3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
there are some different sources for the performance regression illustrated by the example. The mitigations will be enabled separately:
- m_bv_to_propagate is too expensive
- lp_bound_propagator misses equalities in two different ways:
   - it resets row checks after backtracking even though they could still propagate
   - it misses equalities for fixed rows when the fixed constant value does not correspond to a fixed variable.

FYI @levnach
This commit is contained in:
Nikolaj Bjorner 2021-11-02 14:55:28 -07:00
parent a94e2e62af
commit 87d4ce2659
13 changed files with 422 additions and 385 deletions

View file

@ -16,6 +16,9 @@ namespace lp {
lp_settings const& lar_solver::settings() const { return m_settings; }
statistics& lar_solver::stats() { return m_settings.stats(); }
void lar_solver::updt_params(params_ref const& _p) {
smt_params_helper p(_p);
set_track_pivoted_rows(p.arith_bprop_on_pivoted_rows());
@ -23,17 +26,9 @@ namespace lp {
m_settings.updt_params(_p);
}
void clear() {
lp_assert(false); // not implemented
}
lar_solver::lar_solver() :
m_status(lp_status::UNKNOWN),
m_crossed_bounds_column(-1),
m_mpq_lar_core_solver(m_settings, *this),
m_int_solver(nullptr),
m_need_register_terms(false),
m_var_register(false),
m_term_register(true),
m_constraints(*this) {}
@ -197,11 +192,11 @@ namespace lp {
void lar_solver::set_status(lp_status s) { m_status = s; }
lp_status lar_solver::find_feasible_solution() {
m_settings.stats().m_make_feasible++;
if (A_r().column_count() > m_settings.stats().m_max_cols)
m_settings.stats().m_max_cols = A_r().column_count();
if (A_r().row_count() > m_settings.stats().m_max_rows)
m_settings.stats().m_max_rows = A_r().row_count();
stats().m_make_feasible++;
if (A_r().column_count() > stats().m_max_cols)
stats().m_max_cols = A_r().column_count();
if (A_r().row_count() > stats().m_max_rows)
stats().m_max_rows = A_r().row_count();
if (strategy_is_undecided())
decide_on_strategy_and_adjust_initial_state();
@ -248,7 +243,7 @@ namespace lp {
m_constraints.push();
m_usage_in_terms.push();
}
void lar_solver::clean_popped_elements(unsigned n, u_set& set) {
vector<int> to_remove;
for (unsigned j : set)
@ -269,9 +264,8 @@ namespace lp {
m_crossed_bounds_column.pop(k);
unsigned n = m_columns_to_ul_pairs.peek_size(k);
m_var_register.shrink(n);
if (m_settings.use_tableau()) {
if (m_settings.use_tableau())
pop_tableau();
}
lp_assert(A_r().column_count() == n);
TRACE("lar_solver_details",
for (unsigned j = 0; j < n; j++) {
@ -285,6 +279,10 @@ namespace lp {
clean_popped_elements(n, m_columns_with_changed_bounds);
clean_popped_elements(n, m_incorrect_columns);
for (auto rid : m_row_bounds_to_replay)
insert_row_with_changed_bounds(rid);
m_row_bounds_to_replay.reset();
unsigned m = A_r().row_count();
clean_popped_elements(m, m_rows_with_changed_bounds);
clean_inf_set_of_r_solver_after_pop();
@ -633,6 +631,9 @@ namespace lp {
left_side.push_back(std::make_pair(p.second, p.first));
}
void lar_solver::insert_row_with_changed_bounds(unsigned rid) {
m_rows_with_changed_bounds.insert(rid);
}
void lar_solver::detect_rows_of_bound_change_column_for_nbasic_column(unsigned j) {
if (A_r().row_count() != m_column_buffer.data_size())
@ -643,14 +644,14 @@ namespace lp {
m_mpq_lar_core_solver.m_r_solver.solve_Bd(j, m_column_buffer);
for (unsigned i : m_column_buffer.m_index)
m_rows_with_changed_bounds.insert(i);
insert_row_with_changed_bounds(i);
}
void lar_solver::detect_rows_of_bound_change_column_for_nbasic_column_tableau(unsigned j) {
for (auto& rc : m_mpq_lar_core_solver.m_r_A.m_columns[j])
m_rows_with_changed_bounds.insert(rc.var());
insert_row_with_changed_bounds(rc.var());
}
bool lar_solver::use_tableau() const { return m_settings.use_tableau(); }
@ -743,7 +744,7 @@ namespace lp {
void lar_solver::detect_rows_with_changed_bounds_for_column(unsigned j) {
if (m_mpq_lar_core_solver.m_r_heading[j] >= 0) {
m_rows_with_changed_bounds.insert(m_mpq_lar_core_solver.m_r_heading[j]);
insert_row_with_changed_bounds(m_mpq_lar_core_solver.m_r_heading[j]);
return;
}
@ -793,7 +794,7 @@ namespace lp {
update_x_and_inf_costs_for_columns_with_changed_bounds();
m_mpq_lar_core_solver.solve();
set_status(m_mpq_lar_core_solver.m_r_solver.get_status());
lp_assert(((m_settings.stats().m_make_feasible% 100) != 0) || m_status != lp_status::OPTIMAL || all_constraints_hold());
lp_assert(((stats().m_make_feasible% 100) != 0) || m_status != lp_status::OPTIMAL || all_constraints_hold());
}
@ -974,9 +975,7 @@ namespace lp {
bool lar_solver::the_left_sides_sum_to_zero(const vector<std::pair<mpq, unsigned>>& evidence) const {
std::unordered_map<var_index, mpq> coeff_map;
for (auto& it : evidence) {
mpq coeff = it.first;
constraint_index con_ind = it.second;
for (auto const & [coeff, con_ind] : evidence) {
lp_assert(m_constraints.valid_index(con_ind));
register_in_map(coeff_map, m_constraints[con_ind], coeff);
}
@ -1337,7 +1336,7 @@ namespace lp {
void lar_solver::mark_rows_for_bound_prop(lpvar j) {
auto& column = A_r().m_columns[j];
for (auto const& r : column)
m_rows_with_changed_bounds.insert(r.var());
insert_row_with_changed_bounds(r.var());
}
@ -1659,7 +1658,7 @@ namespace lp {
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
m_mpq_lar_core_solver.m_r_basis.push_back(j);
if (m_settings.bound_propagation())
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
insert_row_with_changed_bounds(A_r().row_count() - 1);
}
else {
m_mpq_lar_core_solver.m_r_heading.push_back(-static_cast<int>(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1);
@ -1755,7 +1754,7 @@ namespace lp {
if (use_tableau() && !coeffs.empty()) {
add_row_from_term_no_constraint(m_terms.back(), ret);
if (m_settings.bound_propagation())
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
insert_row_with_changed_bounds(A_r().row_count() - 1);
}
lp_assert(m_var_register.size() == A_r().column_count());
if (m_need_register_terms) {

