mirror of
https://github.com/Z3Prover/z3
synced 2025-04-25 10:05:32 +00:00
* smarter explanation.h Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * clean explanation API Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * suppress warnings Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * disable the warnings Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
485 lines
17 KiB
C++
485 lines
17 KiB
C++
#include "math/lp/nla_core.h"
|
|
#include "math/interval/interval_def.h"
|
|
#include "math/lp/nla_intervals.h"
|
|
#include "util/mpq.h"
|
|
|
|
namespace nla {
|
|
typedef enum dep_intervals::with_deps_t e_with_deps;
|
|
|
|
const nex* intervals::get_inf_interval_child(const nex_sum& e) const {
|
|
for (auto * c : e) {
|
|
if (has_inf_interval(*c))
|
|
return c;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool intervals::mul_has_inf_interval(const nex_mul& e) const {
|
|
bool has_inf = false;
|
|
for (const auto & p : e) {
|
|
const nex &c = *p.e();
|
|
if (!c.is_elementary())
|
|
return false;
|
|
if (has_zero_interval(c))
|
|
return false;
|
|
has_inf |= has_inf_interval(c);
|
|
}
|
|
return has_inf;
|
|
}
|
|
|
|
bool intervals::has_inf_interval(const nex& e) const {
|
|
if (e.is_var())
|
|
return m_core->no_bounds(e.to_var().var());
|
|
if (e.is_mul())
|
|
return mul_has_inf_interval(e.to_mul());
|
|
if (e.is_scalar())
|
|
return false;
|
|
for (auto * c : e.to_sum())
|
|
if (has_inf_interval(*c))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool intervals::has_zero_interval(const nex& e) const {
|
|
SASSERT(!e.is_scalar() || !e.to_scalar().value().is_zero());
|
|
return e.is_var() && m_core->var_is_fixed_to_zero(e.to_var().var());
|
|
}
|
|
|
|
const nex* intervals::get_zero_interval_child(const nex_mul& e) const {
|
|
for (const auto & p : e) {
|
|
const nex * c = p.e();
|
|
if (has_zero_interval(*c))
|
|
return c;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::ostream & intervals::print_dependencies(u_dependency* deps , std::ostream& out) const {
|
|
svector<lp::constraint_index> expl;
|
|
m_dep_intervals.linearize(deps, expl);
|
|
{
|
|
lp::explanation e(expl);
|
|
if (!expl.empty()) {
|
|
m_core->print_explanation(e, out);
|
|
expl.clear();
|
|
} else {
|
|
out << "\nno constraints\n";
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& intervals::display_separating_interval(std::ostream& out, const nex*n, const scoped_dep_interval& interv_wd, u_dependency* initial_deps) {
|
|
out << "conflict: interv_wd = "; display(out, interv_wd ) <<"expr = " << *n << "\n, initial deps\n"; print_dependencies(initial_deps, out);
|
|
out << ", expressions vars = \n";
|
|
for(lpvar j: m_core->get_vars_of_expr_with_opening_terms(n)) {
|
|
m_core->print_var(j, out);
|
|
}
|
|
out << "\n";
|
|
return out;
|
|
}
|
|
|
|
// return true iff the interval of n is does not contain 0
|
|
bool intervals::check_nex(const nex* n, u_dependency* initial_deps) {
|
|
m_core->lp_settings().stats().m_cross_nested_forms++;
|
|
scoped_dep_interval i(get_dep_intervals());
|
|
std::function<void (const lp::explanation&)> f = [this](const lp::explanation& e) {
|
|
new_lemma lemma(*m_core, "check_nex");
|
|
lemma &= e;
|
|
};
|
|
if (!interval_of_expr<e_with_deps::without_deps>(n, 1, i, f)) {
|
|
// found a conflict during the interval calculation
