3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 05:48:44 +00:00
z3/src/smt/network_flow_def.h
2013-10-25 17:42:03 -07:00

199 lines
6.5 KiB
C++

/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
network_flow_def.h
Abstract:
Implements Network Simplex algorithm for min cost flow problem
Author:
Anh-Dung Phan (t-anphan) 2013-10-24
Notes:
--*/
#ifndef _NETWORK_FLOW_DEF_H_
#define _NETWORK_FLOW_DEF_H_
#include"network_flow.h"
namespace smt {
template<typename Ext>
network_flow<Ext>::network_flow(graph & g, vector<numeral> & costs) :
m_graph(g),
m_costs(costs) {
}
template<typename Ext>
void network_flow<Ext>::initialize() {
// TODO: construct an initial spanning tree i.e. inializing m_pred, m_depth and m_thread.
compute_potentials();
compute_flows();
}
template<typename Ext>
void network_flow<Ext>::compute_potentials() {
SASSERT(!m_potentials.empty());
SASSERT(!m_thread.empty());
SASSERT(m_thread.size() == m_pred.size());
numeral zero(0);
m_potentials.set(0, zero);
node target = m_thread[0];
while (target != 0) {
node source = m_pred[target];
edge_id e_id;
if (m_graph.get_edge_id(source, target, e_id)) {
m_potentials.set(target, m_potentials[source] - m_graph.get_weight(e_id));
}
if (m_graph.get_edge_id(target, source, e_id)) {
m_potentials.set(target, m_potentials[source] + m_graph.get_weight(e_id));
}
target = m_thread[target];
}
}
template<typename Ext>
void network_flow<Ext>::compute_flows() {
vector<numeral> balances(m_balances);
// OPTIMIZE: Need a set data structure for efficiently removing elements
vector<edge_id> basics;
while (!basics.empty()) {
// Find a leaf node of a spanning tree
node target;
for (unsigned int i = 0; i < m_thread.size(); ++i) {
if (m_depth[i] <= m_depth[m_thread[i]]) {
target = i;
break;
}
}
node source = m_pred[target];
edge_id e_id;
if (m_graph.get_edge_id(source, target, e_id)) {
m_flows.set(e_id, -m_graph.get_weight(basics[target]));
basics[source] += basics[target];
basics.erase(e_id);
}
else if (m_graph.get_edge_id(target, source, e_id)) {
m_flows.set(e_id, m_graph.get_weight(basics[target]));
basics[source] += basics[target];
basics.erase(e_id);
}
}
}
template<typename Ext>
bool network_flow<Ext>::is_optimal(edge_id & violating_edge) {
// TODO: how to get nonbasics vector?
vector<edge> nonbasics;
typename vector<edge>::iterator it = nonbasics.begin();
typename vector<edge>::iterator end = nonbasics.end();
bool found = false;
for (unsigned int i = 0; i < nonbasics.size(); ++i) {
edge & e = nonbasics[i];
if (e.is_enabled()) {
node source = e.get_source();
node target = e.get_target();
numeral cost = e.get_weight() - m_potentials[source] + m_potentials[target];
// Choose the first negative-cost edge to be the violating edge
// TODO: add multiple pivoting strategies
numeral zero(0);
if (cost < zero) {
edge_id e_id;
m_graph.get_edge_id(source, target, e_id);
violating_edge = e_id;
found = true;
break;
}
}
}
return !found;
}
template<typename Ext>
edge_id network_flow<Ext>::choose_leaving_edge(edge_id entering_edge) {
node source = m_graph.get_source(entering_edge);
node target = m_graph.get_target(entering_edge);
while (source != target) {
if (m_depth[source] > m_depth[target])
source = m_pred[source];
else if (m_depth[source] < m_depth[target])
target = m_pred[target];
else {
source = m_pred[source];
target = m_pred[target];
}
}
edge_id e_id;
m_graph.get_edge_id(source, target, e_id);
return e_id;
}
template<typename Ext>
void network_flow<Ext>::update_spanning_tree(edge_id entering_edge, edge_id leaving_edge) {
// Need special handling in case two edges are identical
SASSERT(entering_edge != leaving_edge);
// Update potentials
node target = m_upwards[leaving_edge] ? m_graph.get_source(leaving_edge) : m_graph.get_target(leaving_edge);
numeral src_pot = m_potentials[m_graph.get_source(entering_edge)];
numeral tgt_pot = m_potentials[m_graph.get_target(entering_edge)];
numeral weight = m_graph.get_weight(entering_edge);
numeral change = m_upwards[entering_edge] ? (weight - src_pot + tgt_pot) : (-weight + src_pot - tgt_pot);
m_potentials[target] += change;
node start = m_thread[target];
while (m_depth[start] > m_depth[target]) {
m_potentials[start] += change;
start = m_thread[start];
}
}
template<typename Ext>
bool network_flow<Ext>::is_unbounded() {
return false;
}
// Get the optimal solution
template<typename Ext>
void network_flow<Ext>::get_optimal_solution(numeral & objective, vector<numeral> & flows) {
SASSERT(m_is_optimal);
flows.reset();
flows.append(m_flows);
numeral cost(0);
for (unsigned int i = 0; i < m_flows.size(); ++i) {
// FIXME: this * operator is not supported
//cost += m_costs[i] * m_flows[i];
}
objective = cost;
}
// Minimize cost flows
// Return true if found an optimal solution, and return false if unbounded
template<typename Ext>
bool network_flow<Ext>::min_cost() {
SASSERT(!m_graph.get_all_edges().empty());
initialize();
edge_id entering_edge;
while (!is_optimal(entering_edge)) {
edge_id leaving_edge = choose_leaving_edge(entering_edge);
update_spanning_tree(entering_edge, leaving_edge);
if (is_unbounded()) {
m_is_optimal = false;
return m_is_optimal;
}
}
m_is_optimal = true;
return m_is_optimal;
}
}
#endif