View file

@ -76,13 +76,13 @@ class lar_solver : public column_namer {
//////////////////// fields //////////////////////////
lp_settings m_settings;
lp_status m_status;
lp_status m_status = lp_status::UNKNOWN;
stacked_value<simplex_strategy_enum> m_simplex_strategy;
// such can be found at the initialization step: u < l
stacked_value<int> m_crossed_bounds_column;
lar_core_solver m_mpq_lar_core_solver;
int_solver * m_int_solver;
bool m_need_register_terms;
int_solver * m_int_solver = nullptr;
bool m_need_register_terms = false;
var_register m_var_register;
var_register m_term_register;
stacked_vector<ul_pair> m_columns_to_ul_pairs;
@ -90,6 +90,8 @@ class lar_solver : public column_namer {
// the set of column indices j such that bounds have changed for j
u_set m_columns_with_changed_bounds;
u_set m_rows_with_changed_bounds;
unsigned_vector m_row_bounds_to_replay;
u_set m_basic_columns_with_changed_cost;
// these are basic columns with the value changed, so the the corresponding row in the tableau
// does not sum to zero anymore
@ -164,7 +166,6 @@ class lar_solver : public column_namer {
void adjust_initial_state_for_lu();
void adjust_initial_state_for_tableau_rows();
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls);
void clear();
bool use_lu() const;
bool sizes_are_correct() const;
bool implied_bound_is_correctly_explained(implied_bound const & be, const vector<std::pair<mpq, unsigned>> & explanation) const;
@ -219,6 +220,7 @@ class lar_solver : public column_namer {
void change_basic_columns_dependend_on_a_given_nb_column(unsigned j, const numeric_pair<mpq> & delta);
void update_x_and_inf_costs_for_column_with_changed_bounds(unsigned j);
unsigned num_changed_bounds() const { return m_rows_with_changed_bounds.size(); }
void insert_row_with_changed_bounds(unsigned rid);
void detect_rows_with_changed_bounds_for_column(unsigned j);
void detect_rows_with_changed_bounds();
void set_value_for_nbasic_column(unsigned j, const impq & new_val);
@ -368,20 +370,19 @@ public:
// these two loops should be run sequentially
// since the first loop might change column bounds
// and add fixed columns this way
if (settings().cheap_eqs()) {
if (settings().propagate_eqs()) {
bp.clear_for_eq();
for (unsigned i : m_rows_with_changed_bounds) {
calculate_cheap_eqs_for_row(i, bp);
unsigned offset_eqs = stats().m_offset_eqs;
bp.cheap_eq_tree(i);
if (settings().get_cancel_flag())
return;
if (stats().m_offset_eqs > offset_eqs)
m_row_bounds_to_replay.push_back(i);
}
}
m_rows_with_changed_bounds.clear();
}
template <typename T>
void calculate_cheap_eqs_for_row(unsigned i, lp_bound_propagator<T> & bp) {
bp.cheap_eq_tree(i);
}
bool is_fixed(column_index const& j) const { return column_is_fixed(j); }
inline column_index to_column_index(unsigned v) const { return column_index(external_to_column_index(v)); }
@ -515,6 +516,8 @@ public:
unsigned column_to_reported_index(unsigned j) const;
lp_settings & settings();
lp_settings const & settings() const;
statistics& stats();
void updt_params(params_ref const& p);
column_type get_column_type(unsigned j) const { return m_mpq_lar_core_solver.m_column_types()[j]; }
const impq & get_lower_bound(unsigned j) const { return m_mpq_lar_core_solver.m_r_lower_bounds()[j]; }

View file

@ -155,7 +155,7 @@ public:
};
class const_iterator {
u_map< mpq>::iterator m_it;
u_map<mpq>::iterator m_it;
public:
ival operator*() const { return ival(m_it->m_key, m_it->m_value); }
const_iterator operator++() { const_iterator i = *this; m_it++; return i; }

