -07:00

988 lines
34 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
model_based_opt.cpp
Abstract:
Model-based optimization and projection for linear real, integer arithmetic.
Author:
Nikolaj Bjorner (nbjorner) 2016-27-4
Revision History:
--*/
#include "math/simplex/model_based_opt.h"
#include "util/uint_set.h"
#include "util/z3_exception.h"
std::ostream& operator<<(std::ostream& out, opt::ineq_type ie) {
switch (ie) {
case opt::t_eq: return out << " = ";
case opt::t_lt: return out << " < ";
case opt::t_le: return out << " <= ";
case opt::t_mod: return out << " mod ";
}
return out;
}
namespace opt {
model_based_opt::model_based_opt() {
m_rows.push_back(row());
}
bool model_based_opt::invariant() {
for (unsigned i = 0; i < m_rows.size(); ++i) {
if (!invariant(i, m_rows[i])) {
return false;
}
}
return true;
}
#define PASSERT(_e_) if (!(_e_)) { TRACE("opt", display(tout, r);); SASSERT(_e_); }
bool model_based_opt::invariant(unsigned index, row const& r) {
vector<var> const& vars = r.m_vars;
for (unsigned i = 0; i < vars.size(); ++i) {
// variables in each row are sorted and have non-zero coefficients
PASSERT(i + 1 == vars.size() || vars[i].m_id < vars[i+1].m_id);
PASSERT(!vars[i].m_coeff.is_zero());
PASSERT(index == 0 || m_var2row_ids[vars[i].m_id].contains(index));
}
PASSERT(r.m_value == get_row_value(r));
PASSERT(r.m_type != t_eq || r.m_value.is_zero());
// values satisfy constraints
PASSERT(index == 0 || r.m_type != t_lt || r.m_value.is_neg());
PASSERT(index == 0 || r.m_type != t_le || !r.m_value.is_pos());
PASSERT(index == 0 || r.m_type != t_mod || (mod(r.m_value, r.m_mod).is_zero()));
return true;
}
// a1*x + obj
// a2*x + t2 <= 0
// a3*x + t3 <= 0
// a4*x + t4 <= 0
// a1 > 0, a2 > 0, a3 > 0, a4 < 0
// x <= -t2/a2
// x <= -t2/a3
// determine lub among these.
// then resolve lub with others
// e.g., -t2/a2 <= -t3/a3, then
// replace inequality a3*x + t3 <= 0 by -t2/a2 + t3/a3 <= 0
// mark a4 as invalid.
//
// a1 < 0, a2 < 0, a3 < 0, a4 > 0
// x >= t2/a2
// x >= t3/a3
// determine glb among these
// the resolve glb with others.
// e.g. t2/a2 >= t3/a3
// then replace a3*x + t3 by t3/a3 - t2/a2 <= 0
//
inf_eps model_based_opt::maximize() {
SASSERT(invariant());
unsigned_vector bound_trail, bound_vars;
TRACE("opt", display(tout << "tableau\n"););
while (!objective().m_vars.empty()) {
var v = objective().m_vars.back();
unsigned x = v.m_id;
rational const& coeff = v.m_coeff;
unsigned bound_row_index;
rational bound_coeff;
if (find_bound(x, bound_row_index, bound_coeff, coeff.is_pos())) {
SASSERT(!bound_coeff.is_zero());
TRACE("opt", display(tout << "update: " << v << " ", objective());
for (unsigned i = 0; i < m_above.size(); ++i) {
display(tout << "resolve: ", m_rows[m_above[i]]);
});
for (unsigned i = 0; i < m_above.size(); ++i) {
resolve(bound_row_index, bound_coeff, m_above[i], x);
}
for (unsigned i = 0; i < m_below.size(); ++i) {
resolve(bound_row_index, bound_coeff, m_below[i], x);
}
// coeff*x + objective <= ub
// a2*x + t2 <= 0
// => coeff*x <= -t2*coeff/a2
// objective + t2*coeff/a2 <= ub
mul_add(false, m_objective_id, - coeff/bound_coeff, bound_row_index);
retire_row(bound_row_index);
bound_trail.push_back(bound_row_index);
bound_vars.push_back(x);
}
else {
TRACE("opt", display(tout << "unbound: " << v << " ", objective()););
update_values(bound_vars, bound_trail);
return inf_eps::infinity();
}
}
//
// update the evaluation of variables to satisfy the bound.
