mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 18:05:21 +00:00
286 lines
11 KiB
C++
286 lines
11 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
mpzzp.h
|
|
|
|
Abstract:
|
|
|
|
Combines Z ring, GF(p) finite field, and Z_p ring (when p is not a prime)
|
|
in a single manager;
|
|
|
|
That is, the manager may be dynamically configured
|
|
to be Z Ring, GF(p), etc.
|
|
|
|
Author:
|
|
|
|
Leonardo 2012-01-17.
|
|
|
|
Revision History:
|
|
|
|
This code is based on mpzp.h.
|
|
In the future, it will replace it.
|
|
|
|
--*/
|
|
#ifndef _MPZZP_H_
|
|
#define _MPZZP_H_
|
|
|
|
#include "mpz.h"
|
|
|
|
class mpzzp_manager {
|
|
typedef unsynch_mpz_manager numeral_manager;
|
|
numeral_manager & m_manager;
|
|
|
|
bool m_z;
|
|
// instead the usual [0..p) we will keep the numbers in [lower, upper]
|
|
mpz m_p, m_lower, m_upper;
|
|
bool m_p_prime;
|
|
mpz m_inv_tmp1, m_inv_tmp2, m_inv_tmp3;
|
|
mpz m_div_tmp;
|
|
|
|
bool is_p_normalized_core(mpz const & x) const {
|
|
return m().ge(x, m_lower) && m().le(x, m_upper);
|
|
}
|
|
|
|
void setup_p() {
|
|
SASSERT(m().is_pos(m_p) && !m().is_one(m_p));
|
|
bool even = m().is_even(m_p);
|
|
m().div(m_p, 2, m_upper);
|
|
m().set(m_lower, m_upper);
|
|
m().neg(m_lower);
|
|
if (even) {
|
|
m().inc(m_lower);
|
|
}
|
|
TRACE("mpzzp", tout << "lower: " << m_manager.to_string(m_lower) << ", upper: " << m_manager.to_string(m_upper) << "\n";);
|
|
}
|
|
|
|
void p_normalize_core(mpz & x) {
|
|
SASSERT(!m_z);
|
|
m().rem(x, m_p, x);
|
|
if (m().gt(x, m_upper)) {
|
|
m().sub(x, m_p, x);
|
|
} else {
|
|
if (m().lt(x, m_lower)) {
|
|
m().add(x, m_p, x);
|
|
}
|
|
}
|
|
SASSERT(is_p_normalized(x));
|
|
}
|
|
|
|
public:
|
|
typedef mpz numeral;
|
|
static bool precise() { return true; }
|
|
bool field() { return !m_z && m_p_prime; }
|
|
bool finite() const { return !m_z; }
|
|
bool modular() const { return !m_z; }
|
|
|
|
mpzzp_manager(numeral_manager & _m):
|
|
m_manager(_m),
|
|
m_z(true) {
|
|
}
|
|
|
|
mpzzp_manager(numeral_manager & _m, mpz const & p, bool prime = true):
|
|
m_manager(_m),
|
|
m_z(false) {
|
|
m().set(m_p, p);
|
|
setup_p();
|
|
}
|
|
|
|
mpzzp_manager(numeral_manager & _m, uint64 p, bool prime = true):
|
|
m_manager(_m),
|
|
m_z(false) {
|
|
m().set(m_p, p);
|
|
setup_p();
|
|
}
|
|
|
|
~mpzzp_manager() {
|
|
m().del(m_p);
|
|
m().del(m_lower);
|
|
m().del(m_upper);
|
|
m().del(m_inv_tmp1);
|
|
m().del(m_inv_tmp2);
|
|
m().del(m_inv_tmp3);
|
|
m().del(m_div_tmp);
|
|
}
|
|
|
|
bool is_p_normalized(mpz const & x) const {
|
|
return m_z || is_p_normalized_core(x);
|
|
}
|
|
|
|
void p_normalize(mpz & x) {
|
|
if (!m_z)
|
|
p_normalize_core(x);
|
|
SASSERT(is_p_normalized(x));
|
|
}
|
|
|
|
numeral_manager & m() const { return m_manager; }
|
|
|
|
mpz const & p() const { return m_p; }
|
|
|
|
void set_z() { m_z = true; }
|
|
void set_zp(mpz const & new_p) { m_z = false; m_p_prime = true; m().set(m_p, new_p); setup_p(); }
|
|
void set_zp(uint64 new_p) { m_z = false; m_p_prime = true; m().set(m_p, new_p); setup_p(); }
|
|
// p = p^2
|
|
void set_p_sq() { SASSERT(!m_z); m_p_prime = false; m().mul(m_p, m_p, m_p); setup_p(); }
|
|
void set_zp_swap(mpz & new_p) { SASSERT(!m_z); m().swap(m_p, new_p); setup_p(); }
|
|
|
|
void reset(mpz & a) { m().reset(a); }
|
|
bool is_small(mpz const & a) { return m().is_small(a); }
|
|
void del(mpz & a) { m().del(a); }
|
|
void neg(mpz & a) { m().neg(a); p_normalize(a); }