View file

@ -72,14 +72,15 @@ class lp_bound_propagator {
static int other(int x, int y, int z) { SASSERT(x == z || y == z); return x == z ? y : x; }
std::ostream& print_vert(std::ostream & out, const vertex* v) const {
out << "(c = " << v->column() << ", parent = {";
if (v->parent()) { out << "(" << v->parent()->column() << ")";}
else { out << "null"; }
if (v->parent())
out << "(" << v->parent()->column() << ")";
else
out << "null";
out << "} , lvl = " << v->level();
if (m_pol.contains(v->column())) {
if (m_pol.contains(v->column()))
out << (pol(v) == -1? " -":" +");
} else {
else
out << " not in m_pol";
}
out << ')';
return out;
}
@ -87,13 +88,13 @@ class lp_bound_propagator {
hashtable<unsigned, u_hash, u_eq> m_visited_rows;
hashtable<unsigned, u_hash, u_eq> m_visited_columns;
u_map<vertex*> m_vertices;
vertex* m_root;
vertex* m_root = nullptr;
// At some point we can find a row with a single vertex non fixed vertex
// then we can fix the whole tree,
// by adjusting the vertices offsets, so they become absolute.
// If the tree is fixed then in addition to checking with the m_vals_to_verts
// we are going to check with the m_fixed_var_tables.
const vertex* m_fixed_vertex;
const vertex* m_fixed_vertex = nullptr;
explanation m_fixed_vertex_explanation;
// a pair (o, j) belongs to m_vals_to_verts iff x[j] = x[m_root->column()] + o
map<mpq, const vertex*, obj_hash<mpq>, default_eq<mpq>> m_vals_to_verts;
@ -111,19 +112,199 @@ class lp_bound_propagator {
T& m_imp;
vector<implied_bound> m_ibounds;
map<mpq, unsigned, obj_hash<mpq>, default_eq<mpq>> m_val2fixed_row;
void try_add_equation_with_internal_fixed_tables(unsigned r1, vertex const* v) {
SASSERT(m_fixed_vertex);
if (v != m_root)
return;
unsigned v1 = v->column();
unsigned r2 = UINT_MAX;
if (!m_val2fixed_row.find(val(v1), r2) || r2 >= lp().row_count()) {
m_val2fixed_row.insert(val(v1), r1);
return;
}
unsigned v2, v3;
int polarity;
if (!is_tree_offset_row(r2, v2, v3, polarity) || !not_set(v3) ||
is_int(v1) != is_int(v2) || val(v1) != val(v2)) {
m_val2fixed_row.insert(val(v1), r1);
return;
}
explanation ex;
explain_fixed_in_row(r1, ex);
explain_fixed_in_row(r2, ex);
add_eq_on_columns(ex, v1, v2, true);
}
void try_add_equation_with_lp_fixed_tables(unsigned row_index, const vertex *v) {
SASSERT(m_fixed_vertex);
unsigned v_j = v->column();
unsigned j = null_lpvar;
if (!lp().find_in_fixed_tables(val(v_j), is_int(v_j), j)) {
// try_add_equation_with_internal_fixed_tables(row_index, v);
return;
}
TRACE("cheap_eq",
tout << "v_j = "; lp().print_column_info(v_j, tout) << std::endl;
tout << "v = "; print_vert(tout, v) << std::endl;
tout << "found j " << j << std::endl; lp().print_column_info(j, tout)<< std::endl;
tout << "found j = " << j << std::endl;);
vector<edge> path = connect_in_tree(v, m_fixed_vertex);
explanation ex = get_explanation_from_path(path);
ex.add_expl(m_fixed_vertex_explanation);
explain_fixed_column(j, ex);
add_eq_on_columns(ex, j, v_j, true);
}
void try_add_equation_with_val_table(const vertex *v) {
SASSERT(m_fixed_vertex);
unsigned v_j = v->column();
const vertex *u = nullptr;
if (!m_vals_to_verts.find(val(v_j), u)) {
m_vals_to_verts.insert(val(v_j), v);
return;
}
unsigned j = u->column();
if (j == v_j || is_int(j) != is_int(v_j))
return;
TRACE("cheap_eq", tout << "found j=" << j << " for v=";
print_vert(tout, v) << "\n in m_vals_to_verts\n";);
vector<edge> path = connect_in_tree(u, v);
explanation ex = get_explanation_from_path(path);
ex.add_expl(m_fixed_vertex_explanation);
add_eq_on_columns(ex, j, v_j, true);
}
static bool not_set(unsigned j) { return j == UINT_MAX; }
static bool is_set(unsigned j) { return j != UINT_MAX; }
void create_root(unsigned row_index) {
SASSERT(!m_root && !m_fixed_vertex);
unsigned x, y;
int polarity;
TRACE("cheap_eq_det", print_row(tout, row_index););
if (!is_tree_offset_row(row_index, x, y, polarity)) {
TRACE("cheap_eq_det", tout << "not an offset row\n";);
return;
}
TRACE("cheap_eq", print_row(tout, row_index););
m_root = alloc_v(x);
set_polarity(m_root, 1); // keep m_root in the positive table
if (not_set(y)) {
set_fixed_vertex(m_root);
explain_fixed_in_row(row_index, m_fixed_vertex_explanation);
}
else {
vertex *v = add_child_with_check(row_index, y, m_root, polarity);
if (v)
explore_under(v);
}
explore_under(m_root);
}
void explore_under(vertex * v) {
check_for_eq_and_add_to_val_tables(v);
go_over_vertex_column(v);
}
// In case of only one non fixed column, and the function returns true,
// this column would be represened by x.
bool is_tree_offset_row(unsigned row_index, unsigned & x, unsigned & y, int & polarity) const {
x = y = UINT_MAX;
const row_cell<mpq>* x_cell = nullptr;
const row_cell<mpq>* y_cell = nullptr;
const auto & row = lp().get_row(row_index);
for (unsigned k = 0; k < row.size(); k++) {
const auto& c = row[k];
if (column_is_fixed(c.var()))
continue;
if (not_set(x)) {
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
x = c.var();
x_cell = & c;
}
else
return false;
}
else if (not_set(y)) {
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
y = c.var();
y_cell = & c;
}
else
return false;
}
else
return false;
}
if (is_set(x)) {
if (is_set(y))
polarity = x_cell->coeff().is_pos() == y_cell->coeff().is_pos()? -1 : 1;
else
polarity = 1;
return true;
}
return false;
}
void go_over_vertex_column(vertex * v) {
lpvar j = v->column();
if (!check_insert(m_visited_columns, j))
return;
for (const auto & c : lp().get_column(j)) {
unsigned row_index = c.var();
if (!check_insert(m_visited_rows, row_index))
continue;
vertex* u = get_child_from_row(row_index, v);
if (u)
explore_under(u);
}
}
void reset_cheap_eq_eh() {
if (!m_root)
return;
delete_tree(m_root);
m_root = nullptr;
set_fixed_vertex(nullptr);
m_fixed_vertex_explanation.clear();
m_vals_to_verts.reset();
m_vals_to_verts_neg.reset();
m_pol.reset();
m_vertices.reset();
}
struct reset_cheap_eq {
lp_bound_propagator& p;
reset_cheap_eq(lp_bound_propagator& p):p(p) {}
~reset_cheap_eq() { p.reset_cheap_eq_eh(); }
};
public:
lp_bound_propagator(T& imp):
m_imp(imp) {}
const vector<implied_bound>& ibounds() const { return m_ibounds; }
void init() {
m_improved_upper_bounds.clear();
m_improved_lower_bounds.clear();
m_ibounds.reset();
}
lp_bound_propagator(T& imp): m_root(nullptr),
m_fixed_vertex(nullptr),
m_imp(imp) {}
const lar_solver& lp() const { return m_imp.lp(); }
lar_solver& lp() { return m_imp.lp(); }
column_type get_column_type(unsigned j) const {
return m_imp.lp().get_column_type(j);
}
@ -133,9 +314,8 @@ public:
}
const mpq & get_lower_bound_rational(unsigned j) const {
return m_imp.lp().get_lower_bound(j).x;
return m_imp.lp().get_lower_bound(j).x;
}
const impq & get_upper_bound(unsigned j) const {
return m_imp.lp().get_upper_bound(j);
@ -167,19 +347,22 @@ public:
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
TRACE("try_add_bound", m_imp.lp().print_implied_bound(found_bound, tout););
}
} else {
}
else {
m_improved_lower_bounds[j] = m_ibounds.size();
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
TRACE("try_add_bound", m_imp.lp().print_implied_bound(m_ibounds.back(), tout););
}
} else { // the upper bound case
}
else { // the upper bound case
if (try_get_value(m_improved_upper_bounds, j, k)) {
auto & found_bound = m_ibounds[k];
if (v < found_bound.m_bound || (v == found_bound.m_bound && !found_bound.m_strict && strict)) {
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
TRACE("try_add_bound", m_imp.lp().print_implied_bound(found_bound, tout););
}
} else {
}
else {
m_improved_upper_bounds[j] = m_ibounds.size();
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
TRACE("try_add_bound", m_imp.lp().print_implied_bound(m_ibounds.back(), tout););
@ -199,54 +382,12 @@ public:
return val(v->column());
}
void try_add_equation_with_lp_fixed_tables(const vertex *v) {
SASSERT(m_fixed_vertex);
unsigned v_j = v->column();
unsigned j = null_lpvar;
if (!lp().find_in_fixed_tables(val(v_j), is_int(v_j), j))
return;
TRACE("cheap_eq", tout << "v_j = "; lp().print_column_info(v_j, tout) << std::endl;);
TRACE("cheap_eq", tout << "v = "; print_vert(tout, v) << std::endl;);
TRACE("cheap_eq", tout << "found j " << j << std::endl;
lp().print_column_info(j, tout)<< std::endl;);
TRACE("cheap_eq", tout << "found j = " << j << std::endl;);
vector<edge> path = connect_in_tree(v, m_fixed_vertex);
