/*++ Copyright (c) 2016 Microsoft Corporation Module Name: model_based_opt.cpp Abstract: Model-based optimization and projection for linear real, integer arithmetic. Author: Nikolaj Bjorner (nbjorner) 2016-27-4 Revision History: --*/ #include "math/simplex/model_based_opt.h" #include "util/uint_set.h" #include "util/z3_exception.h" std::ostream& operator<<(std::ostream& out, opt::ineq_type ie) { switch (ie) { case opt::t_eq: return out << " = "; case opt::t_lt: return out << " < "; case opt::t_le: return out << " <= "; case opt::t_mod: return out << " mod "; } return out; } namespace opt { model_based_opt::model_based_opt() { m_rows.push_back(row()); } bool model_based_opt::invariant() { for (unsigned i = 0; i < m_rows.size(); ++i) { if (!invariant(i, m_rows[i])) { return false; } } return true; } #define PASSERT(_e_) if (!(_e_)) { TRACE("opt", display(tout, r);); SASSERT(_e_); } bool model_based_opt::invariant(unsigned index, row const& r) { vector const& vars = r.m_vars; for (unsigned i = 0; i < vars.size(); ++i) { // variables in each row are sorted and have non-zero coefficients PASSERT(i + 1 == vars.size() || vars[i].m_id < vars[i+1].m_id); PASSERT(!vars[i].m_coeff.is_zero()); PASSERT(index == 0 || m_var2row_ids[vars[i].m_id].contains(index)); } PASSERT(r.m_value == get_row_value(r)); PASSERT(r.m_type != t_eq || r.m_value.is_zero()); // values satisfy constraints PASSERT(index == 0 || r.m_type != t_lt || r.m_value.is_neg()); PASSERT(index == 0 || r.m_type != t_le || !r.m_value.is_pos()); PASSERT(index == 0 || r.m_type != t_mod || (mod(r.m_value, r.m_mod).is_zero())); return true; } // a1*x + obj // a2*x + t2 <= 0 // a3*x + t3 <= 0 // a4*x + t4 <= 0 // a1 > 0, a2 > 0, a3 > 0, a4 < 0 // x <= -t2/a2 // x <= -t2/a3 // determine lub among these. // then resolve lub with others // e.g., -t2/a2 <= -t3/a3, then // replace inequality a3*x + t3 <= 0 by -t2/a2 + t3/a3 <= 0 // mark a4 as invalid. // // a1 < 0, a2 < 0, a3 < 0, a4 > 0 // x >= t2/a2 // x >= t3/a3 // determine glb among these // the resolve glb with others. // e.g. t2/a2 >= t3/a3 // then replace a3*x + t3 by t3/a3 - t2/a2 <= 0 // inf_eps model_based_opt::maximize() { SASSERT(invariant()); unsigned_vector bound_trail, bound_vars; TRACE("opt", display(tout << "tableau\n");); while (!objective().m_vars.empty()) { var v = objective().m_vars.back(); unsigned x = v.m_id; rational const& coeff = v.m_coeff; unsigned bound_row_index; rational bound_coeff; if (find_bound(x, bound_row_index, bound_coeff, coeff.is_pos())) { SASSERT(!bound_coeff.is_zero()); TRACE("opt", display(tout << "update: " << v << " ", objective()); for (unsigned i = 0; i < m_above.size(); ++i) { display(tout << "resolve: ", m_rows[m_above[i]]); }); for (unsigned i = 0; i < m_above.size(); ++i) { resolve(bound_row_index, bound_coeff, m_above[i], x); } for (unsigned i = 0; i < m_below.size(); ++i) { resolve(bound_row_index, bound_coeff, m_below[i], x); } // coeff*x + objective <= ub // a2*x + t2 <= 0 // => coeff*x <= -t2*coeff/a2 // objective + t2*coeff/a2 <= ub mul_add(false, m_objective_id, - coeff/bound_coeff, bound_row_index); retire_row(bound_row_index); bound_trail.push_back(bound_row_index); bound_vars.push_back(x); } else { TRACE("opt", display(tout << "unbound: " << v << " ", objective());); update_values(bound_vars, bound_trail); return inf_eps::infinity(); } } // // update the evaluation of variables to satisfy the bound. // update_values(bound_vars, bound_trail); rational value = objective().m_value; if (objective().m_type == t_lt) { return inf_eps(inf_rational(value, rational(-1))); } else { return inf_eps(inf_rational(value)); } } void model_based_opt::update_value(unsigned x, rational const& val) { rational old_val = m_var2value[x]; m_var2value[x] = val; unsigned_vector const& row_ids = m_var2row_ids[x]; for (unsigned i = 0; i < row_ids.size(); ++i) { unsigned row_id = row_ids[i]; rational coeff = get_coefficient(row_id, x); if (coeff.is_zero()) { continue; } row & r = m_rows[row_id]; rational delta = coeff * (val - old_val); r.m_value += delta; SASSERT(invariant(row_id, r)); } } void model_based_opt::update_values(unsigned_vector const& bound_vars, unsigned_vector const& bound_trail) { for (unsigned i = bound_trail.size(); i > 0; ) { --i; unsigned x = bound_vars[i]; row& r = m_rows[bound_trail[i]]; rational val = r.m_coeff; rational old_x_val = m_var2value[x]; rational new_x_val; rational x_coeff, eps(0); vector const& vars = r.m_vars; for (unsigned j = 0; j < vars.size(); ++j) { var const& v = vars[j]; if (x == v.m_id) { x_coeff = v.m_coeff; } else { val += m_var2value[v.m_id]*v.m_coeff; } } SASSERT(!x_coeff.is_zero()); new_x_val = -val/x_coeff; if (r.m_type == t_lt) { eps = abs(old_x_val - new_x_val)/rational(2); eps = std::min(rational::one(), eps); SASSERT(!eps.is_zero()); // // ax + t < 0 // <=> x < -t/a // <=> x := -t/a - epsilon // if (x_coeff.is_pos()) { new_x_val -= eps; } // // -ax + t < 0 // <=> -ax < -t // <=> -x < -t/a // <=> x > t/a // <=> x := t/a + epsilon // else { new_x_val += eps; } } TRACE("opt", display(tout << "v" << x << " coeff_x: " << x_coeff << " old_x_val: " << old_x_val << " new_x_val: " << new_x_val << " eps: " << eps << " ", r); ); m_var2value[x] = new_x_val; r.m_value = get_row_value(r); SASSERT(invariant(bound_trail[i], r)); } // update and check bounds for all other affected rows. for (unsigned i = bound_trail.size(); i > 0; ) { --i; unsigned x = bound_vars[i]; unsigned_vector const& row_ids = m_var2row_ids[x]; for (unsigned j = 0; j < row_ids.size(); ++j) { unsigned row_id = row_ids[j]; row & r = m_rows[row_id]; r.m_value = get_row_value(r); SASSERT(invariant(row_id, r)); } } SASSERT(invariant()); } bool model_based_opt::find_bound(unsigned x, unsigned& bound_row_index, rational& bound_coeff, bool is_pos) { bound_row_index = UINT_MAX; rational lub_val; rational const& x_val = m_var2value[x]; unsigned_vector const& row_ids = m_var2row_ids[x]; uint_set visited; m_above.reset(); m_below.reset(); for (unsigned i = 0; i < row_ids.size(); ++i) { unsigned row_id = row_ids[i]; SASSERT(row_id != m_objective_id); if (visited.contains(row_id)) { continue; } visited.insert(row_id); row& r = m_rows[row_id]; if (r.m_alive) { rational a = get_coefficient(row_id, x); if (a.is_zero()) { // skip } else if (a.is_pos() == is_pos || r.m_type == t_eq) { rational value = x_val - (r.m_value/a); if (bound_row_index == UINT_MAX) { lub_val = value; bound_row_index = row_id; bound_coeff = a; } else if ((value == lub_val && r.m_type == opt::t_lt) || (is_pos && value < lub_val) || (!is_pos && value > lub_val)) { m_above.push_back(bound_row_index); lub_val = value; bound_row_index = row_id; bound_coeff = a; } else { m_above.push_back(row_id); } } else { m_below.push_back(row_id); } } } return bound_row_index != UINT_MAX; } void model_based_opt::retire_row(unsigned row_id) { m_rows[row_id].m_alive = false; m_retired_rows.push_back(row_id); } rational model_based_opt::get_row_value(row const& r) const { vector const& vars = r.m_vars; rational val = r.m_coeff; for (unsigned i = 0; i < vars.size(); ++i) { var const& v = vars[i]; val += v.m_coeff * m_var2value[v.m_id]; } return val; } rational model_based_opt::get_coefficient(unsigned row_id, unsigned var_id) const { row const& r = m_rows[row_id]; if (r.m_vars.empty()) { return rational::zero(); } unsigned lo = 0, hi = r.m_vars.size(); while (lo < hi) { unsigned mid = lo + (hi - lo)/2; SASSERT(mid < hi); unsigned id = r.m_vars[mid].m_id; if (id == var_id) { lo = mid; break; } if (id < var_id) { lo = mid + 1; } else { hi = mid; } } if (lo == r.m_vars.size()) { return rational::zero(); } unsigned id = r.m_vars[lo].m_id; if (id == var_id) { return r.m_vars[lo].m_coeff; } else { return rational::zero(); } } // // Let // row1: t1 + a1*x <= 0 // row2: t2 + a2*x <= 0 // // assume a1, a2 have the same signs: // (t2 + a2*x) <= (t1 + a1*x)*a2/a1 // <=> t2*a1/a2 - t1 <= 0 // <=> t2 - t1*a2/a1 <= 0 // // assume a1 > 0, -a2 < 0: // t1 + a1*x <= 0, t2 - a2*x <= 0 // t2/a2 <= -t1/a1 // t2 + t1*a2/a1 <= 0 // assume -a1 < 0, a2 > 0: // t1 - a1*x <= 0, t2 + a2*x <= 0 // t1/a1 <= -t2/a2 // t2 + t1*a2/a1 <= 0 // // the resolvent is the same in all cases (simpler proof should exist) // void model_based_opt::resolve(unsigned row_src, rational const& a1, unsigned row_dst, unsigned x) { SASSERT(a1 == get_coefficient(row_src, x)); SASSERT(!a1.is_zero()); SASSERT(row_src != row_dst); if (m_rows[row_dst].m_alive) { rational a2 = get_coefficient(row_dst, x); if (is_int(x)) { TRACE("opt", tout << a1 << " " << a2 << ": "; display(tout, m_rows[row_dst]); display(tout, m_rows[row_src]);); if (a1.is_pos() != a2.is_pos()) { mul_add(x, a1, row_src, a2, row_dst); } else { mul(row_dst, abs(a1)); mul_add(false, row_dst, -abs(a2), row_src); } TRACE("opt", display(tout, m_rows[row_dst]);); normalize(row_dst); } else { mul_add(row_dst != m_objective_id && a1.is_pos() == a2.is_pos(), row_dst, -a2/a1, row_src); } } } // resolution for integer rows. void model_based_opt::mul_add( unsigned x, rational const& src_c, unsigned row_src, rational const& dst_c, unsigned row_dst) { row& dst = m_rows[row_dst]; row const& src = m_rows[row_src]; SASSERT(is_int(x)); SASSERT(t_le == dst.m_type && t_le == src.m_type); SASSERT(src_c.is_int()); SASSERT(dst_c.is_int()); rational abs_src_c = abs(src_c); rational abs_dst_c = abs(dst_c); rational x_val = m_var2value[x]; rational slack = (abs_src_c - rational::one()) * (abs_dst_c - rational::one()); rational dst_val = dst.m_value - x_val*dst_c; rational src_val = src.m_value - x_val*src_c; bool use_case1 = (src_c * dst_val + dst_c * src_val + slack).is_nonpos() || abs_src_c.is_one() || abs_dst_c.is_one(); if (use_case1) { // dst <- abs_src_c*dst + abs_dst_c*src - slack mul(row_dst, abs_src_c); sub(row_dst, slack); mul_add(false, row_dst, abs_dst_c, row_src); return; } // // create finite disjunction for |b|. // exists x, z in [0 .. |b|-2] . b*x + s + z = 0 && ax + t <= 0 && bx + s <= 0 // <=> // exists x, z in [0 .. |b|-2] . b*x = -z - s && ax + t <= 0 && bx + s <= 0 // <=> // exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && bx + s <= 0 // <=> // exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && -z - s + s <= 0 // <=> // exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 && -z <= 0 // <=> // exists x, z in [0 .. |b|-2] . b*x = -z - s && a|b|x + |b|t <= 0 // <=> // exists x, z in [0 .. |b|-2] . b*x = -z - s && a*n_sign(b)(s + z) + |b|t <= 0 // <=> // exists z in [0 .. |b|-2] . |b| | (z + s) && a*n_sign(b)(s + z) + |b|t <= 0 // vector coeffs; if (abs_dst_c <= abs_src_c) { rational z = mod(dst_val, abs_dst_c); if (!z.is_zero()) z = abs_dst_c - z; mk_coeffs_without(coeffs, dst.m_vars, x); add_divides(coeffs, dst.m_coeff + z, abs_dst_c); add(row_dst, z); mul(row_dst, src_c * n_sign(dst_c)); mul_add(false, row_dst, abs_dst_c, row_src); } else { // z := b - (s + bx) mod b // := b - s mod b // b | s + z <=> b | s + b - s mod b <=> b | s - s mod b rational z = mod(src_val, abs_src_c); if (!z.is_zero()) z = abs_src_c - z; mk_coeffs_without(coeffs, src.m_vars, x); add_divides(coeffs, src.m_coeff + z, abs_src_c); mul(row_dst, abs_src_c); add(row_dst, z * dst_c * n_sign(src_c)); mul_add(false, row_dst, dst_c * n_sign(src_c), row_src); } } void model_based_opt::mk_coeffs_without(vector& dst, vector const src, unsigned x) { for (unsigned i = 0; i < src.size(); ++i) { if (src[i].m_id != x) dst.push_back(src[i]); } } rational model_based_opt::n_sign(rational const& b) const { return rational(b.is_pos()?-1:1); } void model_based_opt::mul(unsigned dst, rational const& c) { if (c.is_one()) return; row& r = m_rows[dst]; for (unsigned i = 0; i < r.m_vars.size(); ++i) { r.m_vars[i].m_coeff *= c; } r.m_coeff *= c; r.m_value *= c; } void model_based_opt::add(unsigned dst, rational const& c) { row& r = m_rows[dst]; r.m_coeff += c; r.m_value += c; } void model_based_opt::sub(unsigned dst, rational const& c) { row& r = m_rows[dst]; r.m_coeff -= c; r.m_value -= c; } void model_based_opt::normalize(unsigned row_id) { row& r = m_rows[row_id]; if (r.m_vars.empty()) return; if (r.m_type == t_mod) return; rational g(abs(r.m_vars[0].m_coeff)); bool all_int = g.is_int(); for (unsigned i = 1; all_int && !g.is_one() && i < r.m_vars.size(); ++i) { rational const& coeff = r.m_vars[i].m_coeff; if (coeff.is_int()) { g = gcd(g, abs(coeff)); } else { all_int = false; } } if (all_int && !r.m_coeff.is_zero()) { if (r.m_coeff.is_int()) { g = gcd(g, abs(r.m_coeff)); } else { all_int = false; } } if (all_int && !g.is_one()) { SASSERT(!g.is_zero()); mul(row_id, rational::one()/g); } } // // set row1 <- row1 + c*row2 // void model_based_opt::mul_add(bool same_sign, unsigned row_id1, rational const& c, unsigned row_id2) { if (c.is_zero()) { return; } m_new_vars.reset(); row& r1 = m_rows[row_id1]; row const& r2 = m_rows[row_id2]; unsigned i = 0, j = 0; for(; i < r1.m_vars.size() || j < r2.m_vars.size(); ) { if (j == r2.m_vars.size()) { m_new_vars.append(r1.m_vars.size() - i, r1.m_vars.c_ptr() + i); break; } if (i == r1.m_vars.size()) { for (; j < r2.m_vars.size(); ++j) { m_new_vars.push_back(r2.m_vars[j]); m_new_vars.back().m_coeff *= c; if (row_id1 != m_objective_id) { m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1); } } break; } unsigned v1 = r1.m_vars[i].m_id; unsigned v2 = r2.m_vars[j].m_id; if (v1 == v2) { m_new_vars.push_back(r1.m_vars[i]); m_new_vars.back().m_coeff += c*r2.m_vars[j].m_coeff; ++i; ++j; if (m_new_vars.back().m_coeff.is_zero()) { m_new_vars.pop_back(); } } else if (v1 < v2) { m_new_vars.push_back(r1.m_vars[i]); ++i; } else { m_new_vars.push_back(r2.m_vars[j]); m_new_vars.back().m_coeff *= c; if (row_id1 != m_objective_id) { m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1); } ++j; } } r1.m_coeff += c*r2.m_coeff; r1.m_vars.swap(m_new_vars); r1.m_value += c*r2.m_value; if (!same_sign && r2.m_type == t_lt) { r1.m_type = t_lt; } else if (same_sign && r1.m_type == t_lt && r2.m_type == t_lt) { r1.m_type = t_le; } SASSERT(invariant(row_id1, r1)); } void model_based_opt::display(std::ostream& out) const { for (unsigned i = 0; i < m_rows.size(); ++i) { display(out, m_rows[i]); } for (unsigned i = 0; i < m_var2row_ids.size(); ++i) { unsigned_vector const& rows = m_var2row_ids[i]; out << i << ": "; for (unsigned j = 0; j < rows.size(); ++j) { out << rows[j] << " "; } out << "\n"; } } void model_based_opt::display(std::ostream& out, row const& r) const { vector const& vars = r.m_vars; out << (r.m_alive?"