3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 03:45:51 +00:00
z3/src/sat/smt/polysat_solver.h
Nikolaj Bjorner e6f7ba90f1 more saturation for overflow
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2024-01-31 20:12:01 -08:00

304 lines
14 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
polysat_solver.h
Abstract:
Theory plugin for bit-vectors
Author:
Nikolaj Bjorner (nbjorner) 2020-08-30
--*/
#pragma once
#include "sat/smt/sat_th.h"
#include "math/dd/dd_pdd.h"
#include "sat/smt/polysat/core.h"
#include "sat/smt/intblast_solver.h"
#include "ast/euf/euf_bv_plugin.h"
namespace euf {
class solver;
}
namespace polysat {
class solver : public euf::th_euf_solver, public solver_interface {
typedef euf::theory_var theory_var;
typedef euf::theory_id theory_id;
typedef sat::literal literal;
typedef sat::bool_var bool_var;
typedef sat::literal_vector literal_vector;
using pdd = dd::pdd;
struct proof_hint : public euf::th_proof_hint {
char const* name;
unsigned m_lit_head, m_lit_tail, m_eq_head, m_eq_tail;
proof_hint(char const* name, unsigned lh, unsigned lt, unsigned eh, unsigned et) :
name(name), m_lit_head(lh), m_lit_tail(lt), m_eq_head(eh), m_eq_tail(et) {}
expr* get_hint(euf::solver& s) const override;
};
class proof_hint_builder {
sat::literal_vector m_literals;
euf::enode_pair_vector m_eqs;
char const* m_name = nullptr;
unsigned m_lit_head = 0, m_lit_tail = 0, m_eq_head = 0, m_eq_tail = 0;
void reset() { m_lit_head = m_lit_tail; m_eq_head = m_eq_tail; }
void add(euf::enode* a, euf::enode* b) {
if (m_eq_tail < m_eqs.size())
m_eqs[m_eq_tail] = { a, b };
else
m_eqs.push_back({ a, b });
m_eq_tail++;
}
public:
void init(euf::solver& ctx, char const* name);
void add_eq(euf::enode* a, euf::enode* b) { add(a, b); }
void add_lit(sat::literal lit) {
if (m_lit_tail < m_literals.size())
m_literals[m_lit_tail] = lit;
else
m_literals.push_back(lit);
m_lit_tail++;
}
sat::literal const& lit(unsigned i) const { return m_literals[i]; }
euf::enode_pair const& eq(unsigned i) const { return m_eqs[i]; }
proof_hint* mk(euf::solver& s);
};
struct stats {
void reset() { memset(this, 0, sizeof(stats)); }
unsigned m_num_conflicts;
unsigned m_num_propagations;
unsigned m_num_axioms;
stats() { reset(); }
};
struct atom {
bool_var m_bv;
constraint_id m_index;
atom(bool_var b, constraint_id index) :m_bv(b), m_index(index) {}
~atom() { }
};
proof_hint_builder m_mk_hint;
proof_hint* mk_proof_hint(char const* name, sat::literal_vector const& lits, euf::enode_pair_vector const& eqs);
bv_util bv;
arith_util m_autil;
stats m_stats;
core m_core;
intblast::solver m_intblast;
vector<pdd> m_var2pdd; // theory_var 2 pdd
bool_vector m_var2pdd_valid; // valid flag
unsigned_vector m_pddvar2var; // pvar -> theory_var
ptr_vector<atom> m_bool_var2atom; // bool_var -> atom
euf::bv_plugin* m_bv_plugin = nullptr;
svector<std::pair<euf::theory_var, euf::theory_var>> m_var_eqs;
unsigned m_var_eqs_head = 0;
bool m_has_lemma = false;
unsigned m_lemma_level = 0;
expr_ref_vector m_lemma;
sat::check_result intblast();
void explain_slice(pvar v, pvar w, unsigned offset, std::function<void(euf::enode*, euf::enode*)>& consume);
void explain_fixed(pvar v, fixed_slice const& s, std::function<void(euf::enode*, euf::enode*)>& consume_eq);
// internalize
bool visit(expr* e) override;
bool visited(expr* e) override;
bool post_visit(expr* e, bool sign, bool root) override;
unsigned get_bv_size(euf::enode* n);
unsigned get_bv_size(theory_var v);
theory_var get_var(euf::enode* n);
void fixed_var_eh(theory_var v);
bool is_fixed(euf::theory_var v, expr_ref& val, sat::literal_vector& lits) override { return false; }
bool is_bv(theory_var v) const { return bv.is_bv(var2expr(v)); }
void register_true_false_bit(theory_var v, unsigned i);
void add_bit(theory_var v, sat::literal lit);
void eq_internalized(sat::bool_var b1, sat::bool_var b2, unsigned idx, theory_var v1, theory_var v2, sat::literal eq, euf::enode* n);
void insert_bv2a(bool_var bv, atom* a) { m_bool_var2atom.setx(bv, a, nullptr); }