explanation ex = get_explanation_from_path(path);
ex.add_expl(m_fixed_vertex_explanation);
explain_fixed_column(j, ex);
add_eq_on_columns(ex, j, v->column());
}
void try_add_equation_with_val_table(const vertex *v) {
SASSERT(m_fixed_vertex);
unsigned v_j = v->column();
const vertex *u = nullptr;
if (!m_vals_to_verts.find(val(v_j), u)) {
m_vals_to_verts.insert(val(v_j), v);
return;
}
unsigned j = u->column();
if (j == v_j || is_int(j) != is_int(v_j))
return;
TRACE("cheap_eq", tout << "found j=" << j << " for v=";
print_vert(tout, v) << "\n in m_vals_to_verts\n";);
vector<edge> path = connect_in_tree(u, v);
explanation ex = get_explanation_from_path(path);
ex.add_expl(m_fixed_vertex_explanation);
add_eq_on_columns(ex, j, v_j);
}
bool tree_contains_r(vertex* root, vertex *v) const {
if (*root == *v)
return true;
for (auto e : root->edges()) {
for (auto e : root->edges())
if (tree_contains_r(e.target(), v))
return true;
}
return false;
}
@ -294,38 +435,12 @@ public:
return v;
}
static bool not_set(unsigned j) { return j == UINT_MAX; }
static bool is_set(unsigned j) { return j != UINT_MAX; }
void create_root(unsigned row_index) {
SASSERT(!m_root && !m_fixed_vertex);
unsigned x, y;
int polarity;
TRACE("cheap_eq_det", print_row(tout, row_index););
if (!is_tree_offset_row(row_index, x, y, polarity)) {
TRACE("cheap_eq_det", tout << "not an offset row\n";);
return;
}
TRACE("cheap_eq", print_row(tout, row_index););
m_root = alloc_v(x);
set_polarity(m_root, 1); // keep m_root in the positive table
if (not_set(y)) {
set_fixed_vertex(m_root);
explain_fixed_in_row(row_index, m_fixed_vertex_explanation);
} else {
vertex *v = add_child_with_check(row_index, y, m_root, polarity);
if (v)
explore_under(v);
}
explore_under(m_root);
}
unsigned column(unsigned row, unsigned index) {
return lp().get_row(row)[index].var();
}
bool fixed_phase() const { return m_fixed_vertex; }
// Returns the vertex to start exploration from, or nullptr.
@ -379,10 +494,12 @@ public:
is_int(k->column()) == is_int(v->column()) &&
!is_equal(k->column(), v->column())) {
report_eq(k, v);
} else {
}
else {
TRACE("cheap_eq", tout << "no report\n";);
}
} else {
}
else {
TRACE("cheap_eq", tout << "registered: " << val(v) << " -> { "; print_vert(tout, v) << "} \n";);
table.insert(val(v), v);
}
@ -411,37 +528,31 @@ public:
std::ostream& print_path(const vector<edge>& path, std::ostream& out) const {
out << "path = \n";
for (const edge& k : path) {
for (const edge& k : path)
print_edge(k, out) << "\n";
}
return out;
}
// we have v_i and v_j, indices of vertices at the same offsets
void report_eq(const vertex* v_i, const vertex* v_j) {
SASSERT(v_i != v_j);
SASSERT(lp().get_column_value(v_i->column()) == lp().get_column_value(v_j->column()));
TRACE("cheap_eq", tout << v_i->column() << " = " << v_j->column() << "\nu = ";
print_vert(tout, v_i) << "\nv = "; print_vert(tout, v_j) <<"\n";
);
print_vert(tout, v_i) << "\nv = "; print_vert(tout, v_j) <<"\n");
vector<edge> path = connect_in_tree(v_i, v_j);
lp::explanation exp = get_explanation_from_path(path);
add_eq_on_columns(exp, v_i->column(), v_j->column());
add_eq_on_columns(exp, v_i->column(), v_j->column(), false);
}
std::ostream& print_expl(std::ostream & out, const explanation& exp) const {
for (auto p : exp) {
for (auto p : exp)
lp().constraints().display(out, [this](lpvar j) { return lp().get_variable_name(j);}, p.ci());
}
return out;
}
void add_eq_on_columns(const explanation& exp, lpvar j, lpvar k) {
bool add_eq_on_columns(const explanation& exp, lpvar j, lpvar k, bool is_fixed) {
SASSERT(j != k);
unsigned je = lp().column_to_reported_index(j);
unsigned ke = lp().column_to_reported_index(k);
@ -452,8 +563,10 @@ public:
tout << "theory_vars v" << lp().local_to_external(je) << " == v" << lp().local_to_external(ke) << "\n";
);
m_imp.add_eq(je, ke, exp);
lp().settings().stats().m_cheap_eqs++;
bool added = m_imp.add_eq(je, ke, exp, is_fixed);
if (added)
lp().stats().m_offset_eqs++;
return added;
}
// column to theory_var
@ -478,14 +591,10 @@ public:
}
void explain_fixed_in_row(unsigned row, explanation& ex) const {
TRACE("cheap_eq",
tout << lp().get_row(row) << std::endl;
);
for (const auto & c : lp().get_row(row)) {
if (lp().is_fixed(c.var())) {
TRACE("cheap_eq", tout << lp().get_row(row) << std::endl);
for (const auto & c : lp().get_row(row))
if (lp().is_fixed(c.var()))
explain_fixed_column(c.var(), ex);
}
}
}
void explain_fixed_column(unsigned j, explanation & ex) const {
@ -536,10 +645,9 @@ public:
if (visited_verts.find(v->column()) != visited_verts.end())
return false;
visited_verts.insert(v->column());
for (auto e : v->edges()) {
for (auto e : v->edges())
if (!tree_is_correct(e.target(), visited_verts))
return false;
}
return true;
}
std::ostream& print_tree(std::ostream & out, vertex* v) const {
@ -553,43 +661,37 @@ public:
return out;
}
void try_add_equation_with_fixed_tables(const vertex* v) {
try_add_equation_with_lp_fixed_tables(v);
void try_add_equation_with_fixed_tables(unsigned row_index, const vertex* v) {
try_add_equation_with_lp_fixed_tables(row_index, v);
try_add_equation_with_val_table(v);
}
void create_fixed_eqs(const vertex* v) {
try_add_equation_with_fixed_tables(v);
void handle_fixed_phase(unsigned row_index) {
if (!fixed_phase())
return;
const vertex* v = m_root;
try_add_equation_with_fixed_tables(row_index, v);
for (auto e: v->edges())
try_add_equation_with_fixed_tables(e.target());
try_add_equation_with_fixed_tables(row_index, e.target());
}
void handle_fixed_phase() {
create_fixed_eqs(m_root);
}
void cheap_eq_tree(unsigned row_index) {
TRACE("cheap_eq_det", tout << "row_index = " << row_index << "\n";);
if (!check_insert(m_visited_rows, row_index))
return; // already explored
create_root(row_index);
if (m_root == nullptr) {
reset_cheap_eq _reset(*this);
TRACE("cheap_eq_det", tout << "row_index = " << row_index << "\n";);
if (!check_insert(m_visited_rows, row_index))
return;
}
TRACE("cheap_eq", tout << "tree = "; print_tree(tout, m_root) << "\n";);
create_root(row_index);
if (!m_root)
return;
TRACE("cheap_eq", tout << "tree = "; print_tree(tout, m_root) << "\n";);
SASSERT(tree_is_correct());
if (fixed_phase())
handle_fixed_phase();
TRACE("cheap_eq", tout << "done for row_index " << row_index << "\n";);
TRACE("cheap_eq", tout << "tree size = " << verts_size(););
delete_tree(m_root);
m_root = nullptr;
set_fixed_vertex(nullptr);
m_fixed_vertex_explanation.clear();
m_vals_to_verts.reset();
m_vals_to_verts_neg.reset();
m_pol.reset();
m_vertices.reset();
handle_fixed_phase(row_index);
TRACE("cheap_eq",
tout << "done for row_index " << row_index << "\n";
tout << "tree size = " << verts_size(););
}
std::ostream& print_row(std::ostream & out, unsigned row_index) const {
@ -643,71 +745,7 @@ public:
return false;
table.insert(j);
return true;
}
void go_over_vertex_column(vertex * v) {
lpvar j = v->column();
if (!check_insert(m_visited_columns, j))
return;
for (const auto & c : lp().get_column(j)) {
unsigned row_index = c.var();
if (!check_insert(m_visited_rows, row_index))
continue;
vertex *u = get_child_from_row(row_index, v);
if (u) {
// debug
// if (verts_size() > 3) {
// std::cout << "big tree\n";
// TRACE("cheap_eq", print_tree(tout, m_root););
// exit(1);
// } // end debug
explore_under(u);
}
}
}
void explore_under(vertex * v) {
check_for_eq_and_add_to_val_tables(v);
go_over_vertex_column(v);
}
}
// In case of only one non fixed column, and the function returns true,
// this column would be represened by x.
bool is_tree_offset_row( unsigned row_index,
unsigned & x, unsigned & y, int & polarity ) const {
x = y = UINT_MAX;
const row_cell<mpq>* x_cell = nullptr;
const row_cell<mpq>* y_cell = nullptr;
const auto & row = lp().get_row(row_index);
for (unsigned k = 0; k < row.size(); k++) {
const auto& c = row[k];
if (column_is_fixed(c.var()))
continue;
if (not_set(x)) {
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
x = c.var();
x_cell = & c;
} else {
return false;
}
} else if (not_set(y)) {
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
y = c.var();
y_cell = & c;
} else
return false;
} else
return false;
}
if (is_set(x)) {
if (is_set(y))
polarity = x_cell->coeff().is_pos() == y_cell->coeff().is_pos()? -1 : 1;
else
polarity = 1;
return true;
}
return false;
}
};
}