+":"-") << " "; for (unsigned i = 0; i < vars.size(); ++i) { if (i > 0 && vars[i].m_coeff.is_pos()) { out << "+ "; } out << vars[i].m_coeff << "* v" << vars[i].m_id << " "; } if (r.m_coeff.is_pos()) { out << " + " << r.m_coeff << " "; } else if (r.m_coeff.is_neg()) { out << r.m_coeff << " "; } if (r.m_type == opt::t_mod) { out << r.m_type << " " << r.m_mod << " = 0; value: " << r.m_value << "\n"; } else { out << r.m_type << " 0; value: " << r.m_value << "\n"; } } unsigned model_based_opt::add_var(rational const& value, bool is_int) { unsigned v = m_var2value.size(); m_var2value.push_back(value); m_var2is_int.push_back(is_int); m_var2row_ids.push_back(unsigned_vector()); return v; } rational model_based_opt::get_value(unsigned var) { return m_var2value[var]; } void model_based_opt::set_row(unsigned row_id, vector const& coeffs, rational const& c, rational const& m, ineq_type rel) { row& r = m_rows[row_id]; rational val(c); SASSERT(r.m_vars.empty()); r.m_vars.append(coeffs.size(), coeffs.c_ptr()); bool is_int_row = true; std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare()); for (unsigned i = 0; i < coeffs.size(); ++i) { val += m_var2value[coeffs[i].m_id] * coeffs[i].m_coeff; SASSERT(!is_int(coeffs[i].m_id) || coeffs[i].m_coeff.is_int()); is_int_row &= is_int(coeffs[i].m_id); } r.m_alive = true; r.m_coeff = c; r.m_value = val; r.m_type = rel; r.m_mod = m; if (is_int_row && rel == t_lt) { r.m_type = t_le; r.m_coeff += rational::one(); r.m_value += rational::one(); } } unsigned model_based_opt::new_row() { unsigned row_id = 0; if (m_retired_rows.empty()) { row_id = m_rows.size(); m_rows.push_back(row()); } else { row_id = m_retired_rows.back(); m_retired_rows.pop_back(); m_rows[row_id].reset(); m_rows[row_id].m_alive = true; } return row_id; } unsigned model_based_opt::copy_row(unsigned src) { unsigned dst = new_row(); row const& r = m_rows[src]; set_row(dst, r.m_vars, r.m_coeff, r.m_mod, r.m_type); for (unsigned i = 0; i < r.m_vars.size(); ++i) { m_var2row_ids[r.m_vars[i].m_id].push_back(dst); } SASSERT(invariant(dst, m_rows[dst])); return dst; } void model_based_opt::add_constraint(vector const& coeffs, rational const& c, ineq_type rel) { add_constraint(coeffs, c, rational::zero(), rel); } void model_based_opt::add_divides(vector const& coeffs, rational const& c, rational const& m) { add_constraint(coeffs, c, m, t_mod); } void model_based_opt::add_constraint(vector const& coeffs, rational const& c, rational const& m, ineq_type rel) { unsigned row_id = new_row(); set_row(row_id, coeffs, c, m, rel); for (unsigned i = 0; i < coeffs.size(); ++i) { m_var2row_ids[coeffs[i].m_id].push_back(row_id); } SASSERT(invariant(row_id, m_rows[row_id])); } void model_based_opt::set_objective(vector const& coeffs, rational const& c) { set_row(m_objective_id, coeffs, c, rational::zero(), t_le); } void model_based_opt::get_live_rows(vector& rows) { for (unsigned i = 0; i < m_rows.size(); ++i) { if (m_rows[i].m_alive) { rows.push_back(m_rows[i]); } } } // // pick glb and lub