3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 11:43:36 +00:00
z3/src/math/lp/lp_settings.h
Nikolaj Bjorner 87d4ce2659 working on #5614
there are some different sources for the performance regression illustrated by the example. The mitigations will be enabled separately:
- m_bv_to_propagate is too expensive
- lp_bound_propagator misses equalities in two different ways:
   - it resets row checks after backtracking even though they could still propagate
   - it misses equalities for fixed rows when the fixed constant value does not correspond to a fixed variable.

FYI @levnach
2021-11-02 14:55:39 -07:00

460 lines
15 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/vector.h"
#include <string>
#include <algorithm>
#include <limits>
#include <iomanip>
#include <cstring>
#include "util/stopwatch.h"
#include "util/statistics.h"
#include "util/params.h"
#include "math/lp/lp_utils.h"
#include "math/lp/lp_types.h"
namespace lp {
enum class column_type {
free_column = 0,
lower_bound = 1,
upper_bound = 2,
boxed = 3,
fixed = 4
};
inline std::ostream& operator<<(std::ostream& out, column_type const& t) {
switch (t) {
case column_type::free_column: return out << "free";
case column_type::lower_bound: return out << "lower";
case column_type::upper_bound: return out << "upper";
case column_type::boxed: return out << "boxed";
case column_type::fixed: return out << "fixed";
}
}
enum class simplex_strategy_enum {
undecided = 3,
tableau_rows = 0,
tableau_costs = 1,
lu = 2
};
std::string column_type_to_string(column_type t);
enum class lp_status {
UNKNOWN,
INFEASIBLE,
TENTATIVE_UNBOUNDED,
UNBOUNDED,
TENTATIVE_DUAL_UNBOUNDED,
DUAL_UNBOUNDED,
OPTIMAL,
FEASIBLE,
FLOATING_POINT_ERROR,
TIME_EXHAUSTED,
ITERATIONS_EXHAUSTED,
EMPTY,
UNSTABLE,
CANCELLED
};
// when the ratio of the vector length to domain size to is greater than the return value we switch to solve_By_for_T_indexed_only
template <typename X>
unsigned ratio_of_index_size_to_all_size() {
if (numeric_traits<X>::precise())
return 10;
return 120;
}
const char* lp_status_to_string(lp_status status);
inline std::ostream& operator<<(std::ostream& out, lp_status status) {
return out << lp_status_to_string(status);
}
lp_status lp_status_from_string(std::string status);
enum non_basic_column_value_position { at_lower_bound, at_upper_bound, at_fixed, free_of_bounds, not_at_bound };
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition
class lp_resource_limit {
public:
virtual ~lp_resource_limit() = default;
virtual bool get_cancel_flag() = 0;
};
struct statistics {
unsigned m_make_feasible;
unsigned m_total_iterations;
unsigned m_iters_with_no_cost_growing;
unsigned m_num_factorizations;
unsigned m_num_of_implied_bounds;
unsigned m_need_to_solve_inf;
unsigned m_max_cols;
unsigned m_max_rows;
unsigned m_gcd_calls;
unsigned m_gcd_conflicts;
unsigned m_cube_calls;
unsigned m_cube_success;
unsigned m_patches;
unsigned m_patches_success;
unsigned m_hnf_cutter_calls;
unsigned m_hnf_cuts;
unsigned m_nla_calls;
unsigned m_horner_calls;
unsigned m_horner_conflicts;
unsigned m_cross_nested_forms;
unsigned m_grobner_calls;
unsigned m_grobner_conflicts;
unsigned m_offset_eqs;
statistics() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
void collect_statistics(::statistics& st) const {
st.update("arith-factorizations", m_num_factorizations);
st.update("arith-make-feasible", m_make_feasible);
st.update("arith-max-columns", m_max_cols);
st.update("arith-max-rows", m_max_rows);
st.update("arith-gcd-calls", m_gcd_calls);
st.update("arith-gcd-conflict", m_gcd_conflicts);
st.update("arith-cube-calls", m_cube_calls);
st.update("arith-cube-success", m_cube_success);
st.update("arith-patches", m_patches);
st.update("arith-patches-success", m_patches_success);
st.update("arith-hnf-calls", m_hnf_cutter_calls);
st.update("arith-hnf-cuts", m_hnf_cuts);
st.update("arith-horner-calls", m_horner_calls);
st.update("arith-horner-conflicts", m_horner_conflicts);
st.update("arith-horner-cross-nested-forms", m_cross_nested_forms);
st.update("arith-grobner-calls", m_grobner_calls);
st.update("arith-grobner-conflicts", m_grobner_conflicts);
st.update("arith-offset-eqs", m_offset_eqs);
}
};
struct lp_settings {
private:
class default_lp_resource_limit : public lp_resource_limit {
lp_settings& m_settings;
stopwatch m_sw;
public:
default_lp_resource_limit(lp_settings& s): m_settings(s) {
m_sw.start();
}
bool get_cancel_flag() override {
