#include "math/lp/nla_core.h" #include "math/interval/interval_def.h" #include "math/lp/nla_intervals.h" #include "util/mpq.h" namespace nla { typedef enum dep_intervals::with_deps_t e_with_deps; const nex* intervals::get_inf_interval_child(const nex_sum& e) const { for (auto * c : e) { if (has_inf_interval(*c)) return c; } return nullptr; } bool intervals::mul_has_inf_interval(const nex_mul& e) const { bool has_inf = false; for (const auto & p : e) { const nex &c = *p.e(); if (!c.is_elementary()) return false; if (has_zero_interval(c)) return false; has_inf |= has_inf_interval(c); } return has_inf; } bool intervals::has_inf_interval(const nex& e) const { if (e.is_var()) return m_core->no_bounds(e.to_var().var()); if (e.is_mul()) return mul_has_inf_interval(e.to_mul()); if (e.is_scalar()) return false; for (auto * c : e.to_sum()) if (has_inf_interval(*c)) return true; return false; } bool intervals::has_zero_interval(const nex& e) const { SASSERT(!e.is_scalar() || !e.to_scalar().value().is_zero()); return e.is_var() && m_core->var_is_fixed_to_zero(e.to_var().var()); } const nex* intervals::get_zero_interval_child(const nex_mul& e) const { for (const auto & p : e) { const nex * c = p.e(); if (has_zero_interval(*c)) return c; } return nullptr; } std::ostream & intervals::print_dependencies(u_dependency* deps , std::ostream& out) const { svector expl; m_dep_intervals.linearize(deps, expl); { lp::explanation e(expl); if (!expl.empty()) { m_core->print_explanation(e, out); expl.clear(); } else { out << "\nno constraints\n"; } } return out; } std::ostream& intervals::display_separating_interval(std::ostream& out, const nex*n, const scoped_dep_interval& interv_wd, u_dependency* initial_deps) { out << "conflict: interv_wd = "; display(out, interv_wd ) <<"expr = " << *n << "\n, initial deps\n"; print_dependencies(initial_deps, out); out << ", expressions vars = \n"; for(lpvar j: m_core->get_vars_of_expr_with_opening_terms(n)) { m_core->print_var(j, out); } out << "\n"; return out; } // return true iff the interval of n is does not contain 0 bool intervals::check_nex(const nex* n, u_dependency* initial_deps) { m_core->lp_settings().stats().m_cross_nested_forms++; scoped_dep_interval i(get_dep_intervals()); std::function f = [this](const lp::explanation& e) { new_lemma lemma(*m_core, "check_nex"); lemma &= e; }; if (!interval_of_expr(n, 1, i, f)) { // found a conflict during the interval calculation return true; } if (!m_dep_intervals.separated_from_zero(i)) { return false; } scoped_dep_interval interv_wd(get_dep_intervals()); interval_of_expr(n, 1, interv_wd, f); TRACE("nla_intervals", display_separating_interval(tout, n, interv_wd, initial_deps);); m_dep_intervals.check_interval_for_conflict_on_zero(interv_wd, initial_deps, f); return true; } void intervals::add_mul_of_degree_one_to_vector(const nex_mul* e, vector> &v) { TRACE("nla_intervals_details", tout << *e << "\n";); SASSERT(e->size() == 1); SASSERT((*e)[0].pow() == 1); const nex *ev = (*e)[0].e(); lpvar j = to_var(ev)->var(); v.push_back(std::make_pair(e->coeff(), j)); } void intervals::add_linear_to_vector(const nex* e, vector> &v) { TRACE("nla_intervals_details", tout << *e << "\n";); switch (e->type()) { case expr_type::MUL: add_mul_of_degree_one_to_vector(to_mul(e), v); break; case expr_type::VAR: v.push_back(std::make_pair(rational(1), to_var(e)->var())); break; default: SASSERT(!e->is_sum()); // noop } } // e = a * can_t + b lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational& a, rational& b) { TRACE("nla_intervals_details", tout << *e << "\n";); lpvar smallest_j = 0; vector> v; b = rational(0); unsigned a_index = UINT_MAX; for (const nex* c : *e) { if (c->is_scalar()) { b += c->to_scalar().value(); } else { add_linear_to_vector(c, v); if (v.empty()) continue; if (v.size() == 1 || smallest_j > v.back().second) { smallest_j = v.back().second; a_index = v.size() - 1; } } } TRACE("nla_intervals_details", tout << "a_index = " << a_index << ", v="; print_vector(v, tout) << "\n";); a = v[a_index].first; lp::lar_term t; if (a.is_one()) { for (auto& p : v) { t.add_monomial(p.first, p.second); } } else { for (unsigned k = 0; k < v.size(); k++) { auto& p = v[k]; if (k != a_index) t.add_monomial(p.first/a, p.second); else t.add_var(p.second); } } TRACE("nla_intervals_details", tout << a << "* ("; lp::lar_solver::print_term_as_indices(t, tout) << ") + " << b << std::endl;); SASSERT(t.is_normalized()); return t; } // we should have in the case of found a * m_terms[k] + b = e, // where m_terms[k] corresponds to the returned lpvar lpvar intervals::find_term_column(const lp::lar_term & norm_t, rational& a) const { std::pair a_j; if (m_core->m_lar_solver.fetch_normalized_term_column(norm_t, a_j)) { a /= a_j.first; return a_j.second; } return -1; } void intervals::set_zero_interval_with_explanation(interval& i, const lp::explanation& exp) { auto val = rational(0); m_dep_intervals.set_lower(i, val); m_dep_intervals.set_lower_is_open(i, false); m_dep_intervals.set_lower_is_inf(i, false); m_dep_intervals.set_upper(i, val); m_dep_intervals.set_upper_is_open(i, false); m_dep_intervals.set_upper_is_inf(i, false); i.m_lower_dep = i.m_upper_dep = mk_dep(exp); } void intervals::set_zero_interval(interval& i) { auto val = rational(0); m_dep_intervals.set_lower(i, val); m_dep_intervals.set_lower_is_open(i, false); m_dep_intervals.set_lower_is_inf(i, false); m_dep_intervals.set_upper(i, val); m_dep_intervals.set_upper_is_open(i, false); m_dep_intervals.set_upper_is_inf(i, false); } void intervals::set_zero_interval_deps_for_mult(interval& a) { a.m_lower_dep = mk_join(a.m_lower_dep, a.m_upper_dep); a.m_upper_dep = a.m_lower_dep; } u_dependency *intervals::mk_dep(lp::constraint_index ci) { return m_dep_intervals.mk_leaf(ci); } u_dependency *intervals::mk_dep(const lp::explanation& expl) { u_dependency * r = nullptr; for (auto p : expl) { if (r == nullptr) { r = m_dep_intervals.mk_leaf(p.ci()); } else { r = m_dep_intervals.mk_join(r, m_dep_intervals.mk_leaf(p.ci())); } } return r; } std::ostream& intervals::display(std::ostream& out, const interval& i) const { if (m_dep_intervals.lower_is_inf(i)) { out << "(-oo"; } else { out << (m_dep_intervals.lower_is_open(i)? "(":"[") << rational(m_dep_intervals.lower(i)); } out << ","; if (m_dep_intervals.upper_is_inf(i)) { out << "oo)"; } else { out << rational(m_dep_intervals.upper(i)) << (m_dep_intervals.upper_is_open(i)? ")":"]"); } svector expl; if (i.m_lower_dep) { out << "\nlower deps\n"; print_dependencies(i.m_lower_dep, out); } if (i.m_upper_dep) { out << "\nupper deps\n"; print_dependencies(i.m_upper_dep, out); } return out; } template void intervals::set_var_interval(lpvar v, interval& b) { TRACE("nla_intervals_details", m_core->print_var(v, tout) << "\n";); lp::constraint_index