representative. // The representative is picked such that it // represents the fewest inequalities. // The constraints that enforce a glb or lub are not forced. // The constraints that separate the glb from ub or the lub from lb // are not forced. // In other words, suppose there are // . N inequalities of the form t <= x // . M inequalities of the form s >= x // . t0 is glb among N under valuation. // . s0 is lub among M under valuation. // If N < M // create the inequalities: // t <= t0 for each t other than t0 (N-1 inequalities). // t0 <= s for each s (M inequalities). // If N >= M the construction is symmetric. // void model_based_opt::project(unsigned x) { unsigned_vector& lub_rows = m_lub; unsigned_vector& glb_rows = m_glb; unsigned_vector& mod_rows = m_mod; unsigned lub_index = UINT_MAX, glb_index = UINT_MAX; bool lub_strict = false, glb_strict = false; rational lub_val, glb_val; rational const& x_val = m_var2value[x]; unsigned_vector const& row_ids = m_var2row_ids[x]; uint_set visited; lub_rows.reset(); glb_rows.reset(); mod_rows.reset(); bool lub_is_unit = false, glb_is_unit = false; // select the lub and glb. for (unsigned i = 0; i < row_ids.size(); ++i) { unsigned row_id = row_ids[i]; if (visited.contains(row_id)) { continue; } visited.insert(row_id); row& r = m_rows[row_id]; if (!r.m_alive) { continue; } rational a = get_coefficient(row_id, x); if (a.is_zero()) { continue; } if (r.m_type == t_eq) { solve_for(row_id, x); return; } if (r.m_type == t_mod) { mod_rows.push_back(row_id); } else if (a.is_pos()) { rational lub_value = x_val - (r.m_value/a); if (lub_rows.empty() || lub_value < lub_val || (lub_value == lub_val && r.m_type == t_lt && !lub_strict)) { lub_val = lub_value; lub_index = row_id; lub_strict = r.m_type == t_lt; } lub_rows.push_back(row_id); lub_is_unit &= a.is_one(); } else { SASSERT(a.is_neg()); rational glb_value = x_val - (r.m_value/a); if (glb_rows.empty() || glb_value > glb_val || (glb_value == glb_val && r.m_type == t_lt && !glb_strict)) { glb_val = glb_value; glb_index = row_id; glb_strict = r.m_type == t_lt; } glb_rows.push_back(row_id); glb_is_unit &= a.is_minus_one(); } } if (!mod_rows.empty()) { solve_mod(x, mod_rows); return; } unsigned lub_size = lub_rows.size(); unsigned glb_size = glb_rows.size(); unsigned row_index = (lub_size <= glb_size) ? lub_index : glb_index; glb_rows.append(lub_rows); // There are only upper or only lower bounds. if (row_index == UINT_MAX) { for (unsigned i = 0; i < glb_rows.size(); ++i) { unsigned row_id = glb_rows[i]; SASSERT(m_rows[row_id].m_alive); SASSERT(!get_coefficient(row_id, x).is_zero()); retire_row(row_id); } return; } // The number of matching lower and upper bounds is small. if ((lub_size <= 2 || glb_size <= 2) && (lub_size <= 3 && glb_size <= 3) && (!is_int(x) || lub_is_unit || glb_is_unit)) { for (unsigned i = 0; i < lub_size; ++i) { unsigned row_id1 = lub_rows[i]; bool last = i + 1 == lub_rows.size(); rational coeff = get_coefficient(row_id1, x); for (unsigned j = 0; j < glb_size; ++j) { unsigned row_id2 = glb_rows[j]; if (last) { resolve(row_id1, coeff, row_id2, x); } else { unsigned row_id3 = copy_row(row_id2); resolve(row_id1, coeff, row_id3, x); } } } for (unsigned i = 0; i < lub_size; ++i) { retire_row(lub_rows[i]); } return; } // General case. rational coeff = get_coefficient(row_index, x); for (unsigned i = 0; i < glb_rows.size(); ++i) { unsigned row_id = glb_rows[i]; if (row_id != row_index) { resolve(row_index, coeff, row_id, x); } } retire_row(row_index); } // // compute