mirror of
https://github.com/Z3Prover/z3
synced 2025-04-14 21:08:46 +00:00
Reduce difference logic solver to min cost flow
This commit is contained in:
parent
ebed5fa037
commit
532c345fd1
|
@ -932,23 +932,27 @@ public:
|
|||
}
|
||||
|
||||
// Return true if there is an edge source --> target.
|
||||
// If there is such edge, return it in parameter e.
|
||||
bool get_edge(dl_var source, dl_var target, edge & e) {
|
||||
// If there is such edge, return its edge_id in parameter id.
|
||||
bool get_edge_id(dl_var source, dl_var target, edge_id & id) {
|
||||
edge_id_vector & edges = m_out_edges[source];
|
||||
typename edge_id_vector::iterator it = edges.begin();
|
||||
typename edge_id_vector::iterator end = edges.end();
|
||||
bool found = false;
|
||||
for (; it != end; ++it) {
|
||||
edge_id e_id = *it;
|
||||
edge & e0 = m_edges[e_id];
|
||||
if (e0.is_enabled() && e0.get_target() == target && !found) {
|
||||
e = e0;
|
||||
edge & e = m_edges[e_id];
|
||||
if (e.is_enabled() && e.get_target() == target && !found) {
|
||||
id = e_id;
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
return found;
|
||||
}
|
||||
|
||||
edges & get_all_edges() {
|
||||
return m_edges;
|
||||
}
|
||||
|
||||
template<typename Functor>
|
||||
void enumerate_edges(dl_var source, dl_var target, Functor& f) {
|
||||
edge_id_vector & edges = m_out_edges[source];
|
||||
|
|
|
@ -38,31 +38,29 @@ namespace smt {
|
|||
// Solve minimum cost flow problem using Network Simplex algorithm
|
||||
template<typename Ext>
|
||||
class network_flow : private Ext {
|
||||
struct GExt : public Ext {
|
||||
typedef literal explanation;
|
||||
};
|
||||
|
||||
typedef dl_var node;
|
||||
typedef dl_edge<GExt> edge;
|
||||
typedef dl_graph<GExt> graph;
|
||||
typedef typename Ext::numeral numeral;
|
||||
typedef dl_edge<Ext> edge;
|
||||
typedef dl_graph<Ext> graph;
|
||||
typedef typename Ext::numeral numeral;
|
||||
graph m_graph;
|
||||
|
||||
// Denote supply/demand b_i on node i
|
||||
vector<numeral> m_balances;
|
||||
|
||||
// Duals of flows which are convenient to compute dual solutions
|
||||
vector<numeral> m_potentials;
|
||||
|
||||
// Keep optimal solution of the min cost flow problem
|
||||
inf_rational m_objective;
|
||||
|
||||
// Costs on edges
|
||||
vector<numeral> & m_costs;
|
||||
|
||||
// Basic feasible flows
|
||||
vector<numeral> m_flows;
|
||||
|
||||
// Denote the spanning tree of basic edges
|
||||
vector<edge> m_basics;
|
||||
// Denote non-basic edges with flow 0 for uncapicitated networks
|
||||
vector<edge> m_nonbasics;
|
||||
// An element is true if the corresponding edge points upwards (compared to the root node)
|
||||
svector<bool> m_upwards;
|
||||
|
||||
// Store the parent of a node in the spanning tree
|
||||
svector<node> m_pred;
|
||||
|
@ -71,7 +69,12 @@ namespace smt {
|
|||
// Store the pointer to the next node in depth first search ordering
|
||||
svector<node> m_thread;
|
||||
|
||||
bool m_is_optimal;
|
||||
|
||||
public:
|
||||
|
||||
network_flow(graph & g, vector<numeral> & costs);
|
||||
|
||||
// Initialize the network with a feasible spanning tree
|
||||
void initialize();
|
||||
|
||||
|
@ -81,13 +84,13 @@ namespace smt {
|
|||
|
||||
// If all reduced costs are non-negative, the current flow is optimal
|
||||
// If not optimal, return a violating edge in the corresponding variable
|
||||
bool is_optimal(edge & violating_edge);
|
||||
bool is_optimal(edge_id & violating_edge);
|
||||
|
||||
// Send as much flow as possible around the cycle, the first basic edge with flow 0 will leave
|
||||
edge choose_leaving_edge(const edge & entering_edge);
|
||||
|
||||
void update_basics(const edge & entering_edge, const edge & leaving_edge);
|
||||
edge_id choose_leaving_edge(edge_id entering_edge);
|
||||
|
||||
void update_spanning_tree(edge_id entering_edge, edge_id leaving_edge);
|
||||
|
||||
bool is_unbounded();
|
||||
|
||||
// Compute the optimal solution
|
||||
|
|
|
@ -24,6 +24,12 @@ Notes:
|
|||
|
||||
namespace smt {
|
||||
|
||||
template<typename Ext>
|
||||
network_flow<Ext>::network_flow(graph & g, vector<numeral> & costs) :
|
||||
m_graph(g),
|
||||
m_costs(costs) {
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
void network_flow<Ext>::initialize() {
|
||||
// TODO: construct an initial spanning tree i.e. inializing m_pred, m_depth and m_thread.