//
update_values(bound_vars, bound_trail);
rational value = objective().m_value;
if (objective().m_type == t_lt) {
return inf_eps(inf_rational(value, rational(-1)));
}
else {
return inf_eps(inf_rational(value));
}
}
void model_based_opt::update_value(unsigned x, rational const& val) {
rational old_val = m_var2value[x];
m_var2value[x] = val;
unsigned_vector const& row_ids = m_var2row_ids[x];
for (unsigned i = 0; i < row_ids.size(); ++i) {
unsigned row_id = row_ids[i];
rational coeff = get_coefficient(row_id, x);
if (coeff.is_zero()) {
continue;
}
row & r = m_rows[row_id];
rational delta = coeff * (val - old_val);
r.m_value += delta;
SASSERT(invariant(row_id, r));
}
}
void model_based_opt::update_values(unsigned_vector const& bound_vars, unsigned_vector const& bound_trail) {
for (unsigned i = bound_trail.size(); i > 0; ) {
--i;
unsigned x = bound_vars[i];
row& r = m_rows[bound_trail[i]];
rational val = r.m_coeff;
rational old_x_val = m_var2value[x];
rational new_x_val;
rational x_coeff, eps(0);
vector<var> const& vars = r.m_vars;
for (unsigned j = 0; j < vars.size(); ++j) {
var const& v = vars[j];
if (x == v.m_id) {
x_coeff = v.m_coeff;
}
else {
val += m_var2value[v.m_id]*v.m_coeff;
}
}
SASSERT(!x_coeff.is_zero());
new_x_val = -val/x_coeff;
if (r.m_type == t_lt) {
eps = abs(old_x_val - new_x_val)/rational(2);
eps = std::min(rational::one(), eps);
SASSERT(!eps.is_zero());
//
// ax + t < 0
// <=> x < -t/a
// <=> x := -t/a - epsilon
//
if (x_coeff.is_pos()) {
new_x_val -= eps;
}
//
// -ax + t < 0
// <=> -ax < -t
// <=> -x < -t/a
// <=> x > t/a
// <=> x := t/a + epsilon
//
else {
new_x_val += eps;
}
}
TRACE("opt", display(tout << "v" << x
<< " coeff_x: " << x_coeff
<< " old_x_val: " << old_x_val
<< " new_x_val: " << new_x_val
<< " eps: " << eps << " ", r); );
m_var2value[x] = new_x_val;
r.m_value = get_row_value(r);
SASSERT(invariant(bound_trail[i], r));
}
// update and check bounds for all other affected rows.
