/*++ Copyright (c) 2012 Microsoft Corporation Module Name: mpzzp.h Abstract: Combines Z ring, GF(p) finite field, and Z_p ring (when p is not a prime) in a single manager; That is, the manager may be dynamically configured to be Z Ring, GF(p), etc. Author: Leonardo 2012-01-17. Revision History: This code is based on mpzp.h. In the future, it will replace it. --*/ #ifndef _MPZZP_H_ #define _MPZZP_H_ #include "mpz.h" class mpzzp_manager { typedef unsynch_mpz_manager numeral_manager; numeral_manager & m_manager; bool m_z; // instead the usual [0..p) we will keep the numbers in [lower, upper] mpz m_p, m_lower, m_upper; bool m_p_prime; mpz m_inv_tmp1, m_inv_tmp2, m_inv_tmp3; mpz m_div_tmp; bool is_p_normalized_core(mpz const & x) const { return m().ge(x, m_lower) && m().le(x, m_upper); } void setup_p() { SASSERT(m().is_pos(m_p) && !m().is_one(m_p)); bool even = m().is_even(m_p); m().div(m_p, 2, m_upper); m().set(m_lower, m_upper); m().neg(m_lower); if (even) { m().inc(m_lower); } TRACE("mpzzp", tout << "lower: " << m_manager.to_string(m_lower) << ", upper: " << m_manager.to_string(m_upper) << "\n";); } void p_normalize_core(mpz & x) { SASSERT(!m_z); m().rem(x, m_p, x); if (m().gt(x, m_upper)) { m().sub(x, m_p, x); } else { if (m().lt(x, m_lower)) { m().add(x, m_p, x); } } SASSERT(is_p_normalized(x)); } public: typedef mpz numeral; static bool precise() { return true; } bool field() { return !m_z && m_p_prime; } bool finite() const { return !m_z; } bool modular() const { return !m_z; } mpzzp_manager(numeral_manager & _m): m_manager(_m), m_z(true) { } mpzzp_manager(numeral_manager & _m, mpz const & p, bool prime = true): m_manager(_m), m_z(false) { m().set(m_p, p); setup_p(); } mpzzp_manager(numeral_manager & _m, uint64 p, bool prime = true): m_manager(_m), m_z(false) { m().set(m_p, p); setup_p(); } ~mpzzp_manager() { m().del(m_p); m().del(m_lower); m().del(m_upper); m().del(m_inv_tmp1); m().del(m_inv_tmp2); m().del(m_inv_tmp3); m().del(m_div_tmp); } bool is_p_normalized(mpz const & x) const { return m_z || is_p_normalized_core(x); } void p_normalize(mpz & x) { if (!m_z) p_normalize_core(x); SASSERT(is_p_normalized(x)); } numeral_manager & m() const { return m_manager; } mpz const & p() const { return m_p; } void set_z() { m_z = true; } void set_zp(mpz const & new_p) { m_z = false; m_p_prime = true; m().set(m_p, new_p); setup_p(); } void set_zp(uint64 new_p) { m_z = false; m_p_prime = true; m().set(m_p, new_p); setup_p(); } // p = p^2 void set_p_sq() { SASSERT(!m_z); m_p_prime = false; m().mul(m_p, m_p, m_p); setup_p(); } void set_zp_swap(mpz & new_p) { SASSERT(!m_z); m().swap(m_p, new_p); setup_p(); } void reset(mpz & a) { m().reset(a); } bool is_small(mpz const & a) { return m().is_small(a); } void del(mpz & a) { m().del(a); } void neg(mpz & a) { m().neg(a); p_normalize(a); } void abs(mpz & a) { m().abs(a); p_normalize(a); } bool is_zero(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_zero(a); } bool is_one(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_one(a); } bool is_pos(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_pos(a); } bool is_neg(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_neg(a); } bool is_nonpos(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_nonpos(a); } bool is_nonneg(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_nonneg(a); } bool is_minus_one(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_minus_one(a); } bool eq(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().eq(a, b); } bool lt(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().lt(a, b); } bool le(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().le(a, b); } bool gt(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().gt(a, b); } bool ge(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().ge(a, b); } std::string to_string(mpz const & a) const { SASSERT(is_p_normalized(a)); return m().to_string(a); } void display(std::ostream & out, mpz const & a) const { m().display(out, a); } void add(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().add(a, b, c); p_normalize(c); } void sub(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().sub(a, b, c); p_normalize(c); } void inc(mpz & a) { SASSERT(is_p_normalized(a)); m().inc(a); p_normalize(a); } void dec(mpz & a) { SASSERT(is_p_normalized(a)); m().dec(a); p_normalize(a); } void mul(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().mul(a, b, c); p_normalize(c); } void