|
||||
|
@ -36,54 +42,74 @@ namespace smt {
|
|||
SASSERT(!m_potentials.empty());
|
||||
SASSERT(!m_thread.empty());
|
||||
SASSERT(m_thread.size() == m_pred.size());
|
||||
|
||||
array<rational, m_potentials.size()> potentials;
|
||||
std::copy(m_potentials.begin(), m_potentials.end(), potentials);
|
||||
rational zero(0);
|
||||
potentials[0] = zero;
|
||||
node next = m_thread[0];
|
||||
|
||||
while (next != 0) {
|
||||
node current = m_pred[next];
|
||||
edge e;
|
||||
if (m_graph.get_edge(current, next, e)) {
|
||||
potentials[next] = potentials[current] - e.get_weight();
|
||||
numeral zero(0);
|
||||
m_potentials.set(0, zero);
|
||||
node target = m_thread[0];
|
||||
|
||||
while (target != 0) {
|
||||
node source = m_pred[target];
|
||||
edge_id e_id;
|
||||
if (m_graph.get_edge_id(source, target, e_id)) {
|
||||
m_potentials.set(target, m_potentials[source] - m_graph.get_weight(e_id));
|
||||
}
|
||||
if (m_graph.get_edge(next, current, e)) {
|
||||
potentials[next] = potentials[current] + e.get_weight();
|
||||
if (m_graph.get_edge_id(target, source, e_id)) {
|
||||
m_potentials.set(target, m_potentials[source] + m_graph.get_weight(e_id));
|
||||
}
|
||||
next = m_thread[next];
|
||||
target = m_thread[target];
|
||||
}
|
||||
std::copy(potentials.begin(), potentials.end(), m_potentials);
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
void network_flow<Ext>::compute_flows() {
|
||||
vector<numeral> balances(m_balances);
|
||||
numeral zero;
|
||||
m_flows.fill(zero);
|
||||
vector<edge> basics(m_basics);
|
||||
// TODO: need a way to find a leaf node of a spanning tree
|
||||
|
||||
// OPTIMIZE: Need a set data structure for efficiently removing elements
|
||||
vector<edge_id> basics;
|
||||
while (!basics.empty()) {
|
||||
return;
|
||||
// Find a leaf node of a spanning tree
|
||||
node target;
|
||||
for (unsigned int i = 0; i < m_thread.size(); ++i) {
|
||||
if (m_depth[i] <= m_depth[m_thread[i]]) {
|
||||
target = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
node source = m_pred[target];
|
||||
edge_id e_id;
|
||||
if (m_graph.get_edge_id(source, target, e_id)) {
|
||||
m_flows.set(e_id, -m_graph.get_weight(basics[target]));
|
||||
basics[source] += basics[target];
|
||||
basics.erase(e_id);
|
||||
}
|
||||
else if (m_graph.get_edge_id(target, source, e_id)) {
|
||||
m_flows.set(e_id, m_graph.get_weight(basics[target]));
|
||||
basics[source] += basics[target];
|
||||
basics.erase(e_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
bool network_flow<Ext>::is_optimal(edge & violating_edge) {
|
||||
typename vector<edge>::iterator it = m_nonbasics.begin();
|
||||
typename vector<edge>::iterator end = m_nonbasics.end();
|
||||
bool network_flow<Ext>::is_optimal(edge_id & violating_edge) {
|
||||
// TODO: how to get nonbasics vector?