|
|
return true;
|
|
}
|
|
if (!m_dep_intervals.separated_from_zero(i)) {
|
|
return false;
|
|
}
|
|
scoped_dep_interval interv_wd(get_dep_intervals());
|
|
interval_of_expr<e_with_deps::with_deps>(n, 1, interv_wd, f);
|
|
TRACE("nla_intervals", display_separating_interval(tout, n, interv_wd, initial_deps););
|
|
m_dep_intervals.check_interval_for_conflict_on_zero(interv_wd, initial_deps, f);
|
|
return true;
|
|
}
|
|
|
|
void intervals::add_mul_of_degree_one_to_vector(const nex_mul* e, vector<std::pair<rational, lpvar>> &v) {
|
|
TRACE("nla_intervals_details", tout << *e << "\n";);
|
|
SASSERT(e->size() == 1);
|
|
SASSERT((*e)[0].pow() == 1);
|
|
const nex *ev = (*e)[0].e();
|
|
lpvar j = to_var(ev)->var();
|
|
v.push_back(std::make_pair(e->coeff(), j));
|
|
}
|
|
|
|
void intervals::add_linear_to_vector(const nex* e, vector<std::pair<rational, lpvar>> &v) {
|
|
TRACE("nla_intervals_details", tout << *e << "\n";);
|
|
switch (e->type()) {
|
|
case expr_type::MUL:
|
|
add_mul_of_degree_one_to_vector(to_mul(e), v);
|
|
break;
|
|
case expr_type::VAR:
|
|
v.push_back(std::make_pair(rational(1), to_var(e)->var()));
|
|
break;
|
|
default:
|
|
SASSERT(!e->is_sum());
|
|
// noop
|
|
}
|
|
}
|
|
|
|
// e = a * can_t + b
|
|
lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational& a, rational& b) {
|
|
TRACE("nla_intervals_details", tout << *e << "\n";);
|
|
lpvar smallest_j = 0;
|
|
vector<std::pair<rational, lpvar>> v;
|
|
b = rational(0);
|
|
unsigned a_index = UINT_MAX;
|
|
for (const nex* c : *e) {
|
|
if (c->is_scalar()) {
|
|
b += c->to_scalar().value();
|
|
} else {
|
|
add_linear_to_vector(c, v);
|
|
if (v.empty())
|
|
continue;
|
|
if (v.size() == 1 || smallest_j > v.back().second) {
|
|
smallest_j = v.back().second;
|
|
a_index = v.size() - 1;
|
|
}
|
|
}
|
|
}
|
|
TRACE("nla_intervals_details", tout << "a_index = " << a_index << ", v="; print_vector(v, tout) << "\n";);
|
|
a = v[a_index].first;
|
|
lp::lar_term t;
|
|
|
|
if (a.is_one()) {
|
|
for (auto& p : v) {
|
|
t.add_monomial(p.first, p.second);
|
|
}
|
|
} else {
|
|
for (unsigned k = 0; k < v.size(); k++) {
|
|
auto& p = v[k];
|
|
if (k != a_index)
|
|
t.add_monomial(p.first/a, p.second);
|
|
else
|
|
t.add_var(p.second);
|
|
}
|
|
}
|
|
TRACE("nla_intervals_details", tout << a << "* (";
|
|
lp::lar_solver::print_term_as_indices(t, tout) << ") + " << b << std::endl;);
|
|
SASSERT(t.is_normalized());
|
|
return t;
|
|
}
|
|
|
|
|
|
// we should have in the case of found a * m_terms[k] + b = e,
|
|
// where m_terms[k] corresponds to the returned lpvar
|
|
lpvar intervals::find_term_column(const lp::lar_term & norm_t, rational& a) const {
|
|
std::pair<rational, lpvar> a_j;
|
|
if (m_core->m_lar_solver.fetch_normalized_term_column(norm_t, a_j)) {
|
|
a /= a_j.first;
|
|
return a_j.second;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void intervals::set_zero_interval_with_explanation(interval& i, const lp::explanation& exp) {
|
|
auto val = rational(0);
|
|
m_dep_intervals.set_lower(i, val);
|
|
m_dep_intervals.set_lower_is_open(i, false);
|
|
m_dep_intervals.set_lower_is_inf(i, false);
|
|
m_dep_intervals.set_upper(i, val);
|
|
m_dep_intervals.set_upper_is_open(i, false);
|
|
m_dep_intervals.set_upper_is_inf(i, false);
|
|
i.m_lower_dep = i.m_upper_dep = mk_dep(exp);