return (m_sw.get_current_seconds() > m_settings.time_limit);
}
};
default_lp_resource_limit m_default_resource_limit;
lp_resource_limit* m_resource_limit;
// used for debug output
std::ostream* m_debug_out;
// used for messages, for example, the computation progress messages
std::ostream* m_message_out;
statistics m_stats;
random_gen m_rand;
public:
void updt_params(params_ref const& p);
bool enable_hnf() const { return m_enable_hnf; }
unsigned nlsat_delay() const { return m_nlsat_delay; }
bool int_run_gcd_test() const { return m_int_run_gcd_test; }
bool& int_run_gcd_test() { return m_int_run_gcd_test; }
unsigned reps_in_scaler { 20 };
// when the absolute value of an element is less than pivot_epsilon
// in pivoting, we treat it as a zero
double pivot_epsilon { 0.00000001 };
// see Chatal, page 115
double positive_price_epsilon { 1e-7 };
// a quotation "if some choice of the entering variable leads to an eta matrix
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
double entering_diag_epsilon { 1e-8 };
int c_partial_pivoting { 10 }; // this is the constant c from page 410
unsigned depth_of_rook_search { 4 };
bool using_partial_pivoting { true };
// dissertation of Achim Koberstein
// if Bx - b is different at any component more that refactor_epsilon then we refactor
double refactor_tolerance { 1e-4 };
double pivot_tolerance { 1e-6 };
double zero_tolerance { 1e-12 };
double drop_tolerance { 1e-14 };
double tolerance_for_artificials { 1e-4 };
double can_be_taken_to_basis_tolerance { 0.00001 };
unsigned percent_of_entering_to_check { 5 }; // we try to find a profitable column in a percentage of the columns
bool use_scaling { true };
double scaling_maximum { 1.0 };
double scaling_minimum { 0.5 };
double harris_feasibility_tolerance { 1e-7 }; // page 179 of Istvan Maros
double ignore_epsilon_of_harris { 10e-5 };
unsigned max_number_of_iterations_with_no_improvements { 2000000 };
unsigned max_total_number_of_iterations { 20000000 };
double time_limit; // the maximum time limit of the total run time in seconds
// dual section
double dual_feasibility_tolerance { 1e-7 }; // page 71 of the PhD thesis of Achim Koberstein
double primal_feasibility_tolerance { 1e-7 }; // page 71 of the PhD thesis of Achim Koberstein
double relative_primal_feasibility_tolerance { 1e-9 }; // page 71 of the PhD thesis of Achim Koberstein
// end of dual section
bool m_bound_propagation { true };
bool presolve_with_double_solver_for_lar { true };
simplex_strategy_enum m_simplex_strategy;
int report_frequency { 1000 };
bool print_statistics { false };
unsigned column_norms_update_frequency { 12000 };
bool scale_with_ratio { true };
double density_threshold { 0.7 };
bool use_breakpoints_in_feasibility_search { false };
unsigned max_row_length_for_bound_propagation { 300 };
bool backup_costs { true };
unsigned column_number_threshold_for_using_lu_in_lar_solver { 4000 };
unsigned m_int_gomory_cut_period { 4 };
unsigned m_int_find_cube_period { 4 };
private:
unsigned m_hnf_cut_period { 4 };
bool m_int_run_gcd_test { true };
public:
unsigned limit_on_rows_for_hnf_cutter { 75 };
unsigned limit_on_columns_for_hnf_cutter { 150 };
private:
unsigned m_nlsat_delay;
bool m_enable_hnf { true };
bool m_print_external_var_name { false };
bool m_propagate_eqs { false };
public:
bool print_external_var_name() const { return m_print_external_var_name; }
bool propagate_eqs() const { return m_propagate_eqs;}
unsigned hnf_cut_period() const { return m_hnf_cut_period; }
void set_hnf_cut_period(unsigned period) { m_hnf_cut_period = period; }
unsigned random_next() { return m_rand(); }
void set_random_seed(unsigned s) { m_rand.set_seed(s); }
bool bound_progation() const {
return m_bound_propagation;
}
bool& bound_propagation() { return m_bound_propagation; }
lp_settings() : m_default_resource_limit(*this),
m_resource_limit(&m_default_resource_limit),
m_debug_out(&std::cout),
m_message_out(&std::cout),
time_limit ( std::numeric_limits<double>::max()), // the maximum time limit of the total run time in seconds
// dual section
m_simplex_strategy(simplex_strategy_enum::tableau_rows)
{}
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); }
void set_debug_ostream(std::ostream* out) { m_debug_out = out; }
void set_message_ostream(std::ostream* out) { m_message_out = out; }
std::ostream* get_debug_ostream() { return m_debug_out; }
std::ostream* get_message_ostream() { return m_message_out; }
statistics& stats() { return m_stats; }