|
|
void abs(mpz & a) { m().abs(a); p_normalize(a); }
|
|
bool is_zero(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_zero(a); }
|
|
bool is_one(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_one(a); }
|
|
bool is_pos(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_pos(a); }
|
|
bool is_neg(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_neg(a); }
|
|
bool is_nonpos(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_nonpos(a); }
|
|
bool is_nonneg(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_nonneg(a); }
|
|
bool is_minus_one(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_minus_one(a); }
|
|
bool eq(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().eq(a, b); }
|
|
bool lt(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().lt(a, b); }
|
|
bool le(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().le(a, b); }
|
|
bool gt(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().gt(a, b); }
|
|
bool ge(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().ge(a, b); }
|
|
std::string to_string(mpz const & a) const {
|
|
SASSERT(is_p_normalized(a));
|
|
return m().to_string(a);
|
|
}
|
|
void display(std::ostream & out, mpz const & a) const { m().display(out, a); }
|
|
void add(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().add(a, b, c); p_normalize(c); }
|
|
void sub(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().sub(a, b, c); p_normalize(c); }
|
|
void inc(mpz & a) { SASSERT(is_p_normalized(a)); m().inc(a); p_normalize(a); }
|
|
void dec(mpz & a) { SASSERT(is_p_normalized(a)); m().dec(a); p_normalize(a); }
|
|
void mul(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().mul(a, b, c); p_normalize(c); }
|
|
void addmul(mpz const & a, mpz const & b, mpz const & c, mpz & d) {
|
|
SASSERT(is_p_normalized(a) && is_p_normalized(b) && is_p_normalized(c)); m().addmul(a, b, c, d); p_normalize(d);
|
|
}
|
|
// d <- a - b*c
|
|
void submul(mpz const & a, mpz const & b, mpz const & c, mpz & d) {
|
|
SASSERT(is_p_normalized(a));
|
|
SASSERT(is_p_normalized(b));
|
|
SASSERT(is_p_normalized(c));
|
|
m().submul(a, b, c, d);
|
|
p_normalize(d);
|
|
}
|
|
|
|
void inv(mpz & a) {
|
|
if (m_z) {
|
|
UNREACHABLE();
|
|
}
|
|
else {
|
|
SASSERT(!is_zero(a));
|
|
// eulers theorem a^(p - 2), but gcd could be more efficient
|
|
// a*t1 + p*t2 = 1 => a*t1 = 1 (mod p) => t1 is the inverse (t3 == 1)
|
|
TRACE("mpzp_inv_bug", tout << "a: " << m().to_string(a) << ", p: " << m().to_string(m_p) << "\n";);
|
|
p_normalize(a);
|
|
TRACE("mpzp_inv_bug", tout << "after normalization a: " << m().to_string(a) << "\n";);
|
|
m().gcd(a, m_p, m_inv_tmp1, m_inv_tmp2, m_inv_tmp3);
|
|
TRACE("mpzp_inv_bug", tout << "tmp1: " << m().to_string(m_inv_tmp1) << "\ntmp2: " << m().to_string(m_inv_tmp2)
|
|
<< "\ntmp3: " << m().to_string(m_inv_tmp3) << "\n";);
|
|
p_normalize(m_inv_tmp1);
|
|
m().swap(a, m_inv_tmp1);
|
|
SASSERT(m().is_one(m_inv_tmp3)); // otherwise p is not prime and inverse is not defined
|
|
}
|
|
}
|
|
|
|
void swap(mpz & a, mpz & b) {
|
|
SASSERT(is_p_normalized(a) && is_p_normalized(b));
|
|
m().swap(a, b);
|
|
}
|
|
|
|
bool divides(mpz const & a, mpz const & b) { return (field() && !is_zero(a)) || m().divides(a, b); }
|
|
|
|
// a/b = a*inv(b)
|
|
void div(mpz const & a, mpz const & b, mpz & c) {
|
|
if (m_z) {
|
|
return m().div(a, b, c);
|
|
}
|
|
else {
|
|
SASSERT(m_p_prime);
|
|