View file

@ -27,7 +27,7 @@ template bool lp::vectors_are_equal<lp::mpq>(vector<lp::mpq > const&, vector<lp:
void lp::lp_settings::updt_params(params_ref const& _p) {
smt_params_helper p(_p);
m_enable_hnf = p.arith_enable_hnf();
m_cheap_eqs = p.arith_propagate_eqs();
m_propagate_eqs = p.arith_propagate_eqs();
print_statistics = p.arith_print_stats();
m_print_external_var_name = p.arith_print_ext_var_names();
report_frequency = p.arith_rep_freq();

View file

@ -126,7 +126,7 @@ struct statistics {
unsigned m_cross_nested_forms;
unsigned m_grobner_calls;
unsigned m_grobner_conflicts;
unsigned m_cheap_eqs;
unsigned m_offset_eqs;
statistics() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
void collect_statistics(::statistics& st) const {
@ -147,7 +147,7 @@ struct statistics {
st.update("arith-horner-cross-nested-forms", m_cross_nested_forms);
st.update("arith-grobner-calls", m_grobner_calls);
st.update("arith-grobner-conflicts", m_grobner_conflicts);
st.update("arith-cheap-eqs", m_cheap_eqs);
st.update("arith-offset-eqs", m_offset_eqs);
}
};
@ -242,10 +242,10 @@ private:
unsigned m_nlsat_delay;
bool m_enable_hnf { true };
bool m_print_external_var_name { false };
bool m_cheap_eqs { false };
bool m_propagate_eqs { false };
public:
bool print_external_var_name() const { return m_print_external_var_name; }
bool cheap_eqs() const { return m_cheap_eqs;}
bool propagate_eqs() const { return m_propagate_eqs;}
unsigned hnf_cut_period() const { return m_hnf_cut_period; }
void set_hnf_cut_period(unsigned period) { m_hnf_cut_period = period; }
unsigned random_next() { return m_rand(); }