statistics const& stats() const { return m_stats; }
template <typename T> static bool is_eps_small_general(const T & t, const double & eps) {
return (!numeric_traits<T>::precise())? is_epsilon_small<T>(t, eps) : numeric_traits<T>::is_zero(t);
}
template <typename T>
bool abs_val_is_smaller_than_dual_feasibility_tolerance(T const & t) {
return is_eps_small_general<T>(t, dual_feasibility_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_primal_feasibility_tolerance(T const & t) {
return is_eps_small_general<T>(t, primal_feasibility_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_can_be_taken_to_basis_tolerance(T const & t) {
return is_eps_small_general<T>(t, can_be_taken_to_basis_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_drop_tolerance(T const & t) const {
return is_eps_small_general<T>(t, drop_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_zero_tolerance(T const & t) {
return is_eps_small_general<T>(t, zero_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_refactor_tolerance(T const & t) {
return is_eps_small_general<T>(t, refactor_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_pivot_tolerance(T const & t) {
return is_eps_small_general<T>(t, pivot_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_harris_tolerance(T const & t) {
return is_eps_small_general<T>(t, harris_feasibility_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_ignore_epslilon_for_harris(T const & t) {
return is_eps_small_general<T>(t, ignore_epsilon_of_harris);
}
template <typename T>
bool abs_val_is_smaller_than_artificial_tolerance(T const & t) {
return is_eps_small_general<T>(t, tolerance_for_artificials);
}
// the method of lar solver to use
simplex_strategy_enum simplex_strategy() const {
return m_simplex_strategy;
}
simplex_strategy_enum & simplex_strategy() {
return m_simplex_strategy;
}
bool use_lu() const {
return m_simplex_strategy == simplex_strategy_enum::lu;
}
bool use_tableau() const {
return m_simplex_strategy == simplex_strategy_enum::tableau_rows ||
m_simplex_strategy == simplex_strategy_enum::tableau_costs;
}
bool use_tableau_rows() const {
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
}
#ifdef Z3DEBUG
static unsigned ddd; // used for debugging
#endif
}; // end of lp_settings class
#define LP_OUT(_settings_, _msg_) { if (_settings_.get_debug_ostream()) { *_settings_.get_debug_ostream() << _msg_; } }
template <typename T>
std::string T_to_string(const T & t) {
std::ostringstream strs;
strs << t;
return strs.str();
}
inline std::string T_to_string(const numeric_pair<mpq> & t) {
std::ostringstream strs;
double r = (t.x + t.y / mpq(1000)).get_double();
strs << r;
return strs.str();
}
inline std::string T_to_string(const mpq & t) {
std::ostringstream strs;
strs << t;
return strs.str();
}
template <typename T>
bool val_is_smaller_than_eps(T const & t, double const & eps) {
if (!numeric_traits<T>::precise()) {
return numeric_traits<T>::get_double(t) < eps;
}
return t <= numeric_traits<T>::zero();
}
template <typename T>
bool vectors_are_equal(T * a, vector<T> &b, unsigned n);
template <typename T>
bool vectors_are_equal(const vector<T> & a, const buffer<T> &b);
template <typename T>
bool vectors_are_equal(const vector<T> & a, const vector<T> &b);
template <typename T, typename K >
bool vectors_are_equal_(const T & a, const K &b) {
if (a.size() != b.size())
return false;
for (unsigned i = 0; i < a.size(); i++){
if (a[i] != b[i]) {
return false;
}
}
return true;
}
template <typename T>
T abs (T const & v) { return v >= zero_of_type<T>() ? v : -v; }
template <typename X>
X max_abs_in_vector(vector<X>& t){
X r(zero_of_type<X>());
for (auto & v : t)
r = std::max(abs(v) , r);
return r;
}
inline void print_blanks(int n, std::ostream & out) {
while (n--) {out << ' '; }
}
// after a push of the last element we ensure that the vector increases
// we also suppose that before the last push the vector was increasing
inline void ensure_increasing(vector<unsigned> & v) {
lp_assert(v.size() > 0);
unsigned j = v.size() - 1;
for (; j > 0; j-- )
if (v[j] <= v[j - 1]) {
// swap
unsigned t = v[j];
v[j] = v[j-1];
v[j-1] = t;
} else {
break;
}
}
inline static bool is_rational(const impq & n) { return is_zero(n.y); }
inline static mpq fractional_part(const impq & n) {
lp_assert(is_rational(n));
return n.x - floor(n.x);
}
inline static mpq fractional_part(const mpq & n) {
return n - floor(n);
}
#if Z3DEBUG
bool D();
#endif
}