|
|
}
|
|
|
|
void intervals::set_zero_interval(interval& i) {
|
|
auto val = rational(0);
|
|
m_dep_intervals.set_lower(i, val);
|
|
m_dep_intervals.set_lower_is_open(i, false);
|
|
m_dep_intervals.set_lower_is_inf(i, false);
|
|
m_dep_intervals.set_upper(i, val);
|
|
m_dep_intervals.set_upper_is_open(i, false);
|
|
m_dep_intervals.set_upper_is_inf(i, false);
|
|
}
|
|
|
|
void intervals::set_zero_interval_deps_for_mult(interval& a) {
|
|
a.m_lower_dep = mk_join(a.m_lower_dep, a.m_upper_dep);
|
|
a.m_upper_dep = a.m_lower_dep;
|
|
}
|
|
|
|
u_dependency *intervals::mk_dep(lp::constraint_index ci) {
|
|
return m_dep_intervals.mk_leaf(ci);
|
|
}
|
|
|
|
u_dependency *intervals::mk_dep(const lp::explanation& expl) {
|
|
u_dependency * r = nullptr;
|
|
for (auto p : expl) {
|
|
if (r == nullptr) {
|
|
r = m_dep_intervals.mk_leaf(p.ci());
|
|
} else {
|
|
r = m_dep_intervals.mk_join(r, m_dep_intervals.mk_leaf(p.ci()));
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
std::ostream& intervals::display(std::ostream& out, const interval& i) const {
|
|
if (m_dep_intervals.lower_is_inf(i)) {
|
|
out << "(-oo";
|
|
} else {
|
|
out << (m_dep_intervals.lower_is_open(i)? "(":"[") << rational(m_dep_intervals.lower(i));
|
|
}
|
|
out << ",";
|
|
if (m_dep_intervals.upper_is_inf(i)) {
|
|
out << "oo)";
|
|
} else {
|
|
out << rational(m_dep_intervals.upper(i)) << (m_dep_intervals.upper_is_open(i)? ")":"]");
|
|
}
|
|
svector<lp::constraint_index> expl;
|
|
if (i.m_lower_dep) {
|
|
out << "\nlower deps\n";
|
|
print_dependencies(i.m_lower_dep, out);
|
|
}
|
|
if (i.m_upper_dep) {
|
|
out << "\nupper deps\n";
|
|
print_dependencies(i.m_upper_dep, out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
template <e_with_deps wd>
|
|
void intervals::set_var_interval(lpvar v, interval& b) {
|
|
TRACE("nla_intervals_details", m_core->print_var(v, tout) << "\n";);
|
|
lp::constraint_index ci;
|
|
rational val;
|
|
bool is_strict;
|
|
if (ls().has_lower_bound(v, ci, val, is_strict)) {
|
|
m_dep_intervals.set_lower(b, val);
|
|
m_dep_intervals.set_lower_is_open(b, is_strict);
|
|
m_dep_intervals.set_lower_is_inf(b, false);
|
|
if (wd == e_with_deps::with_deps) b.m_lower_dep = mk_dep(ci);
|
|
}
|
|
else {
|
|
m_dep_intervals.set_lower_is_open(b, true);
|
|
m_dep_intervals.set_lower_is_inf(b, true);
|
|
if (wd == e_with_deps::with_deps) b.m_lower_dep = nullptr;
|
|
}
|
|
if (ls().has_upper_bound(v, ci, val, is_strict)) {
|
|
m_dep_intervals.set_upper(b, val);
|
|
m_dep_intervals.set_upper_is_open(b, is_strict);
|
|
m_dep_intervals.set_upper_is_inf(b, false);
|
|
if (wd == e_with_deps::with_deps) b.m_upper_dep = mk_dep(ci);
|
|
}
|
|
else {
|
|
m_dep_intervals.set_upper_is_open(b, true);
|
|
m_dep_intervals.set_upper_is_inf(b, true);
|
|
if (wd == e_with_deps::with_deps) b.m_upper_dep = nullptr;
|
|
}
|
|
}
|
|
|
|
template <e_with_deps wd>
|
|
bool intervals::interval_from_term(const nex& e, scoped_dep_interval& i) {
|
|
rational a, b;
|
|
lp::lar_term norm_t = expression_to_normalized_term(&e.to_sum(), a, b);
|
|
lp::explanation exp;
|
|
if (m_core->explain_by_equiv(norm_t, exp)) {
|
|
m_dep_intervals.set_interval_for_scalar(i, b);
|
|
if (wd == e_with_deps::with_deps) {
|
|
for (auto p : exp) {
|
|