addmul(mpz const & a, mpz const & b, mpz const & c, mpz & d) { SASSERT(is_p_normalized(a) && is_p_normalized(b) && is_p_normalized(c)); m().addmul(a, b, c, d); p_normalize(d); } // d <- a - b*c void submul(mpz const & a, mpz const & b, mpz const & c, mpz & d) { SASSERT(is_p_normalized(a)); SASSERT(is_p_normalized(b)); SASSERT(is_p_normalized(c)); m().submul(a, b, c, d); p_normalize(d); } void inv(mpz & a) { if (m_z) { UNREACHABLE(); } else { SASSERT(!is_zero(a)); // eulers theorem a^(p - 2), but gcd could be more efficient // a*t1 + p*t2 = 1 => a*t1 = 1 (mod p) => t1 is the inverse (t3 == 1) TRACE("mpzp_inv_bug", tout << "a: " << m().to_string(a) << ", p: " << m().to_string(m_p) << "\n";); p_normalize(a); TRACE("mpzp_inv_bug", tout << "after normalization a: " << m().to_string(a) << "\n";); m().gcd(a, m_p, m_inv_tmp1, m_inv_tmp2, m_inv_tmp3); TRACE("mpzp_inv_bug", tout << "tmp1: " << m().to_string(m_inv_tmp1) << "\ntmp2: " << m().to_string(m_inv_tmp2) << "\ntmp3: " << m().to_string(m_inv_tmp3) << "\n";); p_normalize(m_inv_tmp1); m().swap(a, m_inv_tmp1); SASSERT(m().is_one(m_inv_tmp3)); // otherwise p is not prime and inverse is not defined } } void swap(mpz & a, mpz & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().swap(a, b); } bool divides(mpz const & a, mpz const & b) { return (field() && !is_zero(a)) || m().divides(a, b); } // a/b = a*inv(b) void div(mpz const & a, mpz const & b, mpz & c) { if (m_z) { return m().div(a, b, c); } else { SASSERT(m_p_prime); SASSERT(is_p_normalized(a)); m().set(m_div_tmp, b); inv(m_div_tmp); mul(a, m_div_tmp, c); SASSERT(is_p_normalized(c)); } } static unsigned hash(mpz const & a) { return numeral_manager::hash(a); } void gcd(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().gcd(a, b, c); SASSERT(is_p_normalized(c)); } void gcd(unsigned sz, mpz const * as, mpz & g) { m().gcd(sz, as, g); SASSERT(is_p_normalized(g)); } void gcd(mpz const & r1, mpz const & r2, mpz & a, mpz & b, mpz & g) { SASSERT(is_p_normalized(r1) && is_p_normalized(r2)); m().gcd(r1, r2, a, b, g); p_normalize(a); p_normalize(b); } void set(mpz & a, mpz & val) { m().set(a, val); p_normalize(a); } void set(mpz & a, int val) { m().set(a, val); p_normalize(a); } void set(mpz & a, unsigned val) { m().set(a, val); p_normalize(a); } void set(mpz & a, char const * val) { m().set(a, val); p_normalize(a); } void set(mpz & a, int64 val) { m().set(a, val); p_normalize(a); } void set(mpz & a, uint64 val) { m().set(a, val); p_normalize(a); } void set(mpz & a, mpz const & val) { m().set(a, val); p_normalize(a); } bool is_uint64(mpz & a) const { const_cast(this)->p_normalize(a); return m().is_uint64(a); } bool is_int64(mpz & a) const { const_cast(this)->p_normalize(a); return m().is_int64(a); } uint64 get_uint64(mpz & a) const { const_cast(this)->p_normalize(a); return m().get_uint64(a); } int64 get_int64(mpz & a) const { const_cast(this)->p_normalize(a); return m().get_int64(a); } double get_double(mpz & a) const { const_cast(this)->p_normalize(a); return m().get_double(a); } void power(mpz const & a, unsigned k, mpz & b) { SASSERT(is_p_normalized(a)); unsigned mask = 1; mpz power; set(power, a); set(b, 1); while (mask <= k) { if (mask & k) mul(b, power, b); mul(power, power, power); mask = mask << 1; } del(power); } bool is_perfect_square(mpz const & a, mpz & root) { if (m_z) { return m().is_perfect_square(a, root); } else { NOT_IMPLEMENTED_YET(); return false; } } bool is_uint64(mpz const & a) const { return m().is_uint64(a); } bool is_int64(mpz const & a) const { return m().is_int64(a); } uint64 get_uint64(mpz const & a) const { return m().get_uint64(a); } int64 get_int64(mpz const & a) const { return m().get_int64(a); } void mul2k(mpz & a, unsigned k) { m().mul2k(a, k); p_normalize(a); } void mul2k(mpz const & a, unsigned k, mpz & r) { m().mul2k(a, k, r); p_normalize(r); } unsigned power_of_two_multiple(mpz const & n) { return m().power_of_two_multiple(n); } unsigned log2(mpz const & n) { return m().log2(n); } unsigned mlog2(mpz const & n) { return m().mlog2(n); } void machine_div2k(mpz & a, unsigned k) { m().machine_div2k(a, k); SASSERT(is_p_normalized(a)); } void machine_div2k(mpz const & a, unsigned k, mpz & r) { m().machine_div2k(a, k, r); SASSERT(is_p_normalized(r)); } bool root(mpz & a, unsigned n) { SASSERT(!modular()); return m().root(a, n); } bool root(mpz const & a, unsigned n, mpz & r) { SASSERT(!modular()); return m().root(a, n, r); } }; #endif