View file

@ -301,26 +301,27 @@ namespace arith {
m_explanation.add_pair(j, v);
}
void solver::add_eq(lpvar u, lpvar v, lp::explanation const& e) {
bool solver::add_eq(lpvar u, lpvar v, lp::explanation const& e, bool is_fixed) {
if (s().inconsistent())
return;
return false;
theory_var uv = lp().local_to_external(u); // variables that are returned should have external representations
theory_var vv = lp().local_to_external(v); // so maybe better to have them already transformed to external form
if (is_equal(uv, vv))
return;
return false;
enode* n1 = var2enode(uv);
enode* n2 = var2enode(vv);
expr* e1 = n1->get_expr();
expr* e2 = n2->get_expr();
if (m.is_ite(e1) || m.is_ite(e2))
return;
if (!is_fixed && !a.is_numeral(e1) && !a.is_numeral(e2) && (m.is_ite(e1) || m.is_ite(e2)))
return false;
if (e1->get_sort() != e2->get_sort())
return;
return false;
reset_evidence();
for (auto ev : e)
set_evidence(ev.ci(), m_core, m_eqs);
auto* jst = euf::th_explain::propagate(*this, m_core, m_eqs, n1, n2);
ctx.propagate(n1, n2, jst->to_index());
return true;
}
bool solver::bound_is_interesting(unsigned vi, lp::lconstraint_kind kind, const rational& bval) const {

View file

@ -450,7 +450,7 @@ namespace arith {
lp::lar_solver& lp() { return *m_solver; }
lp::lar_solver const& lp() const { return *m_solver; }
bool is_equal(theory_var x, theory_var y) const;
void add_eq(lpvar u, lpvar v, lp::explanation const& e);
bool add_eq(lpvar u, lpvar v, lp::explanation const& e, bool is_fixed);
void consume(rational const& v, lp::constraint_index j);
bool bound_is_interesting(unsigned vi, lp::lconstraint_kind kind, const rational& bval) const;
};

View file

@ -262,22 +262,30 @@ namespace smt {
}
void context::display_eqc(std::ostream & out) const {
bool first = true;
for (enode * x : m_enodes) {
expr * n = x->get_expr();
expr * r = x->get_root()->get_expr();
if (n != r) {
if (first) {
out << "equivalence classes:\n";
first = false;
}
out << "#" << n->get_id() << " -> #" << r->get_id() << ": ";
out << mk_pp(n, m) << " -> " << mk_pp(r, m) << "\n";
if (m_enodes.empty())
return;
unsigned count = 0;
for (enode * r : m_enodes)
if (r->is_root())
++count;
out << "equivalence classes: " << count << "\n";
for (enode * r : m_enodes) {
if (!r->is_root())
continue;
out << "#" << enode_pp(r, *this) << "\n";
if (r->get_class_size() == 1)
continue;
for (enode* n : *r) {
if (n != r)
out << " #" << enode_pp(n, *this) << "\n";
}
}
}
void context::display_app_enode_map(std::ostream & out) const {
return;
// mainly useless
if (!m_e_internalized_stack.empty()) {
out << "expression -> enode:\n";
unsigned sz = m_e_internalized_stack.size();

View file

@ -453,9 +453,6 @@ namespace smt {
std::ostream& display_flat_app(std::ostream & out, app * n) const;
std::ostream& display_var_def(std::ostream & out, theory_var v) const { return display_app(out, get_enode(v)->get_expr()); }
std::ostream& display_var_flat_def(std::ostream & out, theory_var v) const { return display_flat_app(out, get_enode(v)->get_expr()); }
protected:
void log_axiom_instantiation(app * r, unsigned axiom_id = UINT_MAX, unsigned num_bindings = 0,

View file

@ -2239,17 +2239,17 @@ namespace smt {
ctx.push_trail(value_trail<unsigned>(m_assume_eq_head));
while (m_assume_eq_head < m_assume_eq_candidates.size()) {
std::pair<theory_var, theory_var> const & p = m_assume_eq_candidates[m_assume_eq_head];
theory_var v1 = p.first;
theory_var v2 = p.second;
auto const& [v1, v2] = m_assume_eq_candidates[m_assume_eq_head];
enode* n1 = get_enode(v1);
enode* n2 = get_enode(v2);
m_assume_eq_head++;
CTRACE("func_interp_bug",
get_value(v1) == get_value(v2) &&
get_enode(v1)->get_root() != get_enode(v2)->get_root(),
tout << "assuming eq: #" << get_enode(v1)->get_owner_id() << " = #" << get_enode(v2)->get_owner_id() << "\n";);
n1->get_root() != n2->get_root(),
tout << "assuming eq: #" << n1->get_owner_id() << " = #" << n2->get_owner_id() << "\n";);
if (get_value(v1) == get_value(v2) &&
get_enode(v1)->get_root() != get_enode(v2)->get_root() &&
assume_eq(get_enode(v1), get_enode(v2))) {
n1->get_root() != n2->get_root() &&
assume_eq(n1, n2)) {
++m_stats.m_assume_eqs;
return true;
}