i.get().m_lower_dep = mk_join(i.get().m_lower_dep, mk_leaf(p.ci()));
|
|
}
|
|
i.get().m_upper_dep = i.get().m_lower_dep;
|
|
}
|
|
TRACE("nla_intervals", tout << "explain_by_equiv\n";);
|
|
return true;
|
|
}
|
|
lpvar j = find_term_column(norm_t, a);
|
|
if (j + 1 == 0)
|
|
return false;
|
|
|
|
set_var_interval<wd>(j, i);
|
|
interval bi;
|
|
m_dep_intervals.mul<wd>(a, i, bi);
|
|
m_dep_intervals.add(b, bi);
|
|
m_dep_intervals.set<wd>(i, bi);
|
|
|
|
TRACE("nla_intervals",
|
|
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
|
|
tout << "a=" << a << ", b=" << b << "\n";
|
|
tout << e << ", interval = "; display(tout, i););
|
|
return true;
|
|
}
|
|
|
|
template <e_with_deps wd, typename T>
|
|
bool intervals::interval_of_sum_no_term(const nex_sum& e, scoped_dep_interval & sdi, const std::function<void (const T&)>& f) {
|
|
if (has_inf_interval(e)) {
|
|
SASSERT(m_dep_intervals.lower_is_inf(sdi) && m_dep_intervals.upper_is_inf(sdi));
|
|
return true; // no conflict
|
|
}
|
|
|
|
if (!interval_of_expr<wd>(e[0], 1, sdi, f))
|
|
return false;
|
|
for (unsigned k = 1; k < e.size(); k++) {
|
|
TRACE("nla_intervals_details", tout << "e[" << k << "]= " << *e[k] << "\n";);
|
|
scoped_dep_interval b(get_dep_intervals());
|
|
if (!interval_of_expr<wd>(e[k], 1, b, f)) {
|
|
return false;
|
|
}
|
|
scoped_dep_interval c(get_dep_intervals());
|
|
|
|
TRACE("nla_intervals_details", tout << "sdi = "; display(tout, sdi) << "\nb = "; display(tout, b) << "\n";);
|
|
m_dep_intervals.add<wd>(sdi, b, c);
|
|
m_dep_intervals.set<wd>(sdi, c);
|
|
TRACE("nla_intervals_details", tout << *e[k] << ", ";
|
|
display(tout, sdi); tout << "\n";);
|
|
}
|
|
TRACE("nla_intervals_details", tout << "e=" << e << "\n";
|
|
tout << " interv = "; display(tout, sdi););
|
|
return true; // no conflict
|
|
}
|
|
|
|
// return true iff a.upper < b.lower, or a.upper == b.lower and one of these bounds is open
|
|
bool intervals::conflict_u_l(const interval& a, const interval& b) const {
|
|
if (a.m_upper_inf) {
|
|
return false;
|
|
}
|
|
if (b.m_lower_inf) {
|
|
return false;
|
|
}
|
|
|
|
if (m_dep_intervals.num_manager().lt(a.m_upper, b.m_lower)) {
|
|
return true;
|
|
}
|
|
|
|
if (m_dep_intervals.num_manager().gt(a.m_upper, b.m_lower)) {
|
|
return false;
|
|
}
|
|
|
|
return a.m_upper_open || b.m_upper_open;
|
|
}
|
|
|
|
template <e_with_deps wd, typename T>
|
|
bool intervals::interval_of_sum(const nex_sum& e, scoped_dep_interval& a, const std::function<void (const T&)>& f) {
|
|
TRACE("nla_intervals_details", tout << "e=" << e << "\n";);
|
|
if(! interval_of_sum_no_term<wd>(e, a, f)) {
|
|
return false;
|
|
}
|
|
TRACE("nla_intervals_details", tout << "a = "; display(tout, a););
|
|
if (e.is_a_linear_term()) {
|
|
SASSERT(e.is_sum() && e.size() > 1);
|
|
scoped_dep_interval i_from_term(get_dep_intervals());
|
|
if (interval_from_term<wd>(e, i_from_term)) {
|
|
scoped_dep_interval r(get_dep_intervals());
|
|
m_dep_intervals.intersect<wd>(a, i_from_term, r);
|
|
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
|
|
|
|
if (m_dep_intervals.is_empty(r)) {
|
|
TRACE("nla_intervals_details", tout << "empty\n";);
|
|
if (wd == e_with_deps::with_deps) {
|
|
T expl;
|
|
if (conflict_u_l(a, i_from_term)) {
|
|
get_dep_intervals().linearize(a.get().m_upper_dep, expl);
|
|
get_dep_intervals().linearize(r.get().m_lower_dep, expl);