for (unsigned i = bound_trail.size(); i > 0; ) {
--i;
unsigned x = bound_vars[i];
unsigned_vector const& row_ids = m_var2row_ids[x];
for (unsigned j = 0; j < row_ids.size(); ++j) {
unsigned row_id = row_ids[j];
row & r = m_rows[row_id];
r.m_value = get_row_value(r);
SASSERT(invariant(row_id, r));
}
}
SASSERT(invariant());
}
bool model_based_opt::find_bound(unsigned x, unsigned& bound_row_index, rational& bound_coeff, bool is_pos) {
bound_row_index = UINT_MAX;
rational lub_val;
rational const& x_val = m_var2value[x];
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
m_above.reset();
m_below.reset();
for (unsigned i = 0; i < row_ids.size(); ++i) {
unsigned row_id = row_ids[i];
SASSERT(row_id != m_objective_id);
if (visited.contains(row_id)) {
continue;
}
visited.insert(row_id);
row& r = m_rows[row_id];
if (r.m_alive) {
rational a = get_coefficient(row_id, x);
if (a.is_zero()) {
// skip
}
else if (a.is_pos() == is_pos || r.m_type == t_eq) {
rational value = x_val - (r.m_value/a);
if (bound_row_index == UINT_MAX) {
lub_val = value;
bound_row_index = row_id;
bound_coeff = a;
}
else if ((value == lub_val && r.m_type == opt::t_lt) ||
(is_pos && value < lub_val) ||
(!is_pos && value > lub_val)) {
m_above.push_back(bound_row_index);
lub_val = value;
bound_row_index = row_id;
bound_coeff = a;
}
else {
m_above.push_back(row_id);
}
}
else {
m_below.push_back(row_id);
}
}
}
return bound_row_index != UINT_MAX;
}
void model_based_opt::retire_row(unsigned row_id) {
m_rows[row_id].m_alive = false;
m_retired_rows.push_back(row_id);
}
rational model_based_opt::get_row_value(row const& r) const {
vector<var> const& vars = r.m_vars;
rational val = r.m_coeff;
for (unsigned i = 0; i < vars.size(); ++i) {
var const& v = vars[i];
val += v.m_coeff * m_var2value[v.m_id];
}
return val;
}
rational model_based_opt::get_coefficient(unsigned row_id, unsigned var_id) const {
row const& r = m_rows[row_id];
if (r.m_vars.empty()) {
return rational::zero();
}
unsigned lo = 0, hi = r.m_vars.size();
while (lo < hi) {
unsigned mid = lo + (hi - lo)/2;
SASSERT(mid < hi);
unsigned id = r.m_vars[mid].m_id;
if (id == var_id) {
lo = mid;
break;
}
if (id < var_id) {
lo = mid + 1;
}
else {
hi = mid;
}
}
if (lo == r.m_vars.size()) {
return rational::zero();
}
unsigned id = r.m_vars[lo].m_id;
if (id == var_id) {
return r.m_vars[lo].m_coeff;
}
else {
return rational::zero();
}
}
//
// Let
// row1: t1 + a1*x <= 0
// row2: t2 + a2*x <= 0
//
// assume a1, a2 have the same signs:
// (t2 + a2*x) <= (t1 + a1*x)*a2/a1
// <=> t2*a1/a2 - t1 <= 0
// <=> t2 - t1*a2/a1 <= 0
//
// assume a1 > 0, -a2 < 0:
// t1 + a1*x <= 0, t2 - a2*x <= 0
// t2/a2 <= -t1/a1
// t2 + t1*a2/a1 <= 0
// assume -a1 < 0, a2 > 0:
// t1 - a1*x <= 0, t2 + a2*x <= 0
// t1/a1 <= -t2/a2
// t2 + t1*a2/a1 <= 0
//
// the resolvent is the same in all cases (simpler proof should exist)
//
void model_based_opt::resolve(unsigned row_src, rational const& a1, unsigned row_dst, unsigned x) {
SASSERT(a1 == get_coefficient(row_src, x));
SASSERT(!a1.is_zero());
SASSERT(row_src != row_dst);
if (m_rows[row_dst].m_alive) {
rational a2 = get_coefficient(row_dst, x);
if (is_int(x)) {
TRACE("opt",
tout << a1 << " " << a2 << ": ";
display(tout, m_rows[row_dst]);
display(tout, m_rows[row_src]););
if (a1.is_pos() != a2.is_pos()) {
mul_add(x, a1, row_src, a2, row_dst);
}
else {
mul(row_dst, abs(a1));
mul_add(false, row_dst, -abs(a2), row_src);
}
TRACE("opt", display(tout, m_rows[row_dst]););
normalize(row_dst);
}
else {
mul_add(row_dst != m_objective_id && a1.is_pos() == a2.is_pos(), row_dst, -a2/a1, row_src);
}
}
}
// resolution for integer rows.