View file

@ -82,18 +82,17 @@ namespace smt {
template<typename Ext>
void theory_arith<Ext>::display_row(std::ostream & out, row const & r, bool compact) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
out << "(v" << r.get_base_var() << ") : ";
bool first = true;
for (; it != end; ++it) {
if (!it->is_dead()) {
for (auto const& e : r) {
if (!e.is_dead()) {
if (first)
first = false;
else
out << " + ";
theory_var s = it->m_var;
numeral const & c = it->m_coeff;
theory_var s = e.m_var;
numeral const & c = e.m_coeff;
if (!c.is_one())
out << c << "*";
if (compact) {
@ -103,7 +102,7 @@ namespace smt {
}
}
else
display_var_flat_def(out, s);
out << enode_pp(get_enode(s), ctx);
}
}
out << "\n";
@ -117,20 +116,16 @@ namespace smt {
else
out << "rows (expanded view):\n";
unsigned num = m_rows.size();
for (unsigned r_id = 0; r_id < num; r_id++) {
if (m_rows[r_id].m_base_var != null_theory_var) {
for (unsigned r_id = 0; r_id < num; r_id++)
if (m_rows[r_id].m_base_var != null_theory_var)
display_row(out, r_id, compact);
}
}
}
template<typename Ext>
void theory_arith<Ext>::display_row_shape(std::ostream & out, row const & r) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
for (auto const& e : r) {
if (!e.is_dead()) {
numeral const & c = e.m_coeff;
if (c.is_one())
out << "1";
else if (c.is_minus_one())
@ -150,11 +145,9 @@ namespace smt {
template<typename Ext>
bool theory_arith<Ext>::is_one_minus_one_row(row const & r) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
for (auto const& e : r) {
if (!e.is_dead()) {
numeral const & c = e.m_coeff;
if (!c.is_one() && !c.is_minus_one())
return false;
}
@ -184,11 +177,9 @@ namespace smt {
for (unsigned r_id = 0; r_id < num; r_id++) {
row const & r = m_rows[r_id];
if (r.m_base_var != null_theory_var) {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
for (auto const& e : r) {
if (!e.is_dead()) {
numeral const & c = e.m_coeff;
if (c.to_rational().is_big()) {
std::string str = c.to_rational().to_string();
if (str.length() > 48)
@ -215,11 +206,9 @@ namespace smt {
row const & r = m_rows[r_id];
if (r.m_base_var != null_theory_var) {
num_rows++;
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
numeral const & c = it->m_coeff;
for (auto const& e : r) {
if (!e.is_dead()) {
numeral const & c = e.m_coeff;
num_non_zeros++;
if (c.is_one())
num_ones++;
@ -284,11 +273,9 @@ namespace smt {
template<typename Ext>
void theory_arith<Ext>::display_row_info(std::ostream & out, row const & r) const {
display_row(out, r, true);
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it)
if (!it->is_dead())
display_var(out, it->m_var);
for (auto const& e : r)
if (!e.is_dead())
display_var(out, e.m_var);
}
/**
@ -298,15 +285,14 @@ namespace smt {
void theory_arith<Ext>::display_simplified_row(std::ostream & out, row const & r) const {
bool has_rat_coeff = false;
numeral k;
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
out << "(v" << r.get_base_var() << ") : ";
bool first = true;
for (; it != end; ++it) {
if (it->is_dead())
for (auto const& e : r) {
if (e.is_dead())
continue;
theory_var v = it->m_var;
numeral const & c = it->m_coeff;
theory_var v = e.m_var;
numeral const & c = e.m_coeff;
if (is_fixed(v)) {
k += c * lower_bound(v).get_rational();
continue;
@ -328,11 +314,9 @@ namespace smt {
}
out << "\n";
if (has_rat_coeff) {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it)
if (!it->is_dead() && (is_base(it->m_var) || (!is_fixed(it->m_var) && (lower(it->m_var) || upper(it->m_var)))))
display_var(out, it->m_var);
for (auto const& e : r)
if (!e.is_dead() && (is_base(e.m_var) || (!is_fixed(e.m_var) && (lower(e.m_var) || upper(e.m_var)))))
display_var(out, e.m_var);
}
}
@ -385,8 +369,7 @@ namespace smt {
out << ", shared: " << get_context().is_shared(get_enode(v));
out << ", unassigned: " << m_unassigned_atoms[v];
out << ", rel: " << get_context().is_relevant(get_enode(v));
out << ", def: ";
display_var_flat_def(out, v);
out << ", def: " << enode_pp(get_enode(v), ctx);
out << "\n";
}
@ -477,28 +460,17 @@ namespace smt {
theory_var v = a->get_var();
inf_numeral const & k = a->get_k();
enode * e = get_enode(v);
if (show_sign) {
if (!a->is_true())
out << "not ";
else
out << " ";
}
if (show_sign)
out << (a->is_true()?" ":"not ");
out << "v";
out.width(3);
out << std::left << v << " #";
out.width(3);
out << e->get_owner_id();
out << std::right;
out << " ";
if (a->get_atom_kind() == A_LOWER)
out << ">=";
else
out << "<=";
out << " ";
out << " " << ((a->get_atom_kind() == A_LOWER)? ">=" : "<=") << " ";
out.width(6);
out << k << " ";
display_var_flat_def(out, v);
out << "\n";
out << k << " " << enode_pp(get_enode(v), ctx) << "\n";
}
template<typename Ext>