|
|
} else {
|
|
get_dep_intervals().linearize(r.get().m_upper_dep, expl);
|
|
get_dep_intervals().linearize(a.get().m_lower_dep, expl);
|
|
}
|
|
f(expl);
|
|
} else {
|
|
// need to recalculate the interval with dependencies
|
|
scoped_dep_interval sa(get_dep_intervals());
|
|
interval_of_sum<e_with_deps::with_deps>(e, sa, f);
|
|
}
|
|
return false;
|
|
}
|
|
m_dep_intervals.set<wd>(a, r);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <e_with_deps wd, typename T>
|
|
bool intervals::interval_of_mul(const nex_mul& e, scoped_dep_interval& a, const std::function<void (const T&)>& f) {
|
|
TRACE("nla_intervals_details", tout << "e = " << e << "\n";);
|
|
const nex* zero_interval_child = get_zero_interval_child(e);
|
|
if (zero_interval_child) {
|
|
bool r = interval_of_expr<wd>(zero_interval_child, 1, a, f);
|
|
SASSERT(r);
|
|
(void)r;
|
|
if(wd == e_with_deps::with_deps)
|
|
set_zero_interval_deps_for_mult(a);
|
|
TRACE("nla_intervals_details", tout << "zero_interval_child = " << *zero_interval_child << std::endl << "a = "; display(tout, a); );
|
|
return true; // regural calculation: no conflict
|
|
}
|
|
|
|
m_dep_intervals.set_interval_for_scalar(a, e.coeff());
|
|
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
|
|
for (const auto& ep : e) {
|
|
scoped_dep_interval b(get_dep_intervals());
|
|
if (!interval_of_expr<wd>(ep.e(), ep.pow(), b, f))
|
|
return false;
|
|
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
|
|
scoped_dep_interval c(get_dep_intervals());
|
|
m_dep_intervals.mul<wd>(a, b, c);
|
|
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
|
|
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
|
|
m_dep_intervals.set<wd>(a, c);
|
|
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
|
|
}
|
|
TRACE("nla_intervals_details", tout << "e=" << e << "\n";
|
|
tout << " return "; display(tout, a););
|
|
return true;
|
|
}
|
|
|
|
template <e_with_deps wd>
|
|
void intervals::to_power(scoped_dep_interval& a, unsigned p) {
|
|
if (p == 1) return;
|
|
scoped_dep_interval b(m_dep_intervals);
|
|
m_dep_intervals.power<wd>(a, p, b);
|
|
m_dep_intervals.set<wd>(a, b);
|
|
|
|
}
|
|
template <e_with_deps wd, typename T>
|
|
bool intervals::interval_of_expr(const nex* e, unsigned p, scoped_dep_interval& a, const std::function<void (const T&)>& f) {
|
|
switch (e->type()) {
|
|
case expr_type::SCALAR:
|
|
{
|
|
m_dep_intervals.set_interval_for_scalar(a, power(to_scalar(e)->value(), p));
|
|
}
|
|
break;
|
|
case expr_type::SUM: {
|
|
if (!interval_of_sum<wd>(e->to_sum(), a, f))
|
|
return false;
|
|
if (p != 1) {
|
|
to_power<wd>(a, p);
|
|
}
|
|
break;
|
|
}
|
|
case expr_type::MUL: {
|
|
if (!interval_of_mul<wd>(e->to_mul(), a, f))
|
|
return false;
|
|
if (p != 1) {
|
|
to_power<wd>(a, p);
|
|
}
|
|
break;
|
|
}
|
|
case expr_type::VAR:
|
|
set_var_interval<wd>(e->to_var().var(), a);
|
|
if (p != 1) {
|
|
to_power<wd>(a, p);
|
|
}
|
|
break;
|
|
default:
|
|
TRACE("nla_intervals_details", tout << e->type() << "\n";);
|
|
UNREACHABLE();
|
|
}
|
|
return true; // no conflict
|
|
}
|
|
|
|
|
|
lp::lar_solver& intervals::ls() { return m_core->m_lar_solver; }
|
|
|
|
const lp::lar_solver& intervals::ls() const { return m_core->m_lar_solver; }
|
|
|
|
|
|
} // end of nla namespace
|
|
|