|
||||
vector<edge> nonbasics;
|
||||
typename vector<edge>::iterator it = nonbasics.begin();
|
||||
typename vector<edge>::iterator end = nonbasics.end();
|
||||
bool found = false;
|
||||
for (unsigned int i = 0; i < m_nonbasics.size(); ++i) {
|
||||
edge & e = m_nonbasics[i];
|
||||
for (unsigned int i = 0; i < nonbasics.size(); ++i) {
|
||||
edge & e = nonbasics[i];
|
||||
if (e.is_enabled()) {
|
||||
node source = e.get_source();
|
||||
node target = e.get_target();
|
||||
numeral cost = e.get_weight() - m_potentials[source] + m_potentials[target];
|
||||
// Choose the first negative-cost edge to be the violating edge
|
||||
// TODO: add multiple pivoting strategies
|
||||
if (cost < 0) {
|
||||
violating_edge = e;
|
||||
numeral zero(0);
|
||||
if (cost < zero) {
|
||||
edge_id e_id;
|
||||
m_graph.get_edge_id(source, target, e_id);
|
||||
violating_edge = e_id;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
|
@ -93,9 +119,9 @@ namespace smt {
|
|||
}
|
||||
|
||||
template<typename Ext>
|
||||
dl_edge<typename network_flow<Ext>::GExt> network_flow<Ext>::choose_leaving_edge(const edge & entering_edge) {
|
||||
node source = entering_edge.get_source();
|
||||
node target = entering_edge.get_target();
|
||||
edge_id network_flow<Ext>::choose_leaving_edge(edge_id entering_edge) {
|
||||
node source = m_graph.get_source(entering_edge);
|
||||
node target = m_graph.get_target(entering_edge);
|
||||
while (source != target) {
|
||||
if (m_depth[source] > m_depth[target])
|
||||
source = m_pred[source];
|
||||
|
@ -106,14 +132,28 @@ namespace smt {
|
|||
target = m_pred[target];
|
||||
}
|
||||
}
|
||||
edge e;
|
||||
m_graph.get_edge(source, target, e);
|
||||
return e;
|
||||
edge_id e_id;
|
||||
m_graph.get_edge_id(source, target, e_id);
|
||||
return e_id;
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
void network_flow<Ext>::update_basics(const edge & entering_edge, const edge & leaving_edge) {
|
||||
|
||||
void network_flow<Ext>::update_spanning_tree(edge_id entering_edge, edge_id leaving_edge) {
|
||||
// Need special handling in case two edges are identical
|
||||
SASSERT(entering_edge != leaving_edge);
|
||||
|
||||
// Update potentials
|
||||
node target = m_upwards[leaving_edge] ? m_graph.get_source(leaving_edge) : m_graph.get_target(leaving_edge);
|
||||
numeral src_pot = m_potentials[m_graph.get_source(entering_edge)];
|
||||
numeral tgt_pot = m_potentials[m_graph.get_target(entering_edge)];
|
||||
numeral weight = m_graph.get_weight(entering_edge);
|
||||
numeral change = m_upwards[entering_edge] ? (weight - src_pot + tgt_pot) : (-weight + src_pot - tgt_pot);
|
||||
m_potentials[target] += change;
|
||||
node start = m_thread[target];
|
||||
while (m_depth[start] > m_depth[target]) {
|
||||
m_potentials[start] += change;
|
||||
start = m_thread[start];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
|
@ -124,24 +164,34 @@ namespace smt {
|
|||
// Get the optimal solution
|
||||
template<typename Ext>
|
||||
void network_flow<Ext>::get_optimal_solution(numeral & objective, vector<numeral> & flows) {
|
||||
SASSERT(m_is_optimal);
|
||||
flows.reset();
|
||||
flows.append(m_flows);
|
||||
// TODO: calculate objective value
|
||||
numeral cost(0);
|
||||
for (unsigned int i = 0; i < m_flows.size(); ++i) {
|
||||
// FIXME: this * operator is not supported
|
||||
//cost += m_costs[i] * m_flows[i];
|
||||
}
|