SASSERT(is_p_normalized(a));
|
|
m().set(m_div_tmp, b);
|
|
inv(m_div_tmp);
|
|
mul(a, m_div_tmp, c);
|
|
SASSERT(is_p_normalized(c));
|
|
}
|
|
}
|
|
|
|
static unsigned hash(mpz const & a) { return numeral_manager::hash(a); }
|
|
|
|
void gcd(mpz const & a, mpz const & b, mpz & c) {
|
|
SASSERT(is_p_normalized(a) && is_p_normalized(b));
|
|
m().gcd(a, b, c);
|
|
SASSERT(is_p_normalized(c));
|
|
}
|
|
|
|
void gcd(unsigned sz, mpz const * as, mpz & g) {
|
|
m().gcd(sz, as, g);
|
|
SASSERT(is_p_normalized(g));
|
|
}
|
|
|
|
void gcd(mpz const & r1, mpz const & r2, mpz & a, mpz & b, mpz & g) {
|
|
SASSERT(is_p_normalized(r1) && is_p_normalized(r2));
|
|
m().gcd(r1, r2, a, b, g);
|
|
p_normalize(a);
|
|
p_normalize(b);
|
|
}
|
|
|
|
void set(mpz & a, mpz & val) { m().set(a, val); p_normalize(a); }
|
|
void set(mpz & a, int val) { m().set(a, val); p_normalize(a); }
|
|
void set(mpz & a, unsigned val) { m().set(a, val); p_normalize(a); }
|
|
void set(mpz & a, char const * val) { m().set(a, val); p_normalize(a); }
|
|
void set(mpz & a, int64 val) { m().set(a, val); p_normalize(a); }
|
|
void set(mpz & a, uint64 val) { m().set(a, val); p_normalize(a); }
|
|
void set(mpz & a, mpz const & val) { m().set(a, val); p_normalize(a); }
|
|
|
|
bool is_uint64(mpz & a) const { const_cast<mpzzp_manager*>(this)->p_normalize(a); return m().is_uint64(a); }
|
|
bool is_int64(mpz & a) const { const_cast<mpzzp_manager*>(this)->p_normalize(a); return m().is_int64(a); }
|
|
uint64 get_uint64(mpz & a) const { const_cast<mpzzp_manager*>(this)->p_normalize(a); return m().get_uint64(a); }
|
|
int64 get_int64(mpz & a) const { const_cast<mpzzp_manager*>(this)->p_normalize(a); return m().get_int64(a); }
|
|
double get_double(mpz & a) const { const_cast<mpzzp_manager*>(this)->p_normalize(a); return m().get_double(a); }
|
|
void power(mpz const & a, unsigned k, mpz & b) {
|
|
SASSERT(is_p_normalized(a));
|
|
unsigned mask = 1;
|
|
mpz power;
|
|
set(power, a);
|
|
set(b, 1);
|
|
while (mask <= k) {
|
|
if (mask & k)
|
|
mul(b, power, b);
|
|
mul(power, power, power);
|
|
mask = mask << 1;
|
|
}
|
|
del(power);
|
|
}
|
|
bool is_perfect_square(mpz const & a, mpz & root) {
|
|
if (m_z) {
|
|
return m().is_perfect_square(a, root);
|
|
}
|
|
else {
|
|
NOT_IMPLEMENTED_YET();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool is_uint64(mpz const & a) const { return m().is_uint64(a); }
|
|
bool is_int64(mpz const & a) const { return m().is_int64(a); }
|
|
uint64 get_uint64(mpz const & a) const { return m().get_uint64(a); }
|
|
int64 get_int64(mpz const & a) const { return m().get_int64(a); }
|
|
|
|
void mul2k(mpz & a, unsigned k) { m().mul2k(a, k); p_normalize(a); }
|
|
void mul2k(mpz const & a, unsigned k, mpz & r) { m().mul2k(a, k, r); p_normalize(r); }
|
|
unsigned power_of_two_multiple(mpz const & n) { return m().power_of_two_multiple(n); }
|
|
unsigned log2(mpz const & n) { return m().log2(n); }
|
|
unsigned mlog2(mpz const & n) { return m().mlog2(n); }
|
|
void machine_div2k(mpz & a, unsigned k) { m().machine_div2k(a, k); SASSERT(is_p_normalized(a)); }
|
|
void machine_div2k(mpz const & a, unsigned k, mpz & r) { m().machine_div2k(a, k, r); SASSERT(is_p_normalized(r)); }
|
|
|
|
bool root(mpz & a, unsigned n) { SASSERT(!modular()); return m().root(a, n); }
|
|
bool root(mpz const & a, unsigned n, mpz & r) { SASSERT(!modular()); return m().root(a, n, r); }
|
|
|
|
};
|
|
|
|
#endif
|
|
|