void erase_bv2a(bool_var bv) { m_bool_var2atom[bv] = nullptr; }
atom* get_bv2a(bool_var bv) const { return m_bool_var2atom.get(bv, nullptr); }
class mk_atom_trail;
atom* mk_atom(sat::bool_var bv, signed_constraint& sc);
void set_bit_eh(theory_var v, literal l, unsigned idx);
void init_bits(expr* e, expr_ref_vector const & bits);
void mk_bits(theory_var v);
void add_def(sat::literal def, sat::literal l);
void internalize_unary(app* e, std::function<pdd(pdd)> const& fn);
void internalize_binary(app* e, std::function<pdd(pdd, pdd)> const& fn);
void internalize_binary(app* e, std::function<expr*(expr*, expr*)> const& fn);
void internalize_binary_predicate(app* e, std::function<signed_constraint(pdd, pdd)> const& fn);
void internalize_smul_no_ovfl(app* e);
void internalize_smul_no_udfl(app* e);
void internalize_par_unary(app* e, std::function<pdd(pdd,unsigned)> const& fn);
void internalize_novfl(app* n, std::function<void(unsigned, expr* const*, expr* const*, expr_ref&)>& fn);
void internalize_interp(app* n, std::function<expr*(expr*, expr*)>& ibin, std::function<expr*(expr*)>& un);
void internalize_num(app * n);
void internalize_mul(app* e);
void internalize_concat(app * n);
void internalize_bv2int(app* n);
void internalize_int2bv(app* n);
void internalize_mkbv(app* n);
void internalize_xor3(app* n);
void internalize_carry(app* n);
void internalize_sub(app* n);
void internalize_extract(app* n);
void internalize_repeat(app* n);
void internalize_bit2bool(app* n);
void internalize_bor(app* n);
void internalize_bxor(app* n);
void internalize_bnor(app* n);
void internalize_bnand(app* n);
void internalize_bxnor(app* n);
void internalize_band(app* n);
void internalize_lshr(app* n);
void internalize_ashr(app* n);
void internalize_shl(app* n);
template<bool Signed, bool Reverse, bool Negated>
void internalize_le(app* n);
void internalize_zero_extend(app* n);
void internalize_sign_extend(app* n);
void internalize_udiv_i(app* e);
void internalize_urem_i(app* e);
void internalize_div_rem(app* e, bool is_div);
void axiomatize_srem(app* e, expr* x, expr* y);
void axiomatize_smod(app* e, expr* x, expr* y);
void axiomatize_sdiv(app* e, expr* x, expr* y);
void axiomatize_redand(app* e, expr* x);
void axiomatize_redor(app* e, expr* x);
void axiomatize_comp(app* e, expr* x, expr* y);
void axiomatize_rotate_left(app* e, unsigned n, expr* x);
void axiomatize_rotate_right(app* e, unsigned n, expr* x);
void axiomatize_ext_rotate_left(app* e, expr* x, expr* y);
void axiomatize_ext_rotate_right(app* e, expr* x, expr* y);
void axiomatize_int2bv(app* e, unsigned sz, expr* x);
void axiomatize_bv2int(app* e, expr* x);
void axioms_for_extract(app* e);
void axioms_for_concat(app* e);
expr_ref mk_ite(expr* c, expr* t, expr* e);
expr_ref mk_ule(expr* l, expr* r);
expr* rotate_left(app* e, unsigned n, expr* x);
unsigned m_delayed_axioms_qhead = 0;
ptr_vector<app> m_delayed_axioms;
bool propagate_delayed_axioms();
void internalize_polysat(app* a);
void assert_bv2int_axiom(app * n);
void assert_int2bv_axiom(app* n);
void ensure_pdd_var(expr* e);
pdd expr2pdd(expr* e);
pdd var2pdd(euf::theory_var v);
void internalize_set(expr* e, pdd const& p);
void internalize_set(euf::theory_var v, pdd const& p);
void quot_rem(expr* quot, expr* rem, expr* x, expr* y);
vector<pdd> m_eqs;
vector<u_map<std::pair<constraint_id, bool>>> m_eq2constraint;
struct undo_add_eq;
constraint_id eq_constraint(pdd p, pdd q, bool sign, dependency d);
// callbacks from core
lbool add_eq_literal(pvar v, rational const& val, dependency& d) override;
void set_conflict(dependency_vector const& core, char const* hint) override;
bool add_axiom(char const* name, constraint_or_dependency const* begin, constraint_or_dependency const* end, bool redundant) override;
dependency propagate(signed_constraint sc, dependency_vector const& deps, char const* hint) override;
void propagate(dependency const& d, bool sign, dependency_vector const& deps, char const* hint) override;