||||
objective = cost;
|
||||
}
|
||||
|
||||
// Minimize cost flows
|
||||
// Return true if found an optimal solution, and return false if unbounded
|
||||
template<typename Ext>
|
||||
bool network_flow<Ext>::min_cost() {
|
||||
SASSERT(!m_graph.get_all_edges().empty());
|
||||
initialize();
|
||||
edge & entering_edge;
|
||||
edge_id entering_edge;
|
||||
while (!is_optimal(entering_edge)) {
|
||||
edge & leaving_edge = choose_leaving_edge();
|
||||
update_tree(entering_edge, leaving_edge);
|
||||
if (is_unbounded())
|
||||
return false;
|
||||
edge_id leaving_edge = choose_leaving_edge(entering_edge);
|
||||
update_spanning_tree(entering_edge, leaving_edge);
|
||||
if (is_unbounded()) {
|
||||
m_is_optimal = false;
|
||||
return m_is_optimal;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
m_is_optimal = true;
|
||||
return m_is_optimal;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -307,14 +307,13 @@ namespace smt {
|
|||
virtual bool maximize(theory_var v);
|
||||
virtual theory_var add_objective(app* term);
|
||||
virtual inf_eps_rational<inf_rational> get_objective_value(theory_var v);
|
||||
numeral m_objective_value;
|
||||
|
||||
typedef vector <std::pair<theory_var, rational> > objective_term;
|
||||
vector<objective_term> m_objectives;
|
||||
|
||||
void internalize_objective(app * n, objective_term & objective);
|
||||
|
||||
network_flow<Ext> m_network_flow;
|
||||
|
||||
private:
|
||||
|
||||
virtual void new_eq_eh(theory_var v1, theory_var v2, justification& j);
|
||||
|
|
|
@ -1005,7 +1005,37 @@ bool theory_diff_logic<Ext>::maximize(theory_var v) {
|
|||
}
|
||||
verbose_stream() << "\n";);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return false;
|
||||
// Double the number of edges in the new graph
|
||||
dl_graph<GExt> g;
|
||||
vector<dl_edge<GExt>> es = m_graph.get_all_edges();
|
||||
dl_var offset = m_graph.get_num_edges();
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
dl_edge<GExt> e(es[i]);
|
||||
g.enable_edge(g.add_edge(e));
|
||||
g.enable_edge(g.add_edge(e.get_target() + offset, e.get_source() + offset, e.get_weight(), e.get_explanation()));
|
||||
}
|
||||
|
||||
// Objective coefficients now become costs
|
||||
vector<numeral> base_costs, aux_costs;
|
||||
for (unsigned i = 0; i < m_objectives[v].size(); ++i) {
|
||||
numeral cost(m_objectives[v][i].second);
|
||||
base_costs.push_back(cost);
|
||||
aux_costs.push_back(-cost);
|
||||
}
|
||||
vector<numeral> costs;
|
||||
costs.append(base_costs);
|
||||
costs.append(aux_costs);
|
||||
|
||||
network_flow<GExt> net_flow(g, costs);
|
||||
bool is_optimal = net_flow.min_cost();
|
||||
if (is_optimal) {
|
||||
numeral objective_value;
|
||||
vector<numeral> flows;
|
||||
net_flow.get_optimal_solution(objective_value, flows);
|
||||
m_objective_value = objective_value.get_rational();
|
||||
// TODO: return the model of the optimal solution
|
||||
}
|
||||
return is_optimal;
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
|
@ -1018,6 +1048,7 @@ theory_var theory_diff_logic<Ext>::add_objective(app* term) {
|
|||
|
||||
template<typename Ext>
|
||||
inf_eps_rational<inf_rational> theory_diff_logic<Ext>::get_objective_value(theory_var v) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
inf_rational objective;
|
||||
inf_eps_rational<inf_rational> val(objective);
|
||||
return val;
|
||||
|
|
Loading…
Reference in a new issue