3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-23 03:27:52 +00:00
z3/src/math/lp/nla_divisions.cpp
2024-09-30 08:23:31 -07:00

205 lines
8.1 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
nla_divisions.cpp
Author:
Lev Nachmanson (levnach)
Nikolaj Bjorner (nbjorner)
Description:
Check divisions
--*/
#include "math/lp/nla_core.h"
namespace nla {
void divisions::add_idivision(lpvar q, lpvar x, lpvar y) {
if (x == null_lpvar || y == null_lpvar || q == null_lpvar)
return;
m_idivisions.push_back({q, x, y});
m_core.trail().push(push_back_vector(m_idivisions));
}
void divisions::add_rdivision(lpvar q, lpvar x, lpvar y) {
if (x == null_lpvar || y == null_lpvar || q == null_lpvar)
return;
m_rdivisions.push_back({ q, x, y });
m_core.trail().push(push_back_vector(m_rdivisions));
}
void divisions::add_bounded_division(lpvar q, lpvar x, lpvar y) {
if (x == null_lpvar || y == null_lpvar || q == null_lpvar)
return;
if (m_core.lra.column_has_term(x) || m_core.lra.column_has_term(y) || m_core.lra.column_has_term(q))
return;
m_bounded_divisions.push_back({ q, x, y });
m_core.trail().push(push_back_vector(m_bounded_divisions));
}
typedef lp::lar_term term;
// y1 >= y2 > 0 & x1 <= x2 => x1/y1 <= x2/y2
// y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2
// y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2
void divisions::check() {
core& c = m_core;
if (c.use_nra_model())
return;
auto monotonicity1 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) {
if (y1val >= y2val && y2val > 0 && 0 <= x1val && x1val <= x2val && q1val > q2val) {
new_lemma lemma(c, "y1 >= y2 > 0 & 0 <= x1 <= x2 => x1/y1 <= x2/y2");
lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0);
lemma |= ineq(y2, llc::LE, 0);
lemma |= ineq(x1, llc::LT, 0);
lemma |= ineq(term(x1, rational(-1), x2), llc::GT, 0);
lemma |= ineq(term(q1, rational(-1), q2), llc::LE, 0);
return true;
}
return false;
};
auto monotonicity2 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) {
if (y2val <= y1val && y1val < 0 && x1val >= x2val && x2val >= 0 && q1val > q2val) {
new_lemma lemma(c, "y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2");
lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0);
lemma |= ineq(y1, llc::GE, 0);
lemma |= ineq(term(x1, rational(-1), x2), llc::LT, 0);
lemma |= ineq(x2, llc::LT, 0);
lemma |= ineq(term(q1, rational(-1), q2), llc::LE, 0);
return true;
}
return false;
};
auto monotonicity3 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) {
if (y2val <= y1val && y1val < 0 && x1val <= x2val && x2val <= 0 && q1val < q2val) {
new_lemma lemma(c, "y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2");
lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0);
lemma |= ineq(y1, llc::GE, 0);
lemma |= ineq(term(x1, rational(-1), x2), llc::GT, 0);
lemma |= ineq(x2, llc::GT, 0);
lemma |= ineq(term(q1, rational(-1), q2), llc::GE, 0);
return true;
}
return false;
};
auto monotonicity = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) {
if (monotonicity1(x1, x1val, y1, y1val, q1, q1val, x2, x2val, y2, y2val, q2, q2val))
return true;
if (monotonicity1(x2, x2val, y2, y2val, q2, q2val, x1, x1val, y1, y1val, q1, q1val))
return true;
if (monotonicity2(x1, x1val, y1, y1val, q1, q1val, x2, x2val, y2, y2val, q2, q2val))
return true;
if (monotonicity2(x2, x2val, y2, y2val, q2, q2val, x1, x1val, y1, y1val, q1, q1val))
return true;
if (monotonicity3(x1, x1val, y1, y1val, q1, q1val, x2, x2val, y2, y2val, q2, q2val))
return true;
if (monotonicity3(x2, x2val, y2, y2val, q2, q2val, x1, x1val, y1, y1val, q1, q1val))
return true;
return false;
};
for (auto const & [r, x, y] : m_idivisions) {
if (!c.is_relevant(r))
continue;
auto xval = c.val(x);
auto yval = c.val(y);
auto rval = c.val(r);
// idiv semantics
if (!xval.is_int() || !yval.is_int() || yval == 0 || rval == div(xval, yval))
continue;
for (auto const& [q2, x2, y2] : m_idivisions) {
if (q2 == r)
continue;
if (!c.is_relevant(q2))
continue;
auto x2val = c.val(x2);
auto y2val = c.val(y2);
auto q2val = c.val(q2);
if (monotonicity(x, xval, y, yval, r, rval, x2, x2val, y2, y2val, q2, q2val))
return;
}
}
for (auto const& [r, x, y] : m_rdivisions) {
if (!c.is_relevant(r))
continue;
auto xval = c.val(x);
auto yval = c.val(y);
auto rval = c.val(r);
// / semantics
if (yval == 0 || rval == xval / yval)
continue;
for (auto const& [q2, x2, y2] : m_rdivisions) {
if (q2 == r)
continue;
if (!c.is_relevant(q2))
continue;
auto x2val = c.val(x2);
auto y2val = c.val(y2);
auto q2val = c.val(q2);
if (monotonicity(x, xval, y, yval, r, rval, x2, x2val, y2, y2val, q2, q2val))
return;
}
}
}
// if p is bounded, q a value, r = eval(p):
// p <= q * div(r, q) + q - 1 => div(p, q) <= div(r, q)
// p >= q * div(r, q) => div(r, q) <= div(p, q)
void divisions::check_bounded_divisions() {
core& c = m_core;
unsigned offset = c.random(), sz = m_bounded_divisions.size();
for (unsigned j = 0; j < sz; ++j) {
unsigned i = (offset + j) % sz;
auto [q, x, y] = m_bounded_divisions[i];
if (!c.is_relevant(q))
continue;
auto xv = c.val(x);
auto yv = c.val(y);
auto qv = c.val(q);
if (xv < 0 || !xv.is_int())
continue;
if (yv <= 0 || !yv.is_int())
continue;
if (qv == div(xv, yv))
continue;
rational div_v = div(xv, yv);
// y = yv & x <= yv * div(xv, yv) + yv - 1 => div(x, y) <= div(xv, yv)
// y = yv & x >= y * div(xv, yv) => div(xv, yv) <= div(x, y)
rational mul(1);
rational hi = yv * div_v + yv - 1;
rational lo = yv * div_v;
if (xv > hi) {
new_lemma lemma(c, "y = yv & x <= yv * div(xv, yv) + yv - 1 => div(p, y) <= div(xv, yv)");
lemma |= ineq(y, llc::NE, yv);
lemma |= ineq(x, llc::GT, hi);
lemma |= ineq(q, llc::LE, div_v);
return;
}
if (xv < lo) {
new_lemma lemma(c, "y = yv & x >= yv * div(xv, yv) => div(xv, yv) <= div(x, y)");
lemma |= ineq(y, llc::NE, yv);
lemma |= ineq(x, llc::LT, lo);
lemma |= ineq(q, llc::GE, div_v);
return;
}
}
}
}