ci; rational val; bool is_strict; if (ls().has_lower_bound(v, ci, val, is_strict)) { m_dep_intervals.set_lower(b, val); m_dep_intervals.set_lower_is_open(b, is_strict); m_dep_intervals.set_lower_is_inf(b, false); if (wd == e_with_deps::with_deps) b.m_lower_dep = mk_dep(ci); } else { m_dep_intervals.set_lower_is_open(b, true); m_dep_intervals.set_lower_is_inf(b, true); if (wd == e_with_deps::with_deps) b.m_lower_dep = nullptr; } if (ls().has_upper_bound(v, ci, val, is_strict)) { m_dep_intervals.set_upper(b, val); m_dep_intervals.set_upper_is_open(b, is_strict); m_dep_intervals.set_upper_is_inf(b, false); if (wd == e_with_deps::with_deps) b.m_upper_dep = mk_dep(ci); } else { m_dep_intervals.set_upper_is_open(b, true); m_dep_intervals.set_upper_is_inf(b, true); if (wd == e_with_deps::with_deps) b.m_upper_dep = nullptr; } } template bool intervals::interval_from_term(const nex& e, scoped_dep_interval& i) { rational a, b; lp::lar_term norm_t = expression_to_normalized_term(&e.to_sum(), a, b); lp::explanation exp; if (m_core->explain_by_equiv(norm_t, exp)) { m_dep_intervals.set_interval_for_scalar(i, b); if (wd == e_with_deps::with_deps) { for (auto p : exp) { i.get().m_lower_dep = mk_join(i.get().m_lower_dep, mk_leaf(p.ci())); } i.get().m_upper_dep = i.get().m_lower_dep; } TRACE("nla_intervals", tout << "explain_by_equiv\n";); return true; } lpvar j = find_term_column(norm_t, a); if (j + 1 == 0) return false; set_var_interval(j, i); interval bi; m_dep_intervals.mul(a, i, bi); m_dep_intervals.add(b, bi); m_dep_intervals.set(i, bi); TRACE("nla_intervals", m_core->m_lar_solver.print_column_info(j, tout) << "\n"; tout << "a=" << a << ", b=" << b << "\n"; tout << e << ", interval = "; display(tout, i);); return true; } template bool intervals::interval_of_sum_no_term(const nex_sum& e, scoped_dep_interval & sdi, const std::function& f) { if (has_inf_interval(e)) { SASSERT(m_dep_intervals.lower_is_inf(sdi) && m_dep_intervals.upper_is_inf(sdi)); return true; // no conflict } if (!interval_of_expr(e[0], 1, sdi, f)) return false; for (unsigned k = 1; k < e.size(); k++) { TRACE("nla_intervals_details", tout << "e[" << k << "]= " << *e[k] << "\n";); scoped_dep_interval b(get_dep_intervals()); if (!interval_of_expr(e[k], 1, b, f)) { return false; } scoped_dep_interval c(get_dep_intervals()); TRACE("nla_intervals_details", tout << "sdi = "; display(tout, sdi) << "\nb = "; display(tout, b) << "\n";); m_dep_intervals.add(sdi, b, c); m_dep_intervals.set(sdi, c); TRACE("nla_intervals_details", tout << *e[k] << ", "; display(tout, sdi); tout << "\n";); } TRACE("nla_intervals_details", tout << "e=" << e << "\n"; tout << " interv = "; display(tout, sdi);); return true; // no conflict } // return true iff a.upper < b.lower, or a.upper == b.lower and one of these bounds is open bool intervals::conflict_u_l(const interval& a, const interval& b) const { if (a.m_upper_inf) { return false; } if (b.m_lower_inf) { return false; } if (m_dep_intervals.num_manager().lt(a.m_upper, b.m_lower)) { return true; } if (m_dep_intervals.num_manager().gt(a.m_upper, b.m_lower)) { return false; } return a.m_upper_open || b.m_upper_open; } template bool intervals::interval_of_sum(const nex_sum& e, scoped_dep_interval& a, const std::function& f) { TRACE("nla_intervals_details", tout << "e=" << e << "\n";); if(! interval_of_sum_no_term(e, a, f)) { return