View file

@ -173,8 +173,8 @@ class theory_lra::imp {
unsigned_vector m_bounds_trail;
unsigned m_asserted_qhead;
svector<unsigned> m_to_check; // rows that should be checked for theory propagation
svector<unsigned> m_bv_to_propagate; // Boolean variables that can be propagated
svector<std::pair<theory_var, theory_var> > m_assume_eq_candidates;
unsigned m_assume_eq_head;
lp::u_set m_tmp_var_set;
@ -233,6 +233,7 @@ class theory_lra::imp {
resource_limit m_resource_limit;
lp_bounds m_new_bounds;
symbol m_farkas;
vector<parameter> m_bound_params;
lp::lp_bound_propagator<imp> m_bp;
context& ctx() const { return th.get_context(); }
@ -870,6 +871,10 @@ public:
m_bound_terms(m),
m_bound_predicate(m)
{
m_bound_params.push_back(parameter(m_farkas));
m_bound_params.push_back(parameter(rational(1)));
m_bound_params.push_back(parameter(rational(1)));
}
~imp() {
@ -1071,7 +1076,7 @@ public:
lp().pop(num_scopes);
// VERIFY(l_false != make_feasible());
m_new_bounds.reset();
m_to_check.reset();
m_bv_to_propagate.reset();
if (m_nla)
m_nla->pop(num_scopes);
TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
@ -1493,29 +1498,24 @@ public:
ctx().push_trail(value_trail<unsigned>(m_assume_eq_head));
while (m_assume_eq_head < m_assume_eq_candidates.size()) {
std::pair<theory_var, theory_var> const & p = m_assume_eq_candidates[m_assume_eq_head];
theory_var v1 = p.first;
theory_var v2 = p.second;
auto const [v1, v2] = m_assume_eq_candidates[m_assume_eq_head];
enode* n1 = get_enode(v1);
enode* n2 = get_enode(v2);
m_assume_eq_head++;
CTRACE("arith",
is_eq(v1, v2) && n1->get_root() != n2->get_root(),
tout << "assuming eq: v" << v1 << " = v" << v2 << "\n";);
if (is_eq(v1, v2) && n1->get_root() != n2->get_root() && th.assume_eq(n1, n2)) {
if (is_eq(v1, v2) && n1->get_root() != n2->get_root() && th.assume_eq(n1, n2))
return true;
}
}
return false;
}
bool is_eq(theory_var v1, theory_var v2) {
if (use_nra_model()) {
if (use_nra_model())
return m_nla->am().eq(nl_value(v1, *m_a1), nl_value(v2, *m_a2));
}
else {
else
return get_ivalue(v1) == get_ivalue(v2);
}
}
bool has_delayed_constraints() const {
@ -1523,6 +1523,8 @@ public:
}
final_check_status final_check_eh() {
if (propagate_core())
return FC_CONTINUE;
m_model_is_initialized = false;
IF_VERBOSE(12, verbose_stream() << "final-check " << lp().get_status() << "\n");
lbool is_sat = l_true;
@ -1534,9 +1536,7 @@ public:
switch (is_sat) {
case l_true:
TRACE("arith", display(tout);
/* ctx().display(tout);*/
);
TRACE("arith", display(tout));
switch (check_lia()) {
case l_true:
@ -2048,41 +2048,59 @@ public:
return false;
}
bool m_new_def{ false };
bool m_new_def = false ;
bool adaptive() const { return ctx().get_fparams().m_arith_adaptive; }
double adaptive_assertion_threshold() const { return ctx().get_fparams().m_arith_adaptive_assertion_threshold; }
bool process_atoms() const {
if (!adaptive())
return true;
unsigned total_conflicts = ctx().get_num_conflicts();
if (total_conflicts < 10)
return true;
double f = static_cast<double>(m_num_conflicts)/static_cast<double>(total_conflicts);
return f >= adaptive_assertion_threshold();
}
bool can_propagate() {
return process_atoms() && can_propagate_core();
}
bool can_propagate_core() {
return m_asserted_atoms.size() > m_asserted_qhead || m_new_def;
}
void propagate() {
bool propagate() {
return process_atoms() && propagate_core();
}
bool propagate_core() {
m_model_is_initialized = false;
flush_bound_axioms();
if (!can_propagate()) {
return;
}
m_new_def = false;
if (!can_propagate_core())
return false;
m_new_def = false;
while (m_asserted_qhead < m_asserted_atoms.size() && !ctx().inconsistent() && m.inc()) {
bool_var bv = m_asserted_atoms[m_asserted_qhead].m_bv;
bool is_true = m_asserted_atoms[m_asserted_qhead].m_is_true;
m_to_check.push_back(bv);
auto [bv, is_true] = m_asserted_atoms[m_asserted_qhead];
m_bv_to_propagate.push_back(bv);
api_bound* b = nullptr;
TRACE("arith", tout << "propagate: " << literal(bv, !is_true) << "\n";);
if (m_bool_var2bound.find(bv, b)) {
TRACE("arith", tout << "propagate: " << literal(bv, !is_true) << "\n";
if (!m_bool_var2bound.contains(bv)) tout << "not found\n");
if (m_bool_var2bound.find(bv, b))
assert_bound(bv, is_true, *b);
}
else {
TRACE("arith", tout << "not found " << bv << "\n";);
}
++m_asserted_qhead;
}
if (ctx().inconsistent()) {
m_to_check.reset();
return;
m_bv_to_propagate.reset();
return true;
}
lbool lbl = make_feasible();
if (!m.inc())
return;
return false;
switch(lbl) {
case l_false:
@ -2096,7 +2114,7 @@ public:
case l_undef:
break;
}
return true;
}
bool should_propagate() const {
@ -2246,26 +2264,28 @@ public:
assign(bound, m_core, m_eqs, m_params);
}
void add_eq(lpvar u, lpvar v, lp::explanation const& e) {
bool add_eq(lpvar u, lpvar v, lp::explanation const& e, bool is_fixed) {
if (ctx().inconsistent())
return;
return false;
theory_var uv = lp().local_to_external(u); // variables that are returned should have external representations
theory_var vv = lp().local_to_external(v); // so maybe better to have them already transformed to external form
enode* n1 = get_enode(uv);
enode* n2 = get_enode(vv);
TRACE("arith", tout << "add-eq " << mk_pp(n1->get_expr(), m) << " == " << mk_pp(n2->get_expr(), m) << " " << n1->get_expr_id() << " == " << n2->get_expr_id() << "\n";);
if (n1->get_root() == n2->get_root())
return;
return false;
expr* e1 = n1->get_expr();
expr* e2 = n2->get_expr();
if (e1->get_sort() != e2->get_sort())
return;
if (m.is_ite(e1) || m.is_ite(e2))
return;
return false;
if (!is_fixed && !a.is_numeral(e1) && !a.is_numeral(e2) && (m.is_ite(e1) || m.is_ite(e2)))
return false;
reset_evidence();
for (auto ev : e)
set_evidence(ev.ci(), m_core, m_eqs);
assign_eq(uv, vv);
return true;
}
literal_vector m_core2;
@ -2440,6 +2460,7 @@ public:
typedef lp_bounds::iterator iterator;
void flush_bound_axioms() {
CTRACE("arith", !m_new_bounds.empty(), tout << "flush bound axioms\n";);
while (!m_new_bounds.empty()) {
@ -2458,7 +2479,7 @@ public:
CTRACE("arith", atoms.size() > 1,
for (auto* a : atoms) a->display(tout) << "\n";);
lp_bounds occs(m_bounds[v]);
std::sort(atoms.begin(), atoms.end(), compare_bounds());
std::sort(occs.begin(), occs.end(), compare_bounds());
@ -2558,14 +2579,15 @@ public:
}
void propagate_basic_bounds() {
for (auto const& bv : m_to_check) {
for (auto const& bv : m_bv_to_propagate) {
api_bound* b = nullptr;
if (m_bool_var2bound.find(bv, b)) {
propagate_bound(bv, ctx().get_assignment(bv) == l_true, *b);
if (ctx().inconsistent()) break;
if (ctx().inconsistent())
break;
}
}
m_to_check.reset();
m_bv_to_propagate.reset();
}
// for glb lo': lo' < lo:
@ -2633,10 +2655,7 @@ public:
ctx().display_literals_verbose(tout, m_core);
ctx().display_literal_verbose(tout << " => ", lit2);
tout << "\n";);
m_params.push_back(parameter(m_farkas));
m_params.push_back(parameter(rational(1)));
m_params.push_back(parameter(rational(1)));
assign(lit2, m_core, m_eqs, m_params);
assign(lit2, m_core, m_eqs, m_bound_params);
++m_stats.m_bounds_propagations;
}
@ -3194,7 +3213,7 @@ public:
m_assume_eq_head = 0;
m_scopes.reset();
m_stats.reset();
m_to_check.reset();
m_bv_to_propagate.reset();
m_model_is_initialized = false;
}
@ -3661,7 +3680,7 @@ public:
else if (can_get_value(v)) out << " = " << get_value(v);
if (is_int(v)) out << ", int";
if (ctx().is_shared(get_enode(v))) out << ", shared";
out << " := "; th.display_var_flat_def(out, v) << "\n";
out << " := " << enode_pp(get_enode(v), ctx()) << "\n";
}
}