void propagate_eq(pvar v, rational const& val, dependency const& d) override;
trail_stack& trail() override;
bool inconsistent() const override;
void get_bitvector_sub_slices(pvar v, offset_slices& out) override;
void get_bitvector_super_slices(pvar v, offset_slices& out) override;
void get_bitvector_suffixes(pvar v, offset_slices& out) override;
void get_fixed_bits(pvar v, fixed_bits_vector& fixed_bits) override;
pdd mk_ite(signed_constraint const& sc, pdd const& p, pdd const& q) override;
pdd mk_zero_extend(unsigned sz, pdd const& p) override;
unsigned level(dependency const& d) override;
dependency explain_slice(pvar v, pvar w, unsigned offset);
bool add_axiom(char const* name, constraint_or_dependency_list const& clause, bool redundant) {
return add_axiom(name, clause.begin(), clause.end(), redundant);
}
void add_axiom(char const* name, std::initializer_list<sat::literal> const& clause);
void add_axiom(char const* name, sat::literal_vector const& clause, bool is_redundant);
void add_axiom(char const* name, sat::literal const* begin, sat::literal const* end, bool is_redundant);
void equiv_axiom(char const* name, sat::literal a, sat::literal b);
void validate_propagate(sat::literal lit, sat::literal_vector const& core, euf::enode_pair_vector const& eqs);
void validate_conflict(sat::literal_vector const& core, euf::enode_pair_vector const& eqs);
void validate_axiom(sat::literal_vector const& clause);
std::ostream& display_clause(char const * name, std::ostream& out, sat::literal_vector const& lits) const;
void explain_dep(dependency const& d, euf::enode_pair_vector& eqs, sat::literal_vector& lits);
std::pair<sat::literal_vector, euf::enode_pair_vector> explain_deps(dependency_vector const& deps);
expr_ref constraint2expr(signed_constraint const& sc);
expr_ref pdd2expr(pdd const& p);
struct scoped_eq_justification;
public:
solver(euf::solver& ctx, theory_id id);
~solver() override {}
void set_lookahead(sat::lookahead* s) override { }
void init_search() override {}
double get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const override { return 0; }
bool is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) override { return false; }
bool is_external(bool_var v) override { return false; }
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector & r, bool probing) override;
void asserted(literal l) override;
sat::check_result check() override;
void simplify() override {}
void clauses_modifed() override {}
lbool get_phase(bool_var v) override { return l_undef; }
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
void collect_statistics(statistics& st) const override;
euf::th_solver* clone(euf::solver& ctx) override { return alloc(solver, ctx, get_id()); }
extension* copy(sat::solver* s) override { throw default_exception("polysat copy nyi"); }
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override {}
void gc() override {}
void pop_reinit() override {}
bool validate() override { return true; }
void init_use_list(sat::ext_use_list& ul) override {}
bool is_blocked(literal l, sat::ext_constraint_idx) override { return false; }
bool check_model(sat::model const& m) const override;
void finalize_model(model& mdl) override;
void new_eq_eh(euf::th_eq const& eq) override;
void new_diseq_eh(euf::th_eq const& ne) override;
bool use_diseqs() const override { return true; }
bool unit_propagate() override;
void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override;
bool add_dep(euf::enode* n, top_sort<euf::enode>& dep) override;
bool extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) override { return false; }
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override { return false; }
sat::literal internalize(expr* e, bool sign, bool root) override;
void internalize(expr* e) override;
void eq_internalized(euf::enode* n) override;
euf::theory_var mk_var(euf::enode* n) override;
void apply_sort_cnstr(euf::enode * n, sort * s) override;
};
}