false; } TRACE("nla_intervals_details", tout << "a = "; display(tout, a);); if (e.is_a_linear_term()) { SASSERT(e.is_sum() && e.size() > 1); scoped_dep_interval i_from_term(get_dep_intervals()); if (interval_from_term(e, i_from_term)) { scoped_dep_interval r(get_dep_intervals()); m_dep_intervals.intersect(a, i_from_term, r); TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";); if (m_dep_intervals.is_empty(r)) { TRACE("nla_intervals_details", tout << "empty\n";); if (wd == e_with_deps::with_deps) { T expl; if (conflict_u_l(a, i_from_term)) { get_dep_intervals().linearize(a.get().m_upper_dep, expl); get_dep_intervals().linearize(r.get().m_lower_dep, expl); } else { get_dep_intervals().linearize(r.get().m_upper_dep, expl); get_dep_intervals().linearize(a.get().m_lower_dep, expl); } f(expl); } else { // need to recalculate the interval with dependencies scoped_dep_interval sa(get_dep_intervals()); interval_of_sum(e, sa, f); } return false; } m_dep_intervals.set(a, r); } } return true; } template bool intervals::interval_of_mul(const nex_mul& e, scoped_dep_interval& a, const std::function& f) { TRACE("nla_intervals_details", tout << "e = " << e << "\n";); const nex* zero_interval_child = get_zero_interval_child(e); if (zero_interval_child) { bool r = interval_of_expr(zero_interval_child, 1, a, f); SASSERT(r); (void)r; if(wd == e_with_deps::with_deps) set_zero_interval_deps_for_mult(a); TRACE("nla_intervals_details", tout << "zero_interval_child = " << *zero_interval_child << std::endl << "a = "; display(tout, a); ); return true; // regural calculation: no conflict } m_dep_intervals.set_interval_for_scalar(a, e.coeff()); TRACE("nla_intervals_details", tout << "a = "; display(tout, a); ); for (const auto& ep : e) { scoped_dep_interval b(get_dep_intervals()); if (!interval_of_expr(ep.e(), ep.pow(), b, f)) return false; TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); ); scoped_dep_interval c(get_dep_intervals()); m_dep_intervals.mul(a, b, c); TRACE("nla_intervals_details", tout << "a "; display(tout, a);); TRACE("nla_intervals_details", tout << "c "; display(tout, c);); m_dep_intervals.set(a, c); TRACE("nla_intervals_details", tout << "part mult "; display(tout, a);); } TRACE("nla_intervals_details", tout << "e=" << e << "\n"; tout << " return "; display(tout, a);); return true; } template void intervals::to_power(scoped_dep_interval& a, unsigned p) { if (p == 1) return; scoped_dep_interval b(m_dep_intervals); m_dep_intervals.power(a, p, b); m_dep_intervals.set(a, b); } template bool intervals::interval_of_expr(const nex* e, unsigned p, scoped_dep_interval& a, const std::function& f) { switch (e->type()) { case expr_type::SCALAR: { m_dep_intervals.set_interval_for_scalar(a, power(to_scalar(e)->value(), p)); } break; case expr_type::SUM: { if (!interval_of_sum(e->to_sum(), a, f)) return false; if (p != 1) { to_power(a, p); } break; } case expr_type::MUL: { if (!interval_of_mul(e->to_mul(), a, f)) return false; if (p != 1) { to_power(a, p); } break; } case expr_type::VAR: set_var_interval(e->to_var().var(), a); if (p != 1) { to_power(a, p); } break; default: TRACE("nla_intervals_details", tout << e->type() << "\n";); UNREACHABLE(); } return true; // no conflict } lp::lar_solver& intervals::ls() { return m_core->m_lar_solver; } const lp::lar_solver& intervals::ls() const { return m_core->m_lar_solver; } } // end of nla namespace