/*++ Copyright (c) 2017 Microsoft Corporation Module Name: nla_divisions.cpp Author: Lev Nachmanson (levnach) Nikolaj Bjorner (nbjorner) Description: Check divisions --*/ #include "math/lp/nla_core.h" namespace nla { void divisions::add_idivision(lpvar q, lpvar x, lpvar y) { if (x == null_lpvar || y == null_lpvar || q == null_lpvar) return; m_idivisions.push_back({q, x, y}); m_core.trail().push(push_back_vector(m_idivisions)); } void divisions::add_rdivision(lpvar q, lpvar x, lpvar y) { if (x == null_lpvar || y == null_lpvar || q == null_lpvar) return; m_rdivisions.push_back({ q, x, y }); m_core.trail().push(push_back_vector(m_rdivisions)); } void divisions::add_bounded_division(lpvar q, lpvar x, lpvar y) { if (x == null_lpvar || y == null_lpvar || q == null_lpvar) return; if (m_core.lra.column_has_term(x) || m_core.lra.column_has_term(y) || m_core.lra.column_has_term(q)) return; m_bounded_divisions.push_back({ q, x, y }); m_core.trail().push(push_back_vector(m_bounded_divisions)); } typedef lp::lar_term term; // y1 >= y2 > 0 & x1 <= x2 => x1/y1 <= x2/y2 // y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2 // y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2 void divisions::check() { core& c = m_core; if (c.use_nra_model()) return; auto monotonicity1 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val, auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) { if (y1val >= y2val && y2val > 0 && 0 <= x1val && x1val <= x2val && q1val > q2val) { new_lemma lemma(c, "y1 >= y2 > 0 & 0 <= x1 <= x2 => x1/y1 <= x2/y2"); lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0); lemma |= ineq(y2, llc::LE, 0); lemma |= ineq(x1, llc::LT, 0); lemma |= ineq(term(x1, rational(-1), x2), llc::GT, 0); lemma |= ineq(term(q1, rational(-1), q2), llc::LE, 0); return true; } return false; }; auto monotonicity2 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val, auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) { if (y2val <= y1val && y1val < 0 && x1val >= x2val && x2val >= 0 && q1val > q2val) { new_lemma lemma(c, "y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2"); lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0); lemma |= ineq(y1, llc::GE, 0); lemma |= ineq(term(x1, rational(-1), x2), llc::LT, 0); lemma |= ineq(x2, llc::LT, 0); lemma |= ineq(term(q1, rational(-1), q2), llc::LE, 0); return true; } return false; }; auto monotonicity3 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val, auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) { if (y2val <= y1val && y1val < 0 && x1val <= x2val && x2val <= 0 && q1val < q2val) { new_lemma lemma(c, "y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2"); lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0); lemma |= ineq(y1, llc::GE, 0); lemma |= ineq(term(x1, rational(-1), x2), llc::GT, 0); lemma |= ineq(x2, llc::GT, 0); lemma |= ineq(term(q1, rational(-1), q2), llc::GE, 0); return true; } return false; }; auto monotonicity = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& q1, auto& q1val, auto x2, auto& x2val, auto y2, auto& y2val, auto& q2, auto& q2val) { if (monotonicity1(x1, x1val, y1, y1val, q1, q1val, x2, x2val, y2, y2val, q2, q2val)) return true; if (monotonicity1(x2, x2val, y2, y2val, q2, q2val, x1, x1val, y1, y1val, q1, q1val)) return true; if (monotonicity2(x1, x1val, y1, y1val, q1, q1val, x2, x2val, y2, y2val, q2, q2val)) return true; if (monotonicity2(x2, x2val, y2, y2val, q2, q2val, x1, x1val, y1, y1val, q1, q1val)) return true; if (monotonicity3(x1, x1val, y1, y1val, q1, q1val, x2, x2val, y2, y2val, q2, q2val)) return true; if (monotonicity3(x2, x2val, y2, y2val, q2, q2val, x1, x1val, y1, y1val, q1, q1val)) return true; return false; }; for (auto const & [r, x, y] : m_idivisions) { if (!c.is_relevant(r)) continue; auto xval = c.val(x); auto yval = c.val(y); auto rval = c.val(r); // idiv semantics if (!xval.is_int() || !yval.is_int() || yval == 0 || rval == div(xval, yval)) continue; for (auto const& [q2, x2, y2] : m_idivisions) { if (q2 == r) continue; if (!c.is_relevant(q2)) continue; auto x2val = c.val(x2); auto y2val = c.val(y2); auto q2val = c.val(q2); if (monotonicity(x, xval, y, yval, r, rval, x2, x2val, y2, y2val, q2, q2val)) return; } } for (auto const& [r, x, y] : m_rdivisions) { if (!c.is_relevant(r)) continue; auto xval = c.val(x); auto yval = c.val(y); auto rval = c.val(r); // / semantics if (yval == 0 || rval == xval / yval) continue; for (auto const& [q2, x2, y2] : m_rdivisions) { if (q2 == r) continue; if (!c.is_relevant(q2)) continue; auto x2val = c.val(x2); auto y2val = c.val(y2); auto q2val = c.val(q2); if (monotonicity(x, xval, y, yval, r, rval, x2, x2val, y2, y2val, q2, q2val)) return; } } } // if p is bounded, q a value, r = eval(p): // p <= q * div(r, q) + q - 1 => div(p, q) <= div(r, q) // p >= q * div(r, q) => div(r, q) <= div(p, q) void divisions::check_bounded_divisions() { core& c = m_core; unsigned offset = c.random(), sz = m_bounded_divisions.size(); for (unsigned j = 0; j < sz; ++j) { unsigned i = (offset + j) % sz; auto [q, x, y] = m_bounded_divisions[i]; if (!c.is_relevant(q)) continue; auto xv = c.val(x); auto yv = c.val(y); auto qv = c.val(q); if (xv < 0 || !xv.is_int()) continue; if (yv <= 0 || !yv.is_int()) continue; if (qv == div(xv, yv)) continue; rational div_v = div(xv, yv); // y = yv & x <= yv * div(xv, yv) + yv - 1 => div(x, y) <= div(xv, yv) // y = yv & x >= y * div(xv, yv) => div(xv, yv) <= div(x, y) rational mul(1); rational hi = yv * div_v + yv - 1; rational lo = yv * div_v; if (xv > hi) { new_lemma lemma(c, "y = yv & x <= yv * div(xv, yv) + yv - 1 => div(p, y) <= div(xv, yv)"); lemma |= ineq(y, llc::NE, yv); lemma |= ineq(x, llc::GT, hi); lemma |= ineq(q, llc::LE, div_v); return; } if (xv < lo) { new_lemma lemma(c, "y = yv & x >= yv * div(xv, yv) => div(xv, yv) <= div(x, y)"); lemma |= ineq(y, llc::NE, yv); lemma |= ineq(x, llc::LT, lo); lemma |= ineq(q, llc::GE, div_v); return; } } } }