D and u. // // D = lcm(d1, d2) // u = eval(x) mod D // // d1 | (a1x + t1) & d2 | (a2x + t2) // = // d1 | (a1(D*x' + u) + t1) & d2 | (a2(D*x' + u) + t2) // = // d1 | (a1*u + t1) & d2 | (a2*u + t2) // // x := D*x' + u // void model_based_opt::solve_mod(unsigned x, unsigned_vector const& mod_rows) { SASSERT(!mod_rows.empty()); rational D(1); for (unsigned i = 0; i < mod_rows.size(); ++i) { D = lcm(D, m_rows[mod_rows[i]].m_mod); } if (D.is_zero()) { throw default_exception("modulo 0 is not defined"); } TRACE("opt", display(tout << "lcm: " << D << " tableau\n");); rational val_x = m_var2value[x]; rational u = mod(val_x, D); SASSERT(u.is_nonneg() && u < D); for (unsigned i = 0; i < mod_rows.size(); ++i) { replace_var(mod_rows[i], x, u); SASSERT(invariant(mod_rows[i], m_rows[mod_rows[i]])); } // // update inequalities such that u is added to t and // D is multiplied to coefficient of x. // the interpretation of the new version of x is (x-u)/D // // a*x + t <= 0 // a*(D*x' + u) + t <= 0 // a*D*x' + a*u + t <= 0 // rational new_val = (val_x - u) / D; SASSERT(new_val.is_int()); unsigned y = add_var(new_val, true); unsigned_vector const& row_ids = m_var2row_ids[x]; uint_set visited; for (unsigned i = 0; i < row_ids.size(); ++i) { unsigned row_id = row_ids[i]; if (!visited.contains(row_id)) { // x |-> D*y + u replace_var(row_id, x, D, y, u); visited.insert(row_id); } } project(y); } // update row with: x |-> C void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& C) { row& r = m_rows[row_id]; SASSERT(!get_coefficient(row_id, x).is_zero()); unsigned sz = r.m_vars.size(); unsigned i = 0, j = 0; rational coeff(0); for (; i < sz; ++i) { if (r.m_vars[i].m_id == x) { coeff = r.m_vars[i].m_coeff; } else { if (i != j) { r.m_vars[j] = r.m_vars[i]; } ++j; } } if (j != sz) { r.m_vars.shrink(j); } r.m_coeff += coeff*C; r.m_value += coeff*(C - m_var2value[x]); } // update row with: x |-> A*y + B void model_based_opt::replace_var(unsigned row_id, unsigned x, rational const& A, unsigned y, rational const& B) { row& r = m_rows[row_id]; rational coeff = get_coefficient(row_id, x); if (coeff.is_zero()) return; if (!r.m_alive) return; replace_var(row_id, x, B); r.m_vars.push_back(var(y, coeff*A)); r.m_value += coeff*A*m_var2value[y]; if (!r.m_vars.empty() && r.m_vars.back().m_id > y) { std::sort(r.m_vars.begin(), r.m_vars.end(), var::compare()); } m_var2row_ids[y].push_back(row_id); SASSERT(invariant(row_id, r)); } // 3x + t = 0 & 7 | (c*x + s) & ax <= u // 3 | -t & 21 | (-ct + 3s) & a-t <= 3u void model_based_opt::solve_for(unsigned row_id1, unsigned x) { rational a = get_coefficient(row_id1, x), b; SASSERT(!a.is_zero()); SASSERT(m_rows[row_id1].m_type == t_eq); SASSERT(m_rows[row_id1].m_alive); if (m_var2is_int[x] && !abs(a).is_one()) { row& r1 = m_rows[row_id1]; vector coeffs; mk_coeffs_without(coeffs, r1.m_vars, x); rational c = r1.m_coeff; add_divides(coeffs, c, abs(a)); } unsigned_vector const& row_ids = m_var2row_ids[x]; uint_set visited; visited.insert(row_id1); for (unsigned i = 0; i < row_ids.size(); ++i) { unsigned row_id2 = row_ids[i]; if (!visited.contains(row_id2)) { visited.insert(row_id2); b = get_coefficient(row_id2, x); if (!b.is_zero()) { resolve(row_id1, a, row_id2, x); } } } retire_row(row_id1); } void model_based_opt::project(unsigned num_vars, unsigned const* vars) { for (unsigned i = 0; i < num_vars; ++i) { project(vars[i]); TRACE("opt", display(tout << "After projecting: v" << vars[i] << "\n");); } } }