void model_based_opt::mul_add(
unsigned x, rational const& src_c, unsigned row_src, rational const& dst_c, unsigned row_dst) {
row& dst = m_rows[row_dst];
row const& src = m_rows[row_src];
SASSERT(is_int(x));
SASSERT(t_le == dst.m_type && t_le == src.m_type);
SASSERT(src_c.is_int());
SASSERT(dst_c.is_int());
rational abs_src_c = abs(src_c);
rational abs_dst_c = abs(dst_c);
rational x_val = m_var2value[x];
rational slack = (abs_src_c - rational::one()) * (abs_dst_c - rational::one());
rational dst_val = dst.m_value - x_val*dst_c;
rational src_val = src.m_value - x_val*src_c;
bool use_case1 =
(src_c * dst_val + dst_c * src_val + slack).is_nonpos()
|| abs_src_c.is_one()
|| abs_dst_c.is_one();
if (use_case1) {
// dst <- abs_src_c*dst + abs_dst_c*src - slack
mul(row_dst, abs_src_c);
sub(row_dst, slack);
mul_add(false, row_dst, abs_dst_c, row_src);
return;
}
//
// create finite disjunction for |b|.
// exists x, z in [0 .. |b|-2] . b*x + s + z = 0 && ax + t <= 0 && bx + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && ax + t <= 0 && bx + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && bx + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && -z - s + s <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && -z <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0
// <=>
// exists x, z in [0 .. |b|-2] . b*x = -z - s && a*n_sign(b)(s + z) + |b|t <= 0
// <=>
// exists z in [0 .. |b|-2] . |b| | (z + s) && a*n_sign(b)(s + z) + |b|t <= 0
//
vector<var> coeffs;
if (abs_dst_c <= abs_src_c) {
rational z = mod(dst_val, abs_dst_c);
if (!z.is_zero()) z = abs_dst_c - z;
mk_coeffs_without(coeffs, dst.m_vars, x);
add_divides(coeffs, dst.m_coeff + z, abs_dst_c);
add(row_dst, z);
mul(row_dst, src_c * n_sign(dst_c));
mul_add(false, row_dst, abs_dst_c, row_src);
}
else {
// z := b - (s + bx) mod b
// := b - s mod b
// b | s + z <=> b | s + b - s mod b <=> b | s - s mod b
rational z = mod(src_val, abs_src_c);
if (!z.is_zero()) z = abs_src_c - z;
mk_coeffs_without(coeffs, src.m_vars, x);
add_divides(coeffs, src.m_coeff + z, abs_src_c);
mul(row_dst, abs_src_c);
add(row_dst, z * dst_c * n_sign(src_c));
mul_add(false, row_dst, dst_c * n_sign(src_c), row_src);
}
}
void model_based_opt::mk_coeffs_without(vector<var>& dst, vector<var> const src, unsigned x) {
for (unsigned i = 0; i < src.size(); ++i) {
if (src[i].m_id != x) dst.push_back(src[i]);
}
}
rational model_based_opt::n_sign(rational const& b) const {
return rational(b.is_pos()?-1:1);
}
void model_based_opt::mul(unsigned dst, rational const& c) {
if (c.is_one()) return;
row& r = m_rows[dst];
for (unsigned i = 0; i < r.m_vars.size(); ++i) {
r.m_vars[i].m_coeff *= c;
}
r.m_coeff *= c;
r.m_value *= c;
}
void model_based_opt::add(unsigned dst, rational const& c) {
row& r = m_rows[dst];
r.m_coeff += c;
r.m_value += c;
}
void model_based_opt::sub(unsigned dst, rational const& c) {
row& r = m_rows[dst];
r.m_coeff -= c;
r.m_value -= c;
}
void model_based_opt::normalize(unsigned row_id) {
row& r = m_rows[row_id];
if (r.m_vars.empty()) return;
if (r.m_type == t_mod) return;
rational g(abs(r.m_vars[0].m_coeff));
bool all_int = g.is_int();
for (unsigned i = 1; all_int && !g.is_one() && i < r.m_vars.size(); ++i) {
rational const& coeff = r.m_vars[i].m_coeff;
if (coeff.is_int()) {
g = gcd(g, abs(coeff));
}
else {
all_int = false;
}
}
if (all_int && !r.m_coeff.is_zero()) {
if (r.m_coeff.is_int()) {
g = gcd(g, abs(r.m_coeff));
}
else {
all_int = false;
}
}
if (all_int && !g.is_one()) {
SASSERT(!g.is_zero());
mul(row_id, rational::one()/g);
}
}
//
// set row1 <- row1 + c*row2
//
void model_based_opt::mul_add(bool same_sign, unsigned row_id1, rational const& c, unsigned row_id2) {
if (c.is_zero()) {
return;
}
m_new_vars.reset();
row& r1 = m_rows[row_id1];
row const& r2 = m_rows[row_id2];
unsigned i = 0, j = 0;
for(; i < r1.m_vars.size() || j < r2.m_vars.size(); ) {
if (j == r2.m_vars.size()) {
m_new_vars.append(r1.m_vars.size() - i, r1.m_vars.c_ptr() + i);
break;
}
if (i == r1.m_vars.size()) {
for (; j < r2.m_vars.size(); ++j) {
m_new_vars.push_back(r2.m_vars[j]);
m_new_vars.back().m_coeff *= c;
if (row_id1 != m_objective_id) {
m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1);
}
}
break;
}
unsigned v1 = r1.m_vars[i].m_id;
unsigned v2 = r2.m_vars[j].m_id;
if (v1 == v2) {
m_new_vars.push_back(r1.m_vars[i]);
m_new_vars.back().m_coeff += c*r2.m_vars[j].m_coeff;
++i;
++j;
if (m_new_vars.back().m_coeff.is_zero()) {
m_new_vars.pop_back();
}
}
else if (v1 < v2) {
m_new_vars.push_back(r1.m_vars[i]);
++i;
}
else {
m_new_vars.push_back(r2.m_vars[j]);
m_new_vars.back().m_coeff *= c;
if (row_id1 != m_objective_id) {
m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1);
}
++j;
}
}
r1.m_coeff += c*r2.m_coeff;
r1.m_vars.swap(m_new_vars);
r1.m_value += c*r2.m_value;
if (!same_sign && r2.m_type == t_lt) {
r1.m_type = t_lt;
}
else if (same_sign && r1.m_type == t_lt && r2.m_type == t_lt) {
r1.m_type = t_le;
}
SASSERT(invariant(row_id1, r1));
}
void model_based_opt::display(std::ostream& out) const {
for (unsigned i = 0; i < m_rows.size(); ++i) {
display(out, m_rows[i]);
}
for (unsigned i = 0; i < m_var2row_ids.size(); ++i) {
unsigned_vector const& rows = m_var2row_ids[i];
out << i << ": ";
for (unsigned j = 0; j < rows.size(); ++j) {
out << rows[j] << " ";
}
out << "\n";
}
}
void model_based_opt::display(std::ostream& out, row const& r) const {
vector<var> const& vars = r.m_vars;
out << (r.m_alive?"+":"-") << " ";
for (unsigned i = 0; i < vars.size(); ++i) {
if (i > 0 && vars[i].m_coeff.is_pos()) {
out << "+ ";
}
out << vars[i].m_coeff << "* v" << vars[i].m_id << " ";
}
if (r.m_coeff.is_pos()) {
out << " + " << r.m_coeff << " ";
}
else if (r.m_coeff.is_neg()) {
out << r.m_coeff << " ";
}
if (r.m_type == opt::t_mod) {
out << r.m_type << " " << r.m_mod << " = 0; value: " << r.m_value << "\n";
}
else {
out << r.m_type << " 0; value: " << r.m_value << "\n";
}
}
unsigned model_based_opt::add_var(rational const& value, bool is_int) {
unsigned v = m_var2value.size();
m_var2value.push_back(value);
m_var2is_int.push_back(is_int);
m_var2row_ids.push_back(unsigned_vector());
return v;
}
rational model_based_opt::get_value(unsigned var) {
return m_var2value[var];
}
void model_based_opt::set_row(unsigned row_id, vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel) {
row& r = m_rows[row_id];
rational val(c);
SASSERT(r.m_vars.empty());
r.m_vars.append(coeffs.size(), coeffs.c_ptr());
bool is_int_row = true;
std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare());
for (unsigned i = 0; i < coeffs.size(); ++i) {
val += m_var2value[coeffs[i].m_id] * coeffs[i].m_coeff;
SASSERT(!is_int(coeffs[i].m_id) || coeffs[i].m_coeff.is_int());
is_int_row &= is_int(coeffs[i].m_id);
}
r.m_alive = true;
r.m_coeff = c;
r.m_value = val;
r.m_type = rel;
r.m_mod = m;
if (is_int_row && rel == t_lt) {
r.m_type = t_le;
r.m_coeff += rational::one();
r.m_value += rational::one();
}
}
unsigned model_based_opt::new_row() {
unsigned row_id = 0;
if (m_retired_rows.empty()) {
row_id = m_rows.size();
m_rows.push_back(row());
}
else {
row_id = m_retired_rows.back();
m_retired_rows.pop_back();
m_rows[row_id].reset();
m_rows[row_id].m_alive = true;
}
return row_id;
}
unsigned model_based_opt::copy_row(unsigned src) {
unsigned dst = new_row();
row const& r = m_rows[src];
set_row(dst, r.m_vars, r.m_coeff, r.m_mod, r.m_type);
for (unsigned i = 0; i < r.m_vars.size(); ++i) {
m_var2row_ids[r.m_vars[i].m_id].push_back(dst);
}
SASSERT(invariant(dst, m_rows[dst]));
return dst;
}
void model_based_opt::add_constraint(vector<var> const& coeffs, rational const& c, ineq_type rel) {
add_constraint(coeffs, c, rational::zero(), rel);
}
void model_based_opt::add_divides(vector<var> const& coeffs, rational const& c, rational const& m) {
add_constraint(coeffs, c, m, t_mod);
}
void model_based_opt::add_constraint(vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel) {
unsigned row_id = new_row();
set_row(row_id, coeffs, c, m, rel);
for (unsigned i = 0; i < coeffs.size(); ++i) {
m_var2row_ids[coeffs[i].m_id].push_back(row_id);
}
SASSERT(invariant(row_id, m_rows[row_id]));
}
void model_based_opt::set_objective(vector<var> const& coeffs, rational const& c) {
set_row(m_objective_id, coeffs, c, rational::zero(), t_le);
}
void model_based_opt::get_live_rows(vector<row>& rows) {
for (unsigned i = 0; i < m_rows.size(); ++i) {
if (m_rows[i].m_alive) {
rows.push_back(m_rows[i]);
}
}
}
//
// pick glb and lub representative.
// The representative is picked such that it
// represents the fewest inequalities.
// The constraints that enforce a glb or lub are not forced.
// The constraints that separate the glb from ub or the lub from lb
// are not forced.
// In other words, suppose there are
// . N inequalities of the form t <= x
// . M inequalities of the form s >= x
// . t0 is glb among N under valuation.
// . s0 is lub among M under valuation.
// If N < M
// create the inequalities:
// t <= t0 for each t other than t0 (N-1 inequalities).
// t0 <= s for each s (M inequalities).
// If N >= M the construction is symmetric.
//
void model_based_opt::project(unsigned x) {
unsigned_vector& lub_rows = m_lub;
unsigned_vector& glb_rows = m_glb;
unsigned_vector& mod_rows = m_mod;
unsigned lub_index = UINT_MAX, glb_index = UINT_MAX;
bool lub_strict = false, glb_strict = false;
rational lub_val, glb_val;
rational const& x_val = m_var2value[x];
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
lub_rows.reset();
glb_rows.reset();
mod_rows.reset();
bool lub_is_unit = false, glb_is_unit = false;
// select the lub and glb.
for (unsigned i = 0; i < row_ids.size(); ++i) {
unsigned row_id = row_ids[i];
if (visited.contains(row_id)) {
continue;
}
visited.insert(row_id);
row& r = m_rows[row_id];
if (!r.m_alive) {
continue;
}
rational a = get_coefficient(row_id, x);
if (a.is_zero()) {
continue;
}
if (r.m_type == t_eq) {
solve_for(row_id, x);
return;
}
if (r.m_type == t_mod) {
mod_rows.push_back(row_id);
}
else if (a.is_pos()) {
rational lub_value = x_val - (r.m_value/a);
if (lub_rows.empty() ||
lub_value < lub_val ||
(lub_value == lub_val && r.m_type == t_lt && !lub_strict)) {
lub_val = lub_value;
lub_index = row_id;
lub_strict = r.m_type == t_lt;
}
lub_rows.push_back(row_id);
lub_is_unit &= a.is_one();
}
else {
SASSERT(a.is_neg());
rational glb_value = x_val - (r.m_value/a);
if (glb_rows.empty() ||
glb_value > glb_val ||
(glb_value == glb_val && r.m_type == t_lt && !glb_strict)) {
glb_val = glb_value;
glb_index = row_id;
glb_strict = r.m_type == t_lt;
}
glb_rows.push_back(row_id);
glb_is_unit &= a.is_minus_one();
}
}
if (!mod_rows.empty()) {
solve_mod(x, mod_rows);
return;
}
unsigned lub_size = lub_rows.size();
unsigned glb_size = glb_rows.size();
unsigned row_index = (lub_size <= glb_size) ? lub_index : glb_index;
glb_rows.append(lub_rows);
// There are only upper or only lower bounds.
if (row_index == UINT_MAX) {
for (unsigned i = 0; i < glb_rows.size(); ++i) {
unsigned row_id = glb_rows[i];
SASSERT(m_rows[row_id].m_alive);
SASSERT(!get_coefficient(row_id, x).is_zero());
retire_row(row_id);
}
return;
}
// The number of matching lower and upper bounds is small.
if ((lub_size <= 2 || glb_size <= 2) &&
(lub_size <= 3 && glb_size <= 3) &&
(!is_int(x) || lub_is_unit || glb_is_unit)) {
for (unsigned i = 0; i < lub_size; ++i) {
unsigned row_id1 = lub_rows[i];
bool last = i + 1 == lub_rows.size();
rational coeff = get_coefficient(row_id1, x);
for (unsigned j = 0; j < glb_size; ++j) {
unsigned row_id2 = glb_rows[j];
if (last) {
resolve(row_id1, coeff, row_id2, x);
}
else {
unsigned row_id3 = copy_row(row_id2);
resolve(row_id1, coeff, row_id3, x);
}
}
}
for (unsigned i = 0; i < lub_size; ++i) {
retire_row(lub_rows[i]);
}
return;
}
// General case.
rational coeff = get_coefficient(row_index, x);
for (unsigned i = 0; i < glb_rows.size(); ++i) {
unsigned row_id = glb_rows[i];
if (row_id != row_index) {
resolve(row_index, coeff, row_id, x);
}
}
retire_row(row_index);
}
//
// compute D and u.
//
// D = lcm(d1, d2)
// u = eval(x) mod D
//
// d1 | (a1x + t1) & d2 | (a2x + t2)
// =
// d1 | (a1(D*x' + u) + t1) & d2 | (a2(D*x' + u) + t2)
// =
// d1 | (a1*u + t1) & d2 | (a2*u + t2)
//
// x := D*x' + u
//
void model_based_opt::solve_mod(unsigned x, unsigned_vector const& mod_rows) {
SASSERT(!mod_rows.empty());
rational D(1);
for (unsigned i = 0; i < mod_rows.size(); ++i) {
D = lcm(D, m_rows[mod_rows[i]].m_mod);
}
if (D.is_zero()) {
throw default_exception("modulo 0 is not defined");
}
TRACE("opt", display(tout << "lcm: " << D << " tableau\n"););
rational val_x = m_var2value[x];
rational u = mod(val_x, D);
SASSERT(u.is_nonneg() && u < D);
for (unsigned i = 0; i < mod_rows.size(); ++i) {
replace_var(mod_rows[i], x, u);
SASSERT(invariant(mod_rows[i], m_rows[mod_rows[i]]));
}
//
// update inequalities such that u is added to t and
// D is multiplied to coefficient of x.
// the interpretation of the new version of x is (x-u)/D
//
// a*x + t <= 0
// a*(D*x' + u) + t <= 0
// a*D*x' + a*u + t <= 0
//
rational new_val = (val_x - u) / D;
SASSERT(new_val.is_int());
unsigned y = add_var(new_val, true);
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
for (unsigned i = 0; i < row_ids.size(); ++i) {
unsigned row_id = row_ids[i];
if (!visited.contains(row_id)) {
// x |-> D*y + u
replace_var(row_id, x, D, y, u);
visited.insert(row_id);
}
}
project(y);
}
// update row with: x |-> C
void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& C) {
row& r = m_rows[row_id];
SASSERT(!get_coefficient(row_id, x).is_zero());
unsigned sz = r.m_vars.size();
unsigned i = 0, j = 0;
rational coeff(0);
for (; i < sz; ++i) {
if (r.m_vars[i].m_id == x) {
coeff = r.m_vars[i].m_coeff;
}
else {
if (i != j) {
r.m_vars[j] = r.m_vars[i];
}
++j;
}
}
if (j != sz) {
r.m_vars.shrink(j);
}
r.m_coeff += coeff*C;
r.m_value += coeff*(C - m_var2value[x]);
}
// update row with: x |-> A*y + B
void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& A, unsigned y, rational const& B) {
row& r = m_rows[row_id];
rational coeff = get_coefficient(row_id, x);
if (coeff.is_zero()) return;
if (!r.m_alive) return;
replace_var(row_id, x, B);
r.m_vars.push_back(var(y, coeff*A));
r.m_value += coeff*A*m_var2value[y];
if (!r.m_vars.empty() && r.m_vars.back().m_id > y) {
std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare());
}
m_var2row_ids[y].push_back(row_id);
SASSERT(invariant(row_id, r));
}
// 3x + t = 0 & 7 | (c*x + s) & ax <= u
// 3 | -t & 21 | (-ct + 3s) & a-t <= 3u
void model_based_opt::solve_for(unsigned row_id1, unsigned x) {
rational a = get_coefficient(row_id1, x), b;
SASSERT(!a.is_zero());
SASSERT(m_rows[row_id1].m_type == t_eq);
SASSERT(m_rows[row_id1].m_alive);
if (m_var2is_int[x] && !abs(a).is_one()) {
row& r1 = m_rows[row_id1];
vector<var> coeffs;
mk_coeffs_without(coeffs, r1.m_vars, x);
rational c = r1.m_coeff;
add_divides(coeffs, c, abs(a));
}
unsigned_vector const& row_ids = m_var2row_ids[x];
uint_set visited;
visited.insert(row_id1);
for (unsigned i = 0; i < row_ids.size(); ++i) {
unsigned row_id2 = row_ids[i];
if (!visited.contains(row_id2)) {
visited.insert(row_id2);
b = get_coefficient(row_id2, x);
if (!b.is_zero()) {
resolve(row_id1, a, row_id2, x);
}
}
}
retire_row(row_id1);
}
void model_based_opt::project(unsigned num_vars, unsigned const* vars) {
for (unsigned i = 0; i < num_vars; ++i) {
project(vars[i]);
TRACE("opt", display(tout << "After projecting: v" << vars[i